
Exploring Phone-Based Authentication
Vulnerabilities in Single Sign-On Systems

Matthew M. Tolbert, Elie M. Hess, Mattheus C. Nascimento,
Yunsen Lei, and Craig A. Shue

Worcester Polytechnic Institute, Worcester MA 01609, USA
{mmtolbert, emhess, mcnascimento, ylei3, cshue}@wpi.edu

Abstract. Phone-based authenticators (PBAs) are commonly incorpo-
rated into multi-factor authentication and passwordless login schemes for
corporate networks and systems. These systems require users to prove
that they possess a phone or phone number associated with an account.
The out-of-band nature of PBAs and their security may not be well
understood by users. Further, the frequency of PBA prompts may de-
sensitize users and lead to increased susceptibility to phishing or social
engineering. We explore such risks to PBAs by exploring PBA imple-
mentation options and two types of attacks. When employed with a real-
world PBA system, we found the symptoms of such attacks were subtle.
A subsequent user study revealed that none of our participants noticed
the attack symptoms, highlighting the limitations and risks associated
with PBAs.

1 Introduction

To authenticate users, some organizations combine traditional passwords with
other verification mechanisms in a multi-factor authentication (MFA) scheme.
Others eliminate passwords entirely and use passwordless authentication mech-
anisms. Both MFA and passwordless schemes can use a proof-of-possession au-
thentication factor in which the end user must prove physical access to a de-
vice. Phone-based authenticator (PBA) systems are commonly used for proof-
of-possession schemes since users often already have and protect smartphones.
These PBA systems require a user to promptly interact with the phone asso-
ciated with an account. If the user completes that interaction successfully, the
system approves the authentication attempt.

PBAs are widespread in MFA schemes associated with financial institu-
tions [31] and online account providers [5]. Experts and vendors have encouraged
broader use of PBAs with the promise of reducing account compromise risks [25].
Based on industry surveys [28] and legal directives [16], PBA use is expected to
grow in the future.

PBAs are commonly paired with single sign-on (SSO) systems [4] in which an
identity provider authenticates users for a set of relying parties. However, if SSO
implementations do not cache credentials across applications or are improperly
tuned, they may frequently prompt users to authenticate using PBAs [26]. Prior

2 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

work in usable security has found that repetitive warnings and confirmations can
desensitize users to the importance of the security decisions they are making [6].
This may enable adversaries to deceive users into risky behavior.

In this work, we ask: To what extent can adversaries deceive end users into
authorizing malicious behavior via phone-based mechanisms (e.g., SMS OTP,
email OTP, push notifications)? What phone-based authentication mechanisms
have greater risk and what symptoms result? Do end users notice these symp-
toms? Would additional context help end users distinguish malicious phone-based
authentication interactions?

We explore some common PBA configuration options and their implications
using an empirical study with a popular production SSO system. We implement
techniques to undermine the PBA system and measure their effectiveness. This
leads to the following contributions:

– Exploration of PBA Settings in Two Attack Scenarios: We explore a
range of PBA implementation options and their potential vulnerabilities. We
implement two attacks on PBAs: one using a malicious SSO relying party and
one using network packet profiling and strategic delay. We find the malicious
SSO relying party can compromise each tested PBA option. The profiling
and timing attack is effective against application-based approval prompts.
The observable characteristics of both attacks appear to be subtle.

– Report of User Study on Attack Effectiveness: We conduct an IRB-
approved user study with 13 participants to determine if people notice the
authenticator attacks when they occur. We found that 12 participants did
not notice the attacks, while the last participant was excluded by our testing
protocol before reaching the PBA attack test. Our observations and partic-
ipant reports indicate only cursory review of PBA prompts and notices,
providing ample opportunity for adversary deception.

2 Background and Related Work

Our work combines phone-based authentication, social engineering, and decep-
tion with computer users’ perception and management of risk. To implement our
tools, we use established networking techniques. Accordingly, we review back-
ground and prior work in each of these areas. To the best of our knowledge, we
are the first research work to explore attacks that undermine phone-
based authenticators without compromising the user’s endpoint de-
vice, their phone, or the phone’s connection (e.g., SIM-swapping).

