
1

Mobile SDNs: Associating End-User Commands
with Network Flows in Android Devices

Shuwen Liu, Craig A. Shue, Joseph P. Petitti, Yunsen Lei, and Yu Liu

Abstract—Mobile devices pose several distinct challenges from
a security perspective. First, they have varied and ephemeral
network connections, often using a cellular provider network as
a backup option when connectivity is not available via wireless
local access networks. This varied network connectivity makes it
difficult to comprehensively deploy in-network solutions, such as
firewalls or intrusion detection systems, since they would have to
be active in every network the device would use. Second, with
personally-owned devices, the device owner may have security
goals and privacy priorities that are distinct from organizations
that provide connectivity or data assets, such as employers or
schools. These complex relationships may complicate efforts to
protect the devices.

This paper explores a technique that runs on the mobile device
endpoints to learn about the usage patterns associated with the
device, in order to enforce network policy. We explore sensors
that examine the mobile device’s user interface, using physical
inputs via finger taps, and that link them with the network
activity on the device. We incorporate with allow-list policies
that can be provided by organizations to make on-device access
control decisions. Using IP address and DNS host name allow-lists
as a baseline, we explore the accuracy of interface-aware allow-
lists. We find the interface-aware allow-lists can reach over 98.5%
accuracy, even when user-specified destinations are used, greatly
exceeding the baseline accuracy. Our performance evaluation
indicates our approach introduces a median of 3.87 ms of overall
delay with low CPU usage.

Index Terms—Android, Software-Defined Networking, Net-
work Profiling, User Interface

I. INTRODUCTION

MOBILE devices can be personally-owned while still
playing a vital role in organizations associated with the

owner, such as employers and schools. The technical knowl-
edge of the device owner may vary. Further, the device owner
may have strong or weak associations with organizations. In
some cases, device owners and organizations may have aligned
goals, such as securing data, but they may have different
perspectives when it comes to device control and privacy.

From an organization’s perspective, understanding of a
device’s specification can help with solving problems and
managing resources [1]. Unfortunately, low-level logs can be
difficult to examine and determine the origins of problems
and security risks [2]. With mobile devices often leaving an
organization’s network, in-network monitoring and security
devices may have an incomplete view. To form a complete
picture, security tools need to be installed on the mobile device
itself.

Shuwen Liu (corresponding author, email address: sliu9@wpi.edu), Craig
A. Shue, Joseph P. Petitti, Yunsen Lei, and Yu Liu are with the Computer Sci-
ence Department, Worcester Polytechnic Institute, Worcester, Massachusetts,
USA.

While an on-device security tool may be needed, such tools
must avoid impractical requirements (e.g., recompiling the
Android kernel or gaining root access to their device, although
those may incur its own security risks [3]), which were
prerequisites in prior work [4], [5]. Our prior work [6] found
that software-defined networking (SDN) tools can operate as
useful endpoint sensors on the Windows operating system.
That work used sensors to locally collect information and
consulted an SDN controller to decide whether to authorize
connections. This provides significant visibility and control
of the device. However, while that prior work could leverage
kernel device drivers to perform its operations, the mobile
device space places greater constraints on sensing software
and access.

In this work, we explore SDN endpoint sensors that work
within standard APIs and permissions in Android devices. This
paper expands upon our prior research efforts in mobile device
security [7] which investigated the research question: Can UI
interaction and network activity be used to successfully predict
and associate network flows with user actions on Android
devices? Given the resource constraints in mobile phones [8],
this paper asks an associated research question: What impact
would endpoint sensors and SDN techniques have on CPU,
memory, battery, and network delay on mobile devices?

In exploring these research questions, we make the follow-
ing contributions:

• Create a UI-aware Android Network Access Control
System: We build a new application for Android OS,
called APPJUDICATOR. It utilizes the built-in Android
virtual private network (VPN) API to intercept network
traffic and the accessibility service API to monitor UI
interactions. It fuses UI information with SDN techniques
to make an access control system based on user activity.

• Characterize Network Profiling Potential for UI-
aware Access Control Systems: We investigate the UI-
aware access control system’s capability to execute real-
time network profiling on mobile devices. We compare
the UI-aware system with traditional access control sys-
tems relying on IP and DNS information. We configure
these systems with dynamic allow-lists and examine their
accuracy in network profiling. The results of our experi-
ments show APPJUDICATOR outperforms other systems
in network profiling by increasing the accuracy from
22.4% to 98.6%.

• Evaluate the Performance of our APPJUDICATOR Pro-
totype: The costs of our system include the resource
overhead of running the app (e.g., CPU cycles, battery
power, memory consumption), additional network delay



2

for access control decisions, and resources in running
a controller server. In our experiments, APPJUDICA-
TOR adds 3.87 milliseconds to the median overall end-to-
end round-trip time of intercepted packets. We anticipate
that this delay will have only a minor impact on the user
experience.

We organize this paper in the following structure. In Sec-
tion II, we discuss the security issues and current solutions for
mobile devices. In Section III, we explain our approach and
design considerations. In Section IV, we present the results of
evaluation regarding security effectiveness. In Section V, we
evaluate the performance of the system in terms of resource
usage and latency. In Section VI, we conclude with discussion.

II. BACKGROUND AND RELATED WORK

Our approach is designed to address security issues in
mobile devices and is related to prior research in profiling
systems, user interfaces, and end-point SDN techniques. To
provide context for our work, we now provide background in
each of these areas.

A. Security Issues and Mitigation for Mobile Devices

Mobile devices, particularly those personally-owned by
employees, present a distinct challenge for IT managers in
organizations. While these devices can significantly boost pro-
ductivity, their remote usage and frequent network transitions
introduce a delicate balance between security and user privacy.
The balance remains a complex issue, as users seek autonomy
and privacy while employers must manage risk. Recognizing
this vulnerability, attackers have transformed mobile devices
into weapons targeting both users and organizations.

The “Dresscode” malware is specifically designed to infil-
trate corporate networks [9]. It disguises itself as a legitimate
application in order to steal data and add infected devices to
a botnet [10]. Once the infected devices are connected to the
enterprise network, the malware can launch lateral propagation
attacks. The “xHelper” malware can automatically download
and install arbitrary software specified by an attacker, and
persists in the infected device even after a factory reset [11].
An illicit market for malware-as-a-service called “Black Rose
Lucy” even offers control of infected Android devices to
paying customers, giving any malicious actor an entry point
to a secure network [12]. Hazum et al. [13] found that a new
variant of mobile malware quietly infected around 25 million
devices. That “Agent Smith” pretends to be a Google-related
application. Subsequently, it automatically replaces installed
apps on the device with malicious versions without the user’s
interaction. The “TrickMo” malware intercepts second-factor
authentication codes from banks and transfers that information
to a command-and-control server [14]. These second-factor
codes are also used by organizations to protect sensitive
transactions.

To mitigate these threats, prior work proposes a variety
of perimeter, endpoint, and device management tools. These
tools perform well in the specific scenarios, recognizing that
no one solution is perfect. Perimeter defenses like intrusion
detection systems, firewalls, and deep-packet inspection tools

secure enterprise networks by analyzing network traffic. For
example, Palo Alto Networks introduced a “next-generation
firewall” [15] that allows policy customization for specific
applications and user groups. However, policy creation for Palo
Alto can be complex, requiring extensive training [16]. These
systems base their behavior inference on packet headers and
authentication server interactions, making them susceptible to
adversarial manipulation [17].