Multi-factor authentication (MFA) schemes often consider what the user
knows, what the user possesses, and what the user is as different authentica-
tion factors [12]. Some organizations, such as Microsoft, indicate that MFA can
prevent more than 97% of identity-based breaches [25]. A study on a data set
of Google account authentication records found that device-based second-factor
authentication blocks more than 90% of account compromise attempts [14]. How-
ever, prior work indicates that MFA has several usability challenges that affect

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 3

its adoption rate [11]. Ease-of-use, required cognitive effort, and trustworthiness
are three major factors that affect MFA’s usability [9]. To improve the adoption
of MFA, Das et al. [10] conducted a usability study on the Yubico Security Key
and observed user difficulties in configuring and using the technology.

Prior research has examined mechanisms to compromise PBAs by compro-
mising the user’s endpoint device, their phone, or the communication channel
with the phone. The simplest mechanism intercepts unencrypted text messages
to phones by falsely registering a device (e.g., “SIM swapping attacks”) or by
network operators [20], [24]. Alternatively, Konoth et al. [23] explore a scenario
where an attacker has compromised the endpoint, including the user’s browser,
and synchronizes with a SMS-stealing application on the user’s phone. More
recent report [18] showed that scammers create a fake surveys on behalf of rep-
utable companies to mislead users into scan QR code and falsely authenticate
online services. Our work explores a simpler attack scenario that does not require
a compromise of the user’s phone, phone connection, or endpoint.

Phishing is a type of social engineering attack that deceives users into provid-
ing their personal information. An attacker can create a fake website to facilitate
phishing. Attackers may rely on victims’ lack of understanding of URL compo-
nents to deceive victims with little effort to disguise the destination site [19].
In a user study, Dhamija et al. [13] asked participants to evaluate a website for
symptoms of fraud. They found victims of impersonation attacks often only con-
sider the content of a webpage to determine its legitimacy and few considered
SSL indicators.

Security warnings are widely used to convey risk. However, prior research
found users often ignore these warnings due to a lack understanding of the jar-
gon [34] or habituation effects [2]. Akhawe et al. conducted a field study [1] to
examine different types of browser warnings and their click-through rates. They
found that malware and phishing warnings have a low click-through rate, while
SSL warnings can have high click-through rates, depending on the warning’s
interface design. Later work [17] examined a new design for SSL warnings to
improve adherence via simple, non-technical text and promoting a clear cause of
action. To examine how habituation affects disregard for security warnings [33],
a user study found that participants who learned to ignore warnings in one task
were likely to ignore security warnings in a subsequent task. To combat such ha-
bituation, researchers proposed using polymorphic dialogues that continuously
change the form of user required input [8] or interface appearance [3] to require
user attention for security decisions. We explore the impact of PBA prompt
messages and the user perception of these PBA prompts.

3 Understanding PBA Goals, Options, and Impacts

Phone-based authenticator (PBA) systems attempt to validate a user’s identity
by verifying that the user physically possesses a smartphone associated with
their account. A typical SSO authentication session using PBA is illustrated in
Figure 1. In it, a user visits the relying party’s website, and when the user wants

4 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

to authenticate, the relying party redirects the user’s browser to the identity
provider site. Most identity providers have authentication APIs for relying par-
ties to integrate the login processes into their applications. The identity provider
then prompts the user for the credential. Upon validating the user’s credentials,
the identity provider then issues the PBA challenge to the user. The challenge
is typically a task with specific instructions that can be completed only through
or with the user’s phone. For instance, the challenge might ask the user to input
a nonce (i.e., a single-use value) that is only transmitted to the user’s phone or
ask the user to approve the login using an authenticator application installed on
the user’s phone. In some options, the response to the challenge is sent via the
browser; in other options, it is sent via the user’s phone. After successful com-
pletion of the PBA challenge, the identity provider redirects the user’s browser
back to the content provider, along with a token. The token both specifies the
user and proves that user’s identity.

2. Redirects to identity provider

1. Activates login link

3. Login page request

4. Login prompt
5. Send credentials

End-User
Web

Browser

Identity Provider
Website

Content Provider
Website

6a. PBA challenge prompt

End-User
Phone/Browser

7.Respond to the PBA challenge

End-User
Web

Browser
8. Redirects to content provider
with authorized token and ID

End-User
Phone

6b. Send nonce or
authentication notification

Fig. 1: A general PBA workflow without an attacker

We explored a set of phone-based authenticators as shown in Table 1. The
first four entries require the end user to obtain a nonce value and to supply
that nonce via the device being authenticated1. The underlying mechanism to
share the value varies: it can be transmitted via an SMS text message, through a
phone call in which an automated system verbally provides a string of numbers,
through an email with a code, or through output in a phone application (often
implemented via a time-based, one-time password). The next two PBA mech-
anisms do not require the end user to supply the nonce. In the code matching
scenario, the end user selects a value in their phone application that matches
what is displayed via the login prompt on the browser. This action links the
approval with the active browser session. The “approve” request scenario omits
the number matching requirement and simply asks the end user to press an
“approve” (or similarly labeled) button on the phone to approve a request; how-

1 We refer to the device being authenticated as “the browser,” for simplicity. However,
this approach can also be embedded within other application types.

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 5

ever, this option lack an association between the browser session and the phone’s
prompt. This leads to a timing vulnerability that we explore on its own.

These PBA systems make two key assumptions: 1) the nonce will not be
revealed to an adversary and 2) the legitimate user will only respond to the
challenge of their own authentication attempts. However, if either assumption
is violated, the PBA system will fail to achieve its authentication goals. In the
remainder of this section, we discuss the threat model and how an adversary
may violate the PBA assumptions to gain unauthorized access.

Table 1: Attack effectiveness by PBA implementation method

Responding Implementation Defeated by
PBA Implementation Device Malicious Site? Timing Attack?
Code via SMS Browser Yes Not tested
Code via Phone Call Browser Yes Not tested
Code via E-mail Browser Yes Not tested
App-based One-time-Code Browser Yes Not tested
App-based Code Matching Phone Yes Not tested
App-based “Approve” Request Phone Yes Yes

3.1 Threat Model and Experiment Setup

We scope our focus to attacks on PBA systems in SSO environments. We assume
that the user’s phone, device, and the identity provider are not compromised.
Further, we constrain the adversary such that it does not have access to the
user’s phone connection. We assume the adversary’s goal is to defeat the PBA
factor itself and either has already defeated other authentication factors (e.g.,
passwords) or does not need to (e.g., a single-factor PBA system).

In one scenario, which we label the “Malicious Site” scenario, the adversary
interacts with the user as a malicious SSO relying party. This scenario is con-
sistent with a phishing attack in which an adversary successfully lures a user to
a phishing website that impersonates a legitimate web site that uses a specific
identity provider. In our second scenario, which we label the “Timing Attack” sce-
nario, the adversary is on path between the user’s browser and the SSO identity
provider and is able to see and delay/drop packets between those endpoints and
to interact with the SSO provider on its own; however, it is unable to decrypt or
forge packets belonging to the browser or identity provider. The Timing Attack
scenario is consistent with an adversary running a malicious public WiFi net-
work [7], that has compromised the user’s residential router [27], or is naturally
on-path (e.g., an ISP or nation-state adversary).

For clarity, we describe scenarios in which a user is attempting to authenticate
on a client device (e.g., a desktop/laptop computer or tablet), which we refer
to as “the browser,” and performs the PBA step on a separate device (e.g., a
phone). These actions could be done on the same device; if so, one must relax
the adversary constraint against having access to the phone’s connection.

In the remainder of this section, we explore these attack scenarios with dif-
ferent PBA implementation options. We do so using an industry-leading SSO

6 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

Client Machine
Ubuntu 16.04
10.0.0.4/24

Adversary Machine
Ubuntu 20.04
10.0.0.2/24

Router Machine
Ubuntu 20.04

10.0.0.10/24 192.168.122.105/24

VM Host NAT
Ubuntu 16.04

192.168.122.1/24

Virtual
Switch

in
Hypervisor

Smartphone
Internet

SSO Identity
Provider SSO Relying

Party

Fig. 2: Our experimental network.

identity provider which has 40% of the identity provider market share and is
used by around 80,000 companies globally. We refer to this vendor as Anon-
SSO ; we use a pseudonym for the vendor because the vendor employs current
industry best practices and the vulnerabilities are inherently due to PBA op-
tions themselves, not due to the vendor’s implementation. The AnonSSO ven-
dor’s approach is representative of other implementations, and there were no
implementation-specific details that would prevent the results from generalizing
to other implementations. Our study was approved by our Institutional Review
Board (IRB) and was conducted with careful attention to ethical conduct. As
we further explain in subsequent sections, our scenarios do not harm or attempt
to compromise the AnonSSO system.