Endpoint detection and response (EDR) tools like anti-
virus software, endpoint firewalls, allow-lists, and behavioral
analysis tools, offer detailed system insights. They monitor
fine-grain interactions such as file accesses, socket events, and
system calls. However, they are restricted by a high volume
of false alarms, the overwhelming amount of low-level system
logs, and the resource burden of log retention [18].

TABLE I
COMPARISON BETWEEN THE NETWORK ACCESS CONTROL OF THREE

MDM SOLUTIONS

Mobile Device Management Solutions
Microsoft IBM

Scope Information Used APPJUDICATOR Intune MaaS360
Device Hostname ✓ ✓ ✓

Port ✓ ✗ ✓
UI Interaction ✓ ✗ ✗
User Membership ✗ ✓ ✗
Network Interface ✗ ✗ ✓
Device Compliance ✗ ✓ ✗

Application Package Name ✓ ✗ ✓
Application Role ✓ ✓ ✓

Microsoft’s Intune [19] offers both mobile application man-
agement (MAM) for individual app protection and mobile
device management (MDM) for device-wide settings. MAM
safeguards specific apps, leaving other apps at risk, while
MDM secures the entire device and could breach more user
privacy. IBM MaaS360 [20] also offers MDM solutions for
Android devices. Using the tools’ documentation, we con-
structed Table I to compare features of these tools with
APPJUDICATOR. Where the tools described functionality, we
provide check mark. We mark an X when there is no evidence
that the feature is supported. APPJUDICATOR was the first
MDM system on Android to leverages UI interactions to
control network access for IoT devices work [21]. APPJUDI-
CATOR filters unauthorized traffic and enforces network policy
with the goal of offering a middle ground for employee-
owned devices that respects end-user control and privacy. The
results of our effectiveness and performance evaluation on
APPJUDICATOR show that it improves the accuracy of the
access control system while adding a minimal latency to the
end-to-end delay.

B. Network Profiling Systems on Android

Previous research has demonstrated the value of analyzing
communication patterns on Android. A recent paper [22]
examines the effectiveness of endpoint network logging by
exploring end-to-end network paths using browser data to
distinguish between on-path failures and attacks. Netsight [23]
applies network profiling to help locate root causes related to
network failures. ProfileDroid [24] profiles Android network
traffic to identify privacy issues. They distinguish ad-related



3

traffic from application traffic by leveraging coarse-grain user-
level information.

While network profiling works well on Android devices,
the requirement of network interception via root privileges
in the Android OS increases potential security risks [25].
NetGuard [26] and NoRoot [27] bypass this requirement by
leveraging the Android VPN service [28] to forward local
application traffic to a proxy program that offers a firewall and
profiling service. Meddle [29] also utilizes the VPN interface
to inspect remote network traffic. Our work similarly applies
the VPN service as a local proxy to intercept Android network
traffic without root privileges. We further extract users’ actions
from UI information and allow the network profiling system
to identify the network flow initiated by users.

Network logging on mobile devices has been used in
network analysis [30]. Sipola et al. [31] propose a method that
implements deep learning algorithms in network logs to detect
anomalous behaviors. However, network logging is hindered
by limited types of log source. Our work monitors and adds UI
information to traditional network logging, providing context
for network analysis.

Android also supports the profiling of local system activ-
ities. Lanzi et al. [32] reconstruct user-initiated actions by
analyzing system calls in Android system log. The limitation
of system log analysis is the requirement for root privileges or
a debugger to obtain the full logs. AppContext [33] analyzes
system logs to identify patterns associated with malicious
applications. Since our goal is to build a real-time profiling
system for Android OS, such later analysis is not viable.

C. UI and Accessibility Services

The user interface plays an important role in mobile devices.
Users interact with the interface to conduct almost every
operation in mobile devices. Therefore, researchers can use
such user interactions with mobile devices to construct the
user context. As an example, GUILeak [34] tracks user inputs
and interactions with the device to identify potential privacy
violations based on vendors’ privacy policies. AppIntent [35]
leverages the information from user interactions to conduct
static analysis on data transmission activities. However, these
methods are not applicable in a real-time network system.
SmartDroid [36] shows the effectiveness of linking user inter-
actions with system calls. As mentioned earlier, the methods
to intercept system calls require root privileges which would
impede deployment.

Prior efforts have used the UI with traces and logs to help
identify application defects and to localize issues [37]–[40].
Software testing has widely implemented automatic UI opera-
tions. Appium [41] is designed to facilitate UI automation of
applications mobile devices. We use Appium for automatic
tests in experiments. The Monkey [42] tool is a program
that runs on mobile devices and generates pseudo-random
streams of user events, such as clicks and gestures, which
help developers to stress-test applications.

The Android accessibility service API [43] was originally
designed to assist users with disabilities. When it runs in the
background, it receives accessibility events that indicate state

transitions in the user interface, such as the focus changing
or a button being clicked. Prior work [21] proposes a method
that analyzes UI events from the accessibility service to secure
smart home devices. In our approach, we recognize the value
of UI information captured from the accessibility service and
leverage that context for network profiling in mobile devices.

D. Host-based Software-Defined Networking

SDN is proposed to divide the traditional network routing
platform into a control plane and a data plane. The control
plane is required to communicate with the data plane through
customized protocols. The OpenFlow [44] protocol enables
switches to intercept network traffic and act as an SDN agent.
The agent maintains a local flow table that matches conditions
with associated actions. When the SDN agent finds a match
in the local flow table, it processes the packets according to
the associated action rules. Otherwise, it elevates the packet
to a remote SDN controller for advice through a PACKET_IN
message. The SDN controller analyzes the packet and deter-
mines the appropriate action for it. The controller commands
the local SDN agent to install a rule through a FLOW_MOD
message. It then sends an order for the specifically elevated
packet back to the SDN agent. If a FLOW_MOD is used to
install a rule, the SDN agent will apply that rule locally to
subsequent packets in the flow.

Prior efforts have broadly and deeply explored SDN imple-
mentations in enterprise networks [45]–[48] and residential
networks [49]–[51]. These works build the SDN agent in
switches that connect with several endpoints. These switch-
based SDN agents send aggregated network information to the
control plane and overlook device-level information. Further,
several works propose host-based SDN agents in endpoint
systems [6], [52], [53]. These host-based SDN agents can
monitor system logs in endpoints and elevate them to the
control plane. Lei et al. [54] show how correlated signals from
endpoints can reveal compromises on those endpoint devices.

Researchers have also explored SDN agents for Android
systems. PBS-Droid [5] and meSDN [4] show the prototypes
of SDN agents in the kernel of Android, which requires the
deployer to recompile the operating system. HanGuard [55]
implements SDN agents on residential routers and Android
devices to build an access control system in home networks.
However, these implementations require advanced end-user
actions, which impede deployment. In our approach, we avoid
the device rooting requirement and build the SDN agent as an
independent and easy-to-use application for Android devices.