We perform our experiments using a set of virtual machines that are con-
nected with the AnonSSO system via a bridged network interface. Figure 2
shows our experimental network setup for conducting PBA attacks. We host
three virtual machines on a VM server. One virtual machine (top left) acts as
the legitimate client, another acts as an adversary for the malicious website
(top right), and a third acts as a router that is benign in the Malicious Site
scenario but is adversary-controlled in the Timing Attack scenario. These three
virtual machines are connected through a virtual bridge created by the physical
machine’s hypervisor. The router is configured with two interfaces: one to the
virtual bridge and one to the hypervisor’s network card via a NAT interface. The
router provides connectivity to the AnonSSO authentication portals. A smart-
phone associated with the legitimate user connects directly to the Internet.

3.2 Impact of Malicious Relying Party Sites

Adversaries have had success in luring users into visiting malicious sites [15]
and impersonating legitimate entities [32]. Previous work shown that advanced
phishing toolkits [22] can mimic the site with high fidelity, which simplifies this
process for adversaries.

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 7

Accordingly, we explore a scenario in which an adversary creates a malicious
relying party website that purports to redirect the user to an identity provider,
but actually does not do so. Instead, the malicious site impersonates the identity
provider and prompts users to enter their credentials. If the user does not notice
the deception, they may submit this information, providing it to the adversary.
Upon receiving the user’s credentials, the malicious site covertly initiates a con-
nection to the identity provider as if it were a client. It impersonates the end-user
and supplies the credentials it obtained to the actual identity provider. This pro-
cess triggers the identity provider to send the PBA challenge (and transmit the
nonce if necessary) that asks the adversary to follow specific instructions. The
adversary uses the malicious site to relay those instructions to the real user. The
user, who may incorrectly believe they are in the middle of a valid authentication
attempt, may follow the instructions (e.g., by echoing the nonce to the adver-
sary’s malicious site or through a phone-based application) to respond to the
PBA challenge. By doing so, the end-user effectively authorizes the adversary’s
authentication attempt rather than its own (either by revealing the nonce to the
adversary or approving the adversary’s login in the authenticator application,
which violates both the first and second assumption discussed in Section 3). The
adversary succeeds whenever the user authorizes the adversary’s login.

As shown in Table 1, the PBA implementation method may require the
adversary to relay PBA instructions or request user inputs via the malicious site.
In other scenarios, the user may directly interact with their phone’s application
without requiring the adversary to issue a prompt. Our user study in Section 4.3
suggests that adversaries could deceive users into performing these actions.

We test the attack scenario using a legitimate client machine (top left in
Figure 2) to connect to a malicious website (the adversary machine, top right in
Figure 2). Both the client and adversary have unimpeded access to the Internet
(i.e., the router machine, center of Figure 2, forward traffic without manipulation
or delay). The malicious relying party uses HTTP communication between itself
and the client. It uses a custom set of login pages to mimic the login process of
the identity provider while displaying user-supplied credentials and nonce values
to the adversary. As mentioned above, the adversary must perform its own login
attempt quickly upon receiving credentials, but this can be accomplished with
an automated process (e.g., using web browser automation tools such as Sele-
nium [30]). We omit this automation step since it has previously been explored.
The nonce received by adversaries is valid for multiple minutes and remains valid
during the entire attack process. Our tests confirm that an adversary can imple-
ment the scenario in a straightforward manner with few observable symptoms.

3.3 Timing Attacks on Unassociated PBA Approvals

The process of using an SSO protocol results in a specific traffic pattern involving
redirection of a client from a relying party to an identity provider and back. An
on-path adversary may examine traffic to determine such patterns, leveraging
DNS requests to identify the servers involved with relying parties and identity
providers. By recording such network traffic and browser actions, adversaries

8 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

can build a database of actions for each authentication step. The adversary can
later use that database when monitoring a target’s traffic to time an attack.