A well-known issue with SDN is the risk of a flow table
overloading attack [56], in which an attacker generates mali-
cious network flows that prompt continuous rule installation
on the flow table. In our proposed approach, the flow table
overloading attack would only affect one device since the flow
table is device-specific. Further, we can track the application
that is creating the majority of flow table entries. This isolates
the attack to a single application and lets us warn the user that
the application is problematic.



4

Fig. 1. APPJUDICATOR sends UI and network data to an OpenFlow agent.

III. APPROACH: FUSION OF NETWORK, UI, AND SDN
We combine sensors for the user interface and the network at

the mobile device endpoint. Since the Android OS dominates
the market share for mobile devices, we use that operating
system for our prototype. As we build sensors, we focus
on options that can be accomplished using existing APIs
and standard application installation procedures rather than
requiring steps that would hinder deployability, such as rooting
a device or recompiling the operating system.

This section introduces each component in our architecture.
A proxy is required to intercept the network traffic of an
Android device without root privileges [57]. It acts as an on-
path entity between the Android device and remote servers.
We use a VPN service (Section III-B) to intercept the packets
between applications and remote application servers without
rooting a device. The VPN service works with an SDN module
(Section III-D). Our SDN agent fuses the captured network
flows with UI information provided by an Accessibility Ser-
vices module (Section III-C). The SDN agent works with a
remote SDN controller that analyzes the flows and makes
forwarding decisions for the network flows. Figure 1 visually
depicts the components of our system and how they relate to
each other.

A. Threat Model

We assume mobile devices may use various networks in-
cluding residential networks, enterprise networks, and cellular
provider networks. We assume mobile devices are mixed-use,
with personal and work-related usage patterns. When used for
work, a compromised device can serve as an entry point for
attackers. Some smartphone malware opportunistically targets
enterprise network assets when the mobile device connects
to those networks [58]. Additionally, some malware remotely
attacks enterprise assets, such as email servers, by utilizing
credentials stored on the device.

In this work, we consider a personally-owned, mixed-
use device with cross-application workflows. As an example,

Fig. 2. Sequence diagram of APPJUDICATOR outbound packet processing

we consider an attacker that targets a victim, Company A,
with a phishing attack disguised as a benefits update from
Company X. The attacker sends a phishing email prompting
the employees to install a new mobile application, which
is actually malware. An employee installs the application
on their personal Android phone, granting permissions. The
malware replaces legitimate applications with Trojan versions
to steal authentication values. This allows the attacker to
access Company A’s resources when the compromised device
connects to the enterprise network.

B. Intercepting Android Traffic via the Built-in VPN Service

The Android built-in VPN service [28] has been used by
prior works, described in Section II-B, to create a proxy
application that intercepts network traffic in Android OS. Such
a method is applicable to users since it does not require root
privileges of Android devices. We implement the VPN service
as a key component of APPJUDICATOR.

We first open an interface from the VPN service API.
The interface works as the VPN server with a local address.
The application that attempts to access the Internet works
as the VPN client and must establish two streams with the
VPN server. One is a VPNInputStream that forwards
packets from applications to the VPN server. The other is
a VPNOutputStream that the VPN server uses to sends
response packets back. In Figure 2, we show the process of
an application accessing the Internet when APPJUDICATOR is
enabled. When the VPN server receives a packet from a local
application, it makes a query via the SDN agent. If the packet



5

TABLE II
DESCRIPTIONS OF EACH STEP OF APPJUDICATOR OUTBOUND PACKET PROCESSING IN FIGURE 2

Step Involved Module(s) Description
a Applications, VPN Service The VPN Service uses the VPNInputStream to intercept network flows from all applications.
b VPN Service The VPN Service checks if the network flow matches any entry in the flow table.
c VPN Service, SDN Agent When a flow is not a match for any flow table entries, the VPN Service invokes the SDN Agent.
d VPN Service The VPN Service queues the flow’s packet(s) and waits for a decision.
e SDN Agent, Accessibility Service The Accessibility Service sends related application UI information to the SDN Agent.
f SDN Agent The SDN Agent compiles the flow and UI information into a PACKET IN message.
g SDN Agent, SDN Controller The SDN Agent sends the PACKET IN message to the SDN Controller.
h SDN Controller The SDN Controller makes an allow or deny decision based on the flow and UI information.
i SDN Controller, SDN Agent The SDN Controller sends the decision message to SDN Agent.
j SDN Agent The SDN Agent adds a rule to the flow table to implement the action from the decision message.
k SDN Agent, VPN Service The SDN Agent informs VPN Service to release any queued packets associated with the flow.
l VPN Service The VPN Service dequeues the associated flow packet(s). It discards packets for a deny rule.
m VPN Service, TCP/UDP Service For allowed flows, the VPN Service sends the flow packet(s) to the TCP/UDP Service.
n TCP/UDP Service The TCP/UDP Service relays the payload of the flow packet.
o TCP/UDP Service, Remote Server The TCP/UDP Service starts a new connection with the Remote Server.

matches a table entry in the existing flow table of the SDN
agent, it is forwarded to the designated service that connected
to the destination (step m in Figure 2). If not, the packet is
queued and the SDN agent queries a remote controller via the
OpenFlow protocol (steps d through i in Figure 2).

As shown in steps n and o in Figure 2, when a TCP packet
passes the SDN agent, it goes to the TCPService. There is
also a respective UDPService in APPJUDICATOR for UDP
packets. The TCPService forwards the TCP packets to the
remote server via a protected socket. In doing so, it
ensures that the traffic from this socket is not be intercepted
by the VPN service, avoiding a potential loop. The Android
VPN service API avoids the typical cryptographic or tunneling
overheads associated with a VPN since the Android OS allows
our application to simply read and write packets directly using
a ParcelFileDescriptor instance. This allows us to use
standard packet parsing libraries (e.g., Pcap4J).

Finally, when several remote servers send response packets
back to the device, the VPN service needs to distribute each
packet to the appropriate application. We achieve this using
the user identity (UID) that is unique for every Android appli-
cation. We leverage the Android ConnectivityManager
and PackageManager APIs. In doing so, we first aggre-
gate into flows with the five tuple (IPsrc, IPdest, protocol,
Portsrc, Portdest). Then we use ConnectivityManager
to find the UID associated with the flow by (IPsrc, protocol,
Portdest) information. We further use PackageManager to
get the application name and context related to the UID. With
all of these components, including the VPN services, the SDN
agent, and the TCPService, we compile a proxy program
that operates in the middle between applications and their
accessing destinations. Such a proxy program can conduct
network profiling and access control by elevating network and
potential UI information to a remote SDN controller.

C. Extracting UI events from Accessibility Services

The Android accessibility service API [43] provides the
capability for querying the content of the active window and
UI interactions. It is designed to assist users. As an example, a
screen reader tool that uses the accessibility service can help
visually impaired users. In this work, we aim to apply the

accessibility service to analyze UI events on the mobile device
in order to distinguish the user-initiated network activities.

Specifically, we import the accessibility service to AP-
PJUDICATOR in a Manifest file and configure the
permissions of BIND_ACCESSIBILITY_SERVICE and
canRetrieveWindowContent. The accessibility service
then runs in the background and receives callbacks from
Android OS when accessibility events are generated. With the
intent-filter, we can further decide to monitor specific
applications. To eliminate potential privacy concerns, users can
choose the scope of applications be tracked by the accessibility
service.

The accessibility events denote some state transitions in
the user interface, such as clicking buttons, acting gestures,
changing focus, etc. In our prototype, we use the acces-
sibility service to track all types of accessibility events.
APPJUDICATOR can receive an overall context for every UI
event. In doing so, it retrieves the hierarchy information
from the AccessibilityEvent.getSource() func-
tion. That function provides both the current text of the UI
event and detailed context information, such as the parent and
child widgets of the UI event. For example, when a user opens
a browser application and inputs a specific URL to access, a UI
event, TYPE_VIEW_TEXT_SELECTION_CHANGED, is sent.
APPJUDICATOR can extract the user inputs from the contents
of an EditText UI object. APPJUDICATOR can also correlate
the user inputs with the following network flows and achieve
more accurate network profiling.

With the UI information, we can characterize the user inter-
face and provide this data to the SDN controller. However, one
challenge is to generate unique identifiers for UI information.
Some UI elements have a unique resource identifier, and
others do not. Accordingly, we use an established heuristic of
combining the resource ID (if it exists), the hierarchical path
between the UI element and the root widget in the application,
and the properties of the UI element itself (class type and label
text, if any). APPJUDICATOR has the capability of intercepting
the network traffic and monitoring the UI events in the scope
of selected applications. We apply the SDN paradigm to fuse
the network and UI information to a comprehensive access
control system.



6

D. Fusing Network Data and UI events via SDN

We create a host-based SDN agent module in APPJUDICA-
TOR. The agent augments the network flow with additional
UI information in the query message. It communicates with a
remote SDN controller using a subset of the OpenFlow v1.0
specification [44]. We omit the implementation of VLANs and
the physical ports since the SDN agent typically handles net-
work operations in a single mobile device. As with traditional
SDN agents, the APPJUDICATOR agent supports wildcards in
the rule match fields and matches the closest entry in a flow
table. The VPN service retrieves the correlated action from
the SDN agent, and promptly handles queued packets and
associated following packets.

When a new packet is not matched by any existing flow
table rules, the SDN agent sends a query message to a remote
controller. Such messages include the information about the
original packet and its correlated UI information. The con-
troller uses the UI information to build the context surrounding
the sent packet. The controller replies with an action decision
based on its policies. We illustrate three types of policies in
Section IV. Our prototype currently only supports two action
types: drop and forward, which perform key operations in an
access control system.

Our PACKET_IN message adds UI information to the
query message. APPJUDICATOR extracts UI events from the
accessibility service and provides it to the SDN agent.
The agent attaches the UI information to the PACKET_IN
message in reverse-chronological order. The agent omits
some types of UI events. As an example, the UI event of
TYPE_VIEW_CONTENT_CHANGED is very common in the
Android OS and provides little useful information. Instead,
the SDN agent elevates the types of UI events that are most
likely to reveal user intent to the controller.

Our PACKET_IN message contains an OpenFlow header,
the encapsulation of the original packet, and as much UI
information as possible while keeping the entire PACKET_IN
message within 1500 bytes to avoid packet segmentation. The
OpenFlow agent then sends the message to the remote SDN
controller. We position the remote SDN controller in a server
at our organization, which minimizes latency due to the short
distance. According to prior research [59], 90% of residential
users can reach potential OpenFlow controllers within a 50
millisecond round trip time, which causes a 2 second increase
in web page loading time. This delay can be improved with
the deployment of more computing nodes that are positioned
closer to the SDN agents.

We have described three major components of APPJU-
DICATOR: the VPN service for intercepting network traffic,
the accessibility service for extracting UI interactions, and
the SDN paradigm. APPJUDICATOR can be a comprehensive
network profiling and access control system. Next, we evaluate
APPJUDICATOR’s effectiveness and performance.

IV. EFFECTIVENESS EVALUATION: NETWORK PROFILING

We aim to answer the following research question: Can
UI interaction and network activity be used to successfully
predict and associate network flows with user actions on

Android devices? While exploring the role of the UI context
of APPJUDICATOR in network profiling, we form a hypothesis
that insight into the end-user’s actions can improve network
traffic monitoring. We propose a UI-aware sensor that distin-
guishes user-initiated network flows. We assume that stealthy
malicious connections in the background can be identified by
the lack of UI activity. In doing so, we compare our proposed
UI-aware sensor with two network-based sensors commonly
used in enterprise networks. These sensors have respective
policies that decide which network flow is allowed. From a
series of experiments with both legitimate and malicious data,
we determine the accuracy rate of these sensors in network
profiling. We consider three sensors that originate from the
allow-list policy:

• IP Header Sensor: The sensor uses policy built upon the
IP header information of the packets during the idle and
training phases. These policy rules allow a new packet
based on whether the packet matches the same IP address
and port number as seen previously.

• DNS-aware Sensor: The sensor incorporates IP header
and DNS data from DNS queries information during the
idle and training phases. These policy rules allow a new
packet based on whether the packet matches the same
port number, host name, or IP address if no host name.

• UI-aware Sensor: The sensor incorporates IP header
and DNS headers, and uses UI policy built upon the UI
interactions during the idle and training phases. These
policy rules allow a new packet based on whether the
packet matches the same IP address, port number, host
name, and UI context.

We first explore the background activities of tested appli-
cations. We open these applications and leave them running
and idle for two hours. All of the tested applications attempt
to connect to vendor servers while the user only opens them
and leaves them idle. We record all of the network activities
that happen in the idle period in the idle data set.

We then conduct a training phase data collection by us-
ing Appium [41], which is an automation framework for
software testing. Appium simulates user interactions with
tested applications and invokes a series of UI events cap-
tured by Android accessibility service [43]. We select sev-
eral types of UI events and use Appium to automati-
cally execute a set of actions. As an example, Appium
can open YouTube and click the symbol of searching with
the UI event of TYPE_TOUCH_INTERACTION_START. It
then inputs text characters into the search box with a
UI event of TYPE_VIEW_TEXT_SELECTION_CHANGED
and clicks the search button which incurs the UI event
of TYPE_VIEW_CLICKED and subsequent network flows.
When Appium conducts these operations, the user can ob-
serve it on the device screen. All of the network traffic and
UI interactions in the above simulation have been collected as
the Training Data.

We choose several commonly used applications in our
evaluation: Gmail, YouTube, Chrome, Firefox and Termius.
These applications cover a broad range of usage scenarios
including email, video, browser and SSH terminal. For col-



7

TABLE III
ALLOW-LIST MATCH RATE WITH IP, DNS, AND UI SENSORS FOR

LEGITIMATE, APPIUM-SUPPLIED DESTINATIONS. THE DNS ALLOW-LISTS
CAN SUPPORT FIXED-DESTINATION APPLICATIONS (E.G., IN GMAIL AND

YOUTUBE). ONLY THE UI SENSOR EFFECTIVELY ALLOWS DESTINATIONS
THAT ARE DYNAMICALLY SPECIFIED (E.G., IN TERMIUS).