On-Path
Adversary

End-
User
Web

Browser

Content Provider
Website

1. Activates Login Link

2. Redirects to Identity Provider

15. Redirects to
 Content Provider
 with ID, token

3. Page Request

4. Login Prompt
5. Send Credentials

Identity
Provider
Website

9a. Sends Request

End-User
Phone

11. Login succeeds
 (adversary wins)

8. Send Credentials

9b. Sends Instructions

6. Page Request

7. Login Prompt

10. User Selects
 "Approve" in
 Phone App

12. Send Credentials

13b. Sends Instructions

13a. Sends Request

14. User Selects
 "Approve" in
 Phone App

Fig. 3: An on-path adversary launching a timing attack on a PBA workflow

In the timing attack, the adversary monitors all connections from a target to
a relying party. The adversary matches the target’s packets to each known step
in the authentication process. Once the target reaches the step that transmits
login credentials, the on-path adversary then can queue the victim’s packets and
submit its own login request using previously-obtained credentials, as shown in
Figure 3. If the login system uses push-based authentication via a phone-based
application, the adversary’s attempt to log in will create a notification to the end
user’s phone asking for approval. Since the prompt appears at the expected time
during the user own authentication attempt, the user may approve it. However, in
doing so, the end user authorizes the adversary’s authentication attempt instead,
violating the second PBA security assumption discussed in Section 3.

For the timing attack to work, the PBA approval process on the phone must
not be explicitly linked with the browser login session. Only the last implementa-
tion method in Table 1, the app-based “approve” request, meets this requirement.
In that workflow, the “approve” button does not provide context for what session
is being approved nor does it require the user to supply a unique identifier (such
as a nonce or matching code). This ambiguity allows an adversary to delay and
reorder interactions to gain access.

In our experiments, the adversary controls the router machine depicted in the
center of Figure 2. The adversary machine (bottom left) is not involved in this
attack. The adversary pre-profiles the relying party interaction with AnonSSO
and creates an annotated database with packet sizes for each event. AnonSSO
prompts for a username associated with the account and ask for password in a
second page. The adversary builds a transition map for the initial authentication

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 9

page request, the submission of a username, and the submission of a password.
For each TCP flow to AnonSSO, it tracks the number of packets and total
bytes transmitted to distinguish the password submission step for pausing the
legitimate transaction. Since identity providers like AnonSSO provide a uniform
API for relying parties, the process can generalize across relying parties.

The client accesses a legitimate relying party website and the AnonSSO in-
frastructure via the router. The client and servers use TLS, so the router does
not have access to the plain-text communication or the ability to forge messages.
Using the router machine’s built-in iptables firewall, we direct all communica-
tion between the client and AnonSSO endpoints to a specified queue in the Linux
netfilter architecture. With a Python script, we use the NetfilterQueue
Python library [21] to dequeue all the packets in the kernel queue. We then
use the Scapy [29] tool to dissect the packet headers of the obtained packets to
extract host names from the DNS response packets and associate each HTTPS
packet’s destination IP with a host name. For each intercepted packet, we track
the cumulative packets and bytes transmitted to identify which stage of the au-
thentication process the user is in. Once the requisite transmission occurs to send
the username, we know the next transmission will be the password submission.
Before reaching the password submission stage, we simply forward each packet.
However, once we receive the first packet associated with password submission,
we queue it and all subsequent traffic in that flow. The adversary then performs
an out-of-band login, which sends a PBA approval request to the phone.

3.4 Observable Characteristics of the Attack Scenarios

The Malicious Relying Party Site and the Timing Attack scenarios have subtle
symptoms. We describe these symptoms in this section. Our user study in Sec-
tion 4 found that our participants did not have concerns about these symptoms.

For the malicious relying party scenario, the primary non-adversary con-
trolled symptom of the attack is the lack of redirection from the relying party
to an identity provider in the browser’s address bar. Otherwise, an adversary
can convincingly replicate the page visuals to mimic a legitimate relying party
and the identity provider. An adversary may choose to continue its deception
after succeeding (i.e., after the user completes the PBA process to authorize
the adversary) by redirecting the user to the legitimate relying party’s site. The
user may notice they are not logged in and may retry the process. The user
may incorrectly believe the site had an issue performing the login rather than
recognizing that they had been attacked.

For the timing attack scenario, the primary non-adversary controlled symp-
tom of the attack is that the browser will not provide confirmation of password
submission and a prompt to complete the PBA process before the PBA appli-
cation prompts the user for approval. Until the user proceeds with the PBA
approval, the browser will appear as if it is awaiting a response from the iden-
tity provider. After the user approves the attack, the adversary can choose to
drop or deliver the queued packets. If dropped, the web request will time out. If

10 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

delivered, the user will receive a second PBA prompt, which if completed, will
authorize the user’s access.