Data Samples Count Allow-List Match Rate
Application Idle Train Test IP Sensor DNS Sensor UI Sensor
Termius 236 1,587 1,669 6.6% 6.9% 99.1%
Gmail 180 1,052 1,313 43.6% 98.8% 100.0%
YouTube 315 1,162 1,845 57.3% 100.0% 100.0%

lecting the Training Data, we create thirty workflows of
Appium scripts for Gmail and YouTube. We note that they
tend to communicate with a small set of servers that could
be associated with vendors or advertisers. While Gmail and
YouTube have relatively fixed destinations, Chrome, Firefox,
and Termius have more flexible destinations specified by users.
For these three applications, we develop a workflow that
randomly accesses different destinations in a website list. We
import the Top 500 websites list from SimilarWeb [60] and
separate them into training and testing lists.

In the testing phase, we use Appium to operate the mobile
device with the same scripts used in the training phase, while
the remote controller deploys three types of sensors based
on different policies generated from the idle and training
data. Since the destinations of browser and SSH client are
dynamically changed by users, the training data for the IP and
DNS sensors is unlikely to include all future user-supplied
destinations. Therefore, we expect the UI-aware sensor to
address the issue by leveraging UI context data.

Table III shows the accuracy rates of the three sensors
for Termius, Gmail, and YouTube with legitimate traffic. The
legitimate traffic is tested in the same way as during the
training phases and initiated by Appium to simulate user
behaviors. An optimal sensor would achieve 100% match rates
for such traffic. In out tests, the IP sensor has the lowest
accuracy for these applications, possibly due to the influences
of DNS load balancing or the effects of content distribution
network (CDN) deployments. The DNS sensor performs well
for Gmail and YouTube, achieving an accuracy rate higher
than 98.8%. These results show that the awareness of DNS
host name can dramatically increase the accuracy of network
profiling for fixed destination applications. But since the policy
rules generated from Training Data could not predict
dynamic user inputs, both the DNS sensor and IP sensor
perform worse with the SSH client, only reaching an accuracy
rate between 6.6% to 6.9%. In contrast, the proposed UI-
aware sensor achieves an accuracy rate above 99.1% for all
tested applications. This difference highlights the importance
of understanding the user-specified destinations when profiling
traffic.

The denial of legitimate traffic is a significant concern
for allow-lists and is a primary weakness for our technique.
However, an allow-list that permits all traffic would score
well in experiments if we only considered legitimate traffic.
Accordingly, we next explore our proposed techniques and
sensors when adding records that simulate malicious traffic

when testing Chrome and Firefox. According to Rejthar [61]
and Avast researchers [62], there are several malicious browser
extensions, such as Video Downloader for Facebook and In-
stagram Story Downloader, which stealthily access URLs that
host malware on popular cloud providers. We use the reported
URLs to construct a set of similar URLs using a Python
script. To simulate network connections from those browsers,
we generate connection records purportedly from those web
browsers to the malicious destinations, and insert these records
into the controller’s database prior to the controller’s profiling
step. This allows us to mimic malicious behavior in order to
evaluate the controller’s ability to detect the faux malicious
traffic with different sensors.

In our analysis, we only examine the first connection trig-
gered by each web page access. Typically web page retrievals
download multiple resources, such as images, in response to
inclusions in a web document. This analysis mimics allowing
all traffic for a short duration from that application after
an initial match. In Section VI-A, we discuss the additional
instrumentation needed to address these limitations.

In Table IV, we show the accuracy rate in four scenarios
using a confusion matrix. A sensor leads to a “correct deci-
sion” whenever it correctly matches (or allows) a legitimate
flow and when it correctly denies a malicious flow. An incor-
rect decision occurs whenever the sensor allows a malicious
flow or denies a legitimate one. We present the results as
percentages. For legitimate traffic, the percentages of correctly
allowing traffic and incorrectly denying traffic total to 100%.
Likewise, the percentages of malicious traffic correctly denied
and incorrectly allowed total to 100%. The overall accuracy of
the sensor can be characterized by the relative amounts in the
correct decision columns verses the amounts associated with
incorrect decisions.

TABLE IV
SENSOR CLASSIFICATION ACCURACY FOR CHROME AND FIREFOX WITH
MIX OF LEGITIMATE (“GOOD”) AND MALICIOUS (“BAD”) TEST FLOWS.

Number of Data Samples Correct Decision Incorrect Decision
App. Idle Train Testing Sensor Deny Allow Deny Allow

Chrome 207 1,658
3,593 IP 13.1% 4.8% 95.2% 86.9%

(1,811 good, DNS 19.8% 8.7% 91.3% 80.2%
1,782 bad) UI 100.0% 98.6% 1.4% 0.0%

Firefox 280 1,428
3,140 IP 18.9% 5.3% 94.7% 81.1%

(1,506 good, DNS 22.4% 9.6% 90.4% 77.6%
1,634 bad) UI 100.0% 99.4% 0.6% 0.0%

The IP sensor and DNS sensor have low overall accuracy,
correctly allowing less than 10% of the legitimate traffic that
includes user-supplied destinations. They correctly deny only
up to 22.4% of the malicious traffic, since the malicious URLs
often used IP addresses and host names in the training data
as the malicious destinations were co-hosted on popular cloud
servers. The UI sensor correctly denies 100% of the malicious
traffic since that traffic does not have the associated UI activity
required by the UI sensor’s matching rules. Moreover, the
UI sensor correctly allows over 98.5% of legitimate traffic.
The legitimate traffic analyzed in Table IV only includes the
initially requested destination. These results suggest that a UI
sensor can aid network profiling and allow-list systems.



8

V. PERFORMANCE EVALUATION

We explore the performance implications of APPJUDICA-
TOR via the Android Studio Android emulator of a Google
Pixel 4 smartphone with four cores, 2 GBytes of memory,
and Android API level 30. The emulator is hosted by Android
Studio Bumblebee 2021.1.1 Patch 2 installed on a laptop with
six 2.6 GHz cores and 16 GBytes of memory connecting
via WiFi to a router that provides residential Internet access.
We evaluate the performance in three metrics: (a) networking
round trip time measured by using the emulator to access
a remote server running Ubuntu 20.04 hosted on a public
network server, (b) web traffic performance examined by using
Firefox 117.1.0 installed on the emulator, and (c) computa-
tional resources collected by the Android Studio Profiler.

A. Network Round Trip Time (RTT)

Since our local VPN service intercepts all outgoing and
incoming packets as they traverse the VPN service, it nec-
essarily adds networking delay. To examine how much delay
APPJUDICATOR adds, we record the overall end-to-end RTT
between an application running in the Android emulator and
a remote server on a public network. We perform the exper-
iments on a simulated Google Pixel 4 phone with Android
API level 30 and an Ubuntu 20.04 server. We run our SDN
controller on a separate virtual machine on the same local
network as the Android emulator. Such virtual machine is
hosted by a separate physical device from the machine running
the Android emulator. We use the remote server to periodically
send packets with tailored payloads to the application on the
emulator and have the application simply echo it back. We
compare the scenarios when APPJUDICATOR is enabled and
disabled. Since the variable in these cases is on emulator side,
we introduce a timer on the remote server side to record the
overall end-to-end delay.

We measure the overall end-to-end RTT by recording two
timestamps at the remote server. The first timestamp is the
time when a packet with a specific payload is sent from
the remote server (t1). The second is the time when the
remote server receives the packet with the same payload that
the application echos back (t2). We continuously repeat this
process with a packet arrival rate that is around 50 packets per
second. When APPJUDICATOR is enabled, the delay between
these two timestamps includes any delays resulting from the
consultation with the SDN agent, the UI Monitor and the VPN
service (as described in Section III). Accordingly, we consider
the difference between t2 and t1 as the overall end-to-end
RTT between the application on our emulator and the remote
server. To compare between APPJUDICATOR being enabled
and disabled, we can evaluate the total additional delay added
by APPJUDICATOR.

In our experiments, we collect the timestamps over 1,000
trials. As shown by the blue (left) line in Figure 3, the average
overall end-to-end RTT of packets with APPJUDICATOR dis-
abled is 19.06 ms and the median is 15.86 ms, which accounts
for the networking delays between our local network and
the remote server. The green (right) line shows the overall
end-to-end RTT with APPJUDICATOR enabled. The average

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0  10  20  30  40  50  60  70  80

P
o
rt

io
n
 o

f 
T

ri
a
ls

Overall End−to−End RTT (milliseconds)

Appjudicator disabled

Appjudicator enabled

Fig. 3. CDF of overall end-to-end round-trip time (RTT) when APPJUDICA-
TOR is enabled and disabled.

RTT of packets is 23.23 ms and the median is 19.73 ms.
For transferring network packets between the application on
the emulator and the remote server on a public network,
APPJUDICATOR adds 3.87 ms to the median overall end-to-
end RTT.

B. Web Traffic Performance

In addition to measuring the delay added to a connected
TCP flow, we also examine how much delay APPJUDICA-
TOR adds to the web page load time when the user tries to
access a new website. As stated in Section III, the first packet
of each new outgoing flow must wait for context from the
UI Monitor, elevation to the SDN controller, and installation
of the rule by the local Android SDN agent. We explore the
web page load time to evaluate the delay caused by these
operations.

We conduct these experiments in the same Android emulator
and network configuration as in Section V-A. We use Appium
to operate Firefox to access the Top 100 domains listed
on Cloudflare Radar [63]. The Appium script has been
repeatedly running to collect over 1,000 data points each
for the cases where APPJUDICATOR is enabled and disabled.
We implement Firefox Profiler [64] to capture per-
formance files directly from Android Firefox browser. After
parsing the performance files, we measure the web page load
time by analyzing the timestamps of network events.

Figure 4 shows that when we use the browser without AP-
PJUDICATOR running, the average page load time for the Top
100 domains is 448.07 ms. After we enable APPJUDICATOR,
the average page load time increases to 765.92 ms. We note
that APPJUDICATOR would add about 317.85 ms delay to
the complete loading of new web pages that require an SDN
consultation for each new network request. Web page retrievals
often incorporate a large number of individual web requests;
these results represent the overheads of each new flow review
in aggregate.

We also conduct experiments to evaluate the time cost of
packet elevation to the SDN controller. The controller runs a
Python program that responds to each PACKET_IN. It extracts
any included UI information from the PACKET_IN messages



9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0  1000  2000  3000  4000  5000  6000  7000  8000

P
o
rt

io
n
 o

f 
T

ri
a
ls

Page Load Time (milliseconds)

AppJudicator disabled

AppJudicator enabled

Fig. 4. CDF of web page load time with APPJUDICATOR enabled and disabled

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0  10  20  30  40  50  60  70

P
o
rt

io
n
 o

f 
T

ri
a
ls

Packet−in Waiting Time (milliseconds)

Fig. 5. CDF of waiting time between the SDN agent sending out a packet-in
message and receiving a response from the SDN controller

and sends its decision back to the SDN agent. We measure
the total waiting time as the time difference between the SDN
agent sending out a PACKET_IN and receiving a response,
which includes the networking delays in the local network
and the processing time of the SDN controller. During the
experiments, we record over 1,000 data points of PACKET_IN
waiting time when the Appium script manipulates Firefox
to access the Top 100 websites. In Figure 5, the results show
that 90% of waiting time data points are less than 4.50 ms
and the average waiting time is 3.24 ms.

C. Computational Resources

Energy consumption is a significant consideration for mo-
bile devices. Accordingly, we evaluate battery consump-
tion, memory usage and CPU usage of APPJUDICATOR on
the Android emulator. Our tests use Android Studio’s
Profiler [65] and the top tool to gather data. We emulate
a Google Pixel 4 device with an Android API level of 30 in
an Android emulator with 4 cores and 2 GBytes of memory.

During the experiments, we first start APPJUDICATOR and
then play music in the YouTube Music application to simulate
a common use case in the device. The music application
is set to stream music from the Internet, requiring network
transmissions to obtain the music. We use the monitoring tools

to record the CPU usage of APPJUDICATOR and YouTube
Music. The monitoring tools record a data point for each
second with an experiment duration of 1,000 seconds.

TABLE V
CPU AND RAM USAGE OF APPJUDICATOR AND YOUTUBE MUSIC

Percentile of Trials
Application Resource 10th 50th 90th

APPJUDICATOR
CPU usage (%) 11.0 12.0 14.0
RAM usage (MBytes) 130.7 132.7 132.7

YouTube Music CPU usage (%) 29.0 33.0 36.0
RAM usage (MBytes) 255.5 263.4 273.3

As shown in Table V, when APPJUDICATOR runs on the
virtual Android device, it consumes a relatively constant
amount of memory, with an average of 132.7 MBytes. It
uses less memory than the YouTube Music application, which
uses an average of 264.5 MBytes memory. The CPU con-
sumption of APPJUDICATOR averages around 12.5%, which
is lower than the 32.7% average CPU usage of YouTube
Music. Android Studio’s Profiler classifies the energy con-
sumption of APPJUDICATOR as “light”. Given these results,
APPJUDICATOR seems to have performance characteristics
that are significantly less demanding than a popular Android
application.

TABLE VI
COMPARISON BETWEEN APPJUDICATOR AND OTHER ACCESS CONTROL

SYSTEM USING SDN

HARBINGER [6] APPJUDICATOR
Accuracy rate 99.1% 98.6%
Network connection Ethernet WiFi
Added web page load time Around 600 ms 317.85 ms
Added end-to-end RTT Around 6 ms 3.87 ms

To provide context for the performance of APPJUDICATOR,
we compare the approach to HARBINGER [6], which is an
SDN access control system built for the Microsoft Windows
OS. We compare the approaches across evaluation metrics
reported for both tools. Table VI shows APPJUDICATOR has
slightly lower matching accuracy than HARBINGER and
APPJUDICATOR introduces less delays to both web page load
time and end-to-end RTT.

VI. DISCUSSION

We now describe how our approach relates to two key
concepts: web page connection dependencies and privacy.

A. Support for Web Page Dependencies

Web browsers have different characteristics than most other
mobile applications. A website visit often results in connec-
tions to multiple servers to load resources specified in a web
document. Since websites often employ end-to-end encryp-
tion, a middlebox typically cannot predict what resources are
needed to complete a specific page load in advance. When a
user initiates a web access by clicking the screen, only the
initial web request is elevated to the controller along with
the UI interaction. As a result, the profiling we describe in
Section IV is limited to profiling the destination of the initial



10

web request. To fully achieve the goal of profiling dependent
web requests, our proposed approach needs additional sensing
functionality.