In our own personal usage of PBAs, we occasionally receive duplicate PBA
prompts for a login attempt or must retry a PBA attempt to successfully sign-in.
While the causes of these scenarios are unclear, we suspect network transmission
issues or server-related errors. In our user study (Section 4.4), we explore whether
our human subjects have had similar experiences. We find that they did, and that
these experiences seem to desensitize participants to such PBA attack symptoms.

4 User Study and Findings

Given the subtle symptoms of the PBA attacks, we next explore whether users
notice them and whether the symptoms raise concerns. To do so, we conducted a
user study to gather participants’ impressions. We recruited 13 participants, con-
ducted the study, and debriefed each participant to understand their actions. We
found that the symptoms of the PBA attacks did not concern the participants.

4.1 IRB Process and Participant Recruiting

We used our organization’s Institutional Review Board (IRB) to ensure appro-
priate protections for our human subjects. The main concern in our study was
the use of distractions and ambiguity. Our goal was to measure participants’
responses to phone-based security prompts on an account, without biasing the
results by revealing that we were specifically monitoring their security decisions.

In our informed consent process, we indicated that our study would explore
“how website design affects [the] user experience” and that the study would “mea-
sure how various design choices affect how easily and quickly a user notices that
information being presented to them is important.” The protocol procedures indi-
cated that participants would use video conferencing and screen sharing software
to log in to a puzzle website, complete several puzzles, and review the results.
The participants received a $5 USD gift card incentive.

We recruited participants via email. Our participants were undergraduate
Computer Science students, which may result in biases making them more sen-
sitive to computing details that could reveal a security risk.

4.2 Experimental Setup

Our participants met with the researchers via video conferencing, which was
necessary safety consideration during a high propagation phase of the COVID-
19 pandemic. The subjects were experienced with video conferencing and, except
where noted, we do not believe that the format affected the study.

The researchers used the same experimental VM infrastructure used in Sec-
tion 3.1 using shared screen control software that enables remote control for
participants. The researchers then allowed the human subjects to control that
VM system via the video conferencing software. The participants were told that

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 11

as part of our user interface study, the participant would need to remotely con-
trol the entire process. It was pointed out that the system may need to use
smartphones, and if so, the researchers would hold the phone up to their video
conferencing camera and ask the participant how to proceed.

The participants were asked to provide careful feedback about the website
associated with a puzzle game. They were asked to log in to the site and were
supplied with a researcher-provided account and were told that doing so would
enable tracking their progress in the game. For the identity provider, we used
the same vendor as in Section 3. The researchers ensured that participants used
the researcher-provided system and credentials to avoid risk to participants.

If at any point the user expressed security concerns, we immediately ended
the study to allow us to debrief the individual and address those concerns. If the
participant completed the authentication process without expressing concern, we
asked them to play an online game for a few minutes while commenting on any
design aspects that they noticed. The requested commentary was to focus users
on the website rather than the authentication process during our interview.

During the experiment, one researcher acted as the host and guided the
participant through the study. The host allowed the participant to control their
screen and VM through the conferencing software. Another researcher focused
on performing the attack on the VM system while it was controlled by the
participant. If the host needed assistance, the second researcher would provide
it. Otherwise, the second researcher remained silent as if they were an observer
taking notes, while actually performing the adversary actions in the experiment.

Except as noted, each interactive segment with participants ended with a
short interview. We asked some questions before informing the participant of
the focus on PBAs and asked others afterward. The researchers answered any
questions for the participants, offered online account security advice, and then
ended the session. We split the participants into groups to study both the mali-
cious website and the packet delay attacks.

4.3 Participant Responses to the Malicious Relying Party Scenario

In the malicious website attack, we explored both SMS-based delivery of nonce
values and application-based approval verification mechanisms. We omitted ex-
ploration of code delivery via email, audio phone calls, or application-based code
display since they have similar user-facing characteristics as the SMS-based de-
livery of nonce values.