Some web browsers have symmetric key export function-
ality [66] that allows external applications (like Wireshark)
to decrypt TLS-protected communication. However, this func-
tionality typically exists on traditional desktop operating sys-
tems and it not widespread on mobile devices. Techniques to
hook specific library calls, such as the libssl.so library’s
SSL_read and SSL_write functions, with tools such as
Frida [67], enable access to the plaintext communication
associated with the application. However, these tools require
root access to the phone’s operating system, which introduces
challenges for deployment and security.

Alternatively, the use of a trusted device-wide root certifi-
cate can enable interception of TLS communication in the
VPN service module, enabling examination of unencrypted
communication. The use of root certificates are typically
discouraged since they break the end-to-end encryption model;
however, positioning the interception and decryption on the
endpoint device itself may offset some concerns. With such
an approach, the web browser would no longer be able to
see the TLS certificate associated with the remote server,
since it would only see the certificate the VPN service mod-
ule presents. Accordingly, the VPN service module would
need to perform appropriate certificate validation of the re-
mote server’s certificate, much like the prior work in TLS-
Deputy [68].

B. Privacy Implications

The use of an SDN controller with the smartphone grants a
third-party service the ability to perform network profiling and
management. For corporate-owned devices in which the user
agrees to monitoring, privacy may not be an issue. However,
for other use cases, this monitoring may significantly affect
the privacy of the device user while running APPJUDICATOR.
We now explore these concerns and mechanisms that can help
manage these risks.

As engineering efforts with APPJUDICATOR continue, we
will explore creating a controller on the phone that synchro-
nizes policy with an organization’s main controllers. When
the controller is unreachable from the phone, the phone-based
controller can then make access control decisions with the
local cached policy. To grant visibility to the organization,
the phone’s controller could report connectivity information to
the organization controller, indicating what policy it applied
but without supplying the UI sensor’s detailed records. This
would allow an organization controller to know that a flow was
related to a user’s action, without visibility into the details.

Another option would be to consult different controllers for
different applications on a phone. For applications associated
with an organization, the phone may consult the organization’s
controllers. For all other applications, the phone may contact
a controller associated with an end-user-designated service
provider. This model would allow users to split their phone
automatically into roles associated with their profession and
their personal life.

C. Concluding Remarks

In this work, we propose and evaluate APPJUDICATOR, an
SDN system for mobile devices that associates UI elements
with network flows. With the ability to consult external SDN
controllers for assistance, the APPJUDICATOR tool can respond
to evolving threats while providing sufficient context for access
control decisions. This mechanism helps increase the accuracy
of network profiling from 22.4% to 98.6%. In our evaluation,
we find that APPJUDICATOR consumes acceptable computa-
tion resources while introducing modest network delay.

REFERENCES

[1] C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas,
M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe et al., “Network
service orchestration standardization: A technology survey,” Computer
Standards & Interfaces, vol. 54, pp. 203–215, 2017.

[2] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the internet of things,” in Network and Distributed Systems Symposium,
2018.

[3] Google, “Security risks with modified (rooted) Android versions,”
2020. [Online]. Available: https://support.google.com/accounts/answer/
9211246?hl=en

[4] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H.
Kim, and T. Nadeem, “meSDN: Mobile extension of SDN,” in Workshop
on Mobile Cloud Computing & Services, 2014.

[5] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards sdn-
defined programmable byod (bring your own device) security.” in NDSS,
2016.

[6] Z. Chuluundorj, C. R. Taylor, R. J. Walls, and C. A. Shue, “Can
the user help? leveraging user actions for network profiling,” in IEEE
International Conference on Software Defined Systems (SDS), 2021.

[7] S. Liu, J. P. Petitti, Y. Lei, Y. Liu, and C. A. Shue, “By your command:
Extracting the user actions that create network flows in android,” in 2023
14th International Conference on Network of the Future (NoF), 2023,
pp. 118–122.

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp.
1–29, 2014.

[9] M. Kan, “Android malware that can infiltrate
corporate networks is spreading,” 2016. [Online].
Available: https://www.computerworld.com/article/3126390/android-
malware-that-can-infiltrate-corporate-networks-is-spreading.html

[10] D. Palmer, “Over 400 instances of dresscode malware
found on google play store, say researchers,” Oct. 2016.
[Online]. Available: https://www.zdnet.com/article/over-400-instances-
of-dresscode-malware-found-on-google-play-store-say-researchers/

[11] I. Golovin, “Unkillable xhelper and a trojan matryoshka,” Apr.
2020. [Online]. Available: https://securelist.com/unkillable-xhelper-
and-a-trojan-matryoshka/96487/

[12] W. Wong, “New malware-as-a-service threat targets Android phones,”
Sep. 2018. [Online]. Available: https://securityintelligence.com/news/
new-malware-as-a-service-threat-targets-android-phones/

[13] A. Hazum and F. He, “Agent smith: A new species of mobile malware,”
2019. [Online]. Available: https://research.checkpoint.com/2019/agent-
smith-a-new-species-of-mobile-malware/

[14] M. Benson, “Bank 2fa codes and android mal-
ware breaches online banking security,” 2020. [Online].
Available: https://www.cybernewsgroup.co.uk/bank-2fa-codes-android-
malware-breaches-online-banking-security/

[15] Palo Alto Networks, “The world’s first ml-powered ngfw,”
2020. [Online]. Available: https://www.paloaltonetworks.com/network-
security/next-generation-firewall

[16] ——, “Palo alto networks education services,” 2020. [Online].
Available: https://www.paloaltonetworks.com/services/education

[17] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Adversarial
machine learning attacks and defense methods in the cyber security
domain,” ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–36,
2021.



11

[18] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in 2020 IEEE Symposium
on Security and Privacy (SP), 2020, pp. 1172–1189.

[19] Microsoft Intune, “Microsoft intune securely manages identities,
manages apps, and manages devices,” 2021. [Online]. Available: https:
//learn.microsoft.com/en-us/mem/intune/fundamentals/what-is-intune

[20] IBM, “Mobile device management (mdm) solutions,” 2024.
[Online]. Available: https://www.ibm.com/products/maas360/mobile-
device-management

[21] Z. Chuluundorj, S. Liu, and C. A. Shue, “Generating stateful policies
for iot device security with cross-device sensors,” in IEEE International
Conference on Network of the Future (NoF), 2022.

[22] S. Burnett, L. Chen, D. A. Creager, M. Efimov, I. Grigorik, B. Jones,
H. V. Madhyastha, P. Papageorge, B. Rogan, C. Stahl et al., “Network
error logging: Client-side measurement of end-to-end web service re-
liability,” in USENIX Symposium on Networked Systems Design and
Implementation, 2020, pp. 985–998.

[23] N. A. Handigol, Using packet histories to troubleshoot networks. Stan-
ford University, 2013.

[24] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: Multi-
layer profiling of android applications,” in International Conference on
Mobile Computing and Networking, 2012.

[25] H. Zhang, D. She, and Z. Qian, “Android root and its providers: A
double-edged sword,” in ACM Conference on Computer and Communi-
cations Security, 2015.

[26] M. Bokhorst, “Netguard - no-root firewall,” 2021. [Online]. Available:
https://play.google.com/store/apps/details?id=eu.faircode.netguard

[27] Grey Shirts, “Noroot firewall,” 2020. [Online].
Available: https://play.google.com/store/apps/details?id=app.greyshirts.
firewall&hl=en US&gl=US

[28] Android Studio, “Vpnservice,” 2019. [Online]. Available: https:
//developer.android.com/reference/android/net/VpnService

[29] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy, W. Dabbous, and
D. Choffnes, “Meddle: middleboxes for increased transparency and
control of mobile traffic,” in Proceedings of the 2012 ACM conference
on CoNEXT student workshop, 2012, pp. 65–66.

[30] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopoulou, “Antmonitor: A system for monitoring from mobile
devices,” in Proceedings of the 2015 ACM SIGCOMM Workshop on
Crowdsourcing and Crowdsharing of Big (Internet) Data, 2015, pp. 15–
20.

[31] T. Sipola, A. Juvonen, and J. Lehtonen, “Anomaly detection from
network logs using diffusion maps,” in Engineering Applications of
Neural Networks. Springer, 2011, pp. 172–181.

[32] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: using system-centric models for malware protection,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, 2010, pp. 399–412.

[33] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 303–313.

[34] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,
“Guileak: Tracing privacy policy claims on user input data for android
applications,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 37–47.

[35] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for pri-
vacy leakage detection,” in ACM SIGSAC Conference on Computer &
Communications Security, 2013.

[36] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, 2012.

[37] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”
in Proceedings of the 6th International Workshop on Automation of
Software Test, 2011, pp. 77–83.

[38] Y. Sui, Y. Zhang, W. Zheng, M. Zhang, and J. Xue, “Event trace
reduction for effective bug replay of android apps via differential gui
state analysis,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 1095–1099.

[39] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” Acm Sigplan Notices,
vol. 48, no. 10, pp. 623–640, 2013.

[40] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and
touch-sensitive record and replay for android,” in 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2013, pp.
72–81.

[41] OpenJS Foundation, “Appium: Automation for apps,” 2021. [Online].
Available: https://appium.io/docs/en/2.0/

[42] Android Studio, “Ui/application exerciser monkey,” 2020. [Online].
Available: https://developer.android.com/studio/test/monkey

[43] ——, “Create your own accessibility service,” 2019. [Online]. Available:
https://developer.android.com/guide/topics/ui/accessibility/service

[44] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[45] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental
sdn deployment in enterprise networks,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 473–474, 2013.

[46] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert,
N. Gray, T. Zinner, and P. Tran-Gia, “An sdn/nfv-enabled enterprise
network architecture offering fine-grained security policy enforcement,”
IEEE communications magazine, vol. 55, no. 3, pp. 217–223, 2017.

[47] J.-L. Chen, Y.-W. Ma, H.-Y. Kuo, C.-S. Yang, and W.-C. Hung,
“Software-defined network virtualization platform for enterprise network
resource management,” IEEE Transactions on Emerging Topics in Com-
puting, vol. 4, no. 2, pp. 179–186, 2015.

[48] J. Bailey and S. Stuart, “Faucet: Deploying sdn in the enterprise,”
Communications of the ACM, vol. 60, no. 1, pp. 45–49, 2016.

[49] N. Feamster, “Outsourcing home network security,” in ACM SIGCOMM
Workshop on Home Networks, 2010.

[50] C. R. Taylor, C. A. Shue, and M. E. Najd, “Whole home proxies:
Bringing enterprise-grade security to residential networks,” in IEEE
International Conference on Communications, 2016.

[51] Y. Liu, C. R. Taylor, and C. A. Shue, “Authenticating endpoints and
vetting connections in residential networks,” in 2019 International
Conference on Computing, Networking and Communications (ICNC).
IEEE, 2019, pp. 136–140.

[52] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue,
“Contextual, flow-based access control with scalable host-based sdn
techniques,” in IEEE INFOCOM, 2016.

[53] M. E. Najd and C. A. Shue, “Deepcontext: An openflow-compatible,
host-based sdn for enterprise networks,” in 2017 IEEE 42nd Conference
on Local Computer Networks (LCN). IEEE, 2017, pp. 112–119.

[54] Y. Lei and C. A. Shue, “Detecting root-level endpoint sensor compro-
mises with correlated activity,” in International Conference on Security
and Privacy in Communication Systems. Springer, 2019, pp. 273–286.

[55] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou,
and M. Grace, “Hanguard: Sdn-driven protection of smart home wifi
devices from malicious mobile apps,” in ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2017.

[56] B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen, “Defending
against flow table overloading attack in software-defined networks,”
IEEE Transactions on Services Computing, vol. 12, no. 2, pp. 231–246,
2016.

[57] LabCIF, “How to intercept network trafic on android,”
2024. [Online]. Available: https://github.com/LabCIF-Tutorials/Tutorial-
AndroidNetworkInterception

[58] K. Vishnubhotla, “Every industry’s battle: The threat
of mobile malware on the enterprise,” 2024. [Online].
Available: https://www.zimperium.com/blog/every-industrys-battle-the-
threat-of-mobile-malware-on-the-enterprise/

[59] C. R. Taylor, T. Guo, C. A. Shue, and M. E. Najd, “On the feasibility
of cloud-based sdn controllers for residential networks,” in 2017 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE, 2017, pp. 1–6.

[60] SimilarWeb, “Top websites ranking,” 2023. [Online]. Available:
https://www.similarweb.com/top-websites/

[61] E. Rejthar, “Searching for malicious code among
add-ons,” 2020. [Online]. Available: https://blog-nic-
cz.translate.goog/2020/11/19/hledani-skodliveho-kodu-mezi-
doplnky/? x tr sl=cs& x tr tl=en& x tr hl=en-US

[62] Avast Researchers, “Third-party extensions for facebook, instagram,
and others have infected millions,” 2020. [Online]. Available:
https://blog.avast.com/malicious-browser-extensions-avast

[63] Cloudflare Radar, “Domain rankings for united states,” 2023. [Online].
Available: https://radar.cloudflare.com/domains/us

[64] Firefox Developers, “Firefox profiler,” 2023. [Online]. Available:
https://profiler.firefox.com/



12

[65] Android Stuido, “Measure app performance with Android Profiler,”
Oct. 2020. [Online]. Available: https://developer.android.com/studio/
profile/android-profiler

[66] AskF5, “K50557518: Decrypt ssl traffic with the sslkeylogfile
environment variable on firefox or google chrome using wireshark,”
2021. [Online]. Available: https://support.f5.com/csp/article/K50557518

[67] NowSecure, “Frida, a world-class dynamic instrumentation framework,”
2021. [Online]. Available: https://frida.re/docs/home/

[68] C. R. Taylor and C. A. Shue, “Validating security protocols with cloud-
based middleboxes,” in 2016 IEEE Conference on Communications and
Network Security (CNS). IEEE, 2016, pp. 261–269.