In our experiments, we created a site that was delivered over HTTP with
a similar-looking URL host name (in which the period character was missing
from a host name, resulting in the concatenation of a domain and host-name in
the domain portion of the URL). When the host directed the participant to log
in to the game site, the malicious website showed a fake variant of the Anon-
SSO authentication portal. As the user entered their credentials, the adversary
observed the console of the website. Once the user submitted authentication
credentials, the website displayed the credentials to the adversary’s console and
took no subsequent action. The adversary viewed those credentials and quickly

12 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

submitted a separate login attempt to the real AnonSSO authentication por-
tal with the participant-supplied credentials. The adversary’s action caused the
actual AnonSSO system to send a PBA request to the host’s phone.

When the PBA challenge appeared on the host’s phone, the host displayed
the prompt to the participant. The participant either had to choose to proceed
or abort, in the case of the application-based approval process, or to enter the
displayed code into the website for the SMS-based code delivery option. If the
participant chose to proceed in application-based approach, the adversary’s at-
tempt was authorized. Likewise, if the participant typed in the correct code into
the malicious website, it was displayed to the adversary via the website’s console
and the adversary could then enter the code to log in. Both of these outcomes
were considered successful attacks. If the participant chose to abort the log in,
the attempt was considered an unsuccessful attack.

Table 2: User study results indicating whether individuals identified attacks.
One participant was disqualified due to detecting an experimental setup issue
unrelated to the phone-based authenticators.

Malicious Site Timing Attack
SMS App, OS Context App, No Context App, Distance App, Screenshot

Number Participants 3 3 3 2 2
Disqualified 1 0 0 0 0
Attack Failed 0 0 0 0 0
Attack Succeeded 2 3 3 2 2
Symptoms Noted 1 1 0 0 0
No Symptoms Noted 1 2 3 2 2

In the second column of Table 2, we show the results of SMS-based code
delivery experiments. One participant was disqualified before proceeding to the
PBA test. Another did not detect the attack, but described symptoms of the
attack during the post-experiment interview. The third participant did not notice
the attack or any symptoms of a problem.

Our testing protocol required us to abort the user study for one of our partic-
ipants before conducting the PBA attack. The disqualified participant noticed
discrepancies in the site content of the fake sign-in page before reaching the stage
where a password was entered and before the PBA could be tested. The partic-
ipant indicated they had previously been the victim of an attack and observed
an inconsistency in the animation associated with our mimicry of the vendor’s
site. This participant did not notice the host name’s mismatch or the HTTP
indicator. We thus were unable to obtain PBA data for that participant.

When we explored the application-based approval approach, none of the three
participants detected the attack live, as shown in the third column of Table 2.
Only one participant indicated any symptoms; the one identified was related to
a mismatch in operating system on the PBA prompt. This response hinted at
the value of context; however, a more sophisticated adversary would be able to

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 13

observe OS details of the legitimate client and forge browser or OS headers when
interacting with the identity provider, causing the results to match.

4.4 Participant Responses to Timing Attack Scenario

In this attack, the host directed the participant to log in to the game website,
which started an authentication session via the vendor’s authentication page. At
the same time, the adversary researcher initiated a second authentication session
on a separate system, supplying the same credentials. However, the adversary
researcher did not submit the password credentials immediately. Instead, the
adversary researcher monitored the attack script running on the router VM. The
adversary researcher activated the attack script while the participant was logging
in2. When the attack script from Section 3.3 observed the trigger condition, it
automatically paused all packets associated with the participant’s login session.
Then, the adversary researcher started the login attempt for the second session.
The submission of the second session’s information resulted in a PBA request
via the host’s phone.

The host researcher then showed their phone to the participant with the PBA
prompt and asked the participant what buttons should be pressed. If the victim
told the host to press a button that allowed the request, the adversary’s attempt
was approved and the adversary could observe the success. The adversary then
instructed the attack script to unpause the participant’s connection and deliver
all the queued packets associated with the participant’s log in attempt. This
resulted in a second PBA request at the host’s phone, which the host then
displayed to the participant and asked for instruction.

In exploring the packet pausing attack, we considered two variants: the stan-
dard authentication prompt and one enhanced with additional context. As with
the lab-based study, both variants considered only the application-based “ap-
prove” request workflow in which the participant was asked to confirm whether
they initiated the request or not.

In the standard authentication scenario, the user was provided with a prompt
that indicated the account being signed in, the device operating system and
architecture performing the log in, a rough location (country-level granularity),
an indication that the log in was being performed “now,” a button indicating
this was correct, and one indicating it was incorrect.

As noted earlier, the only symptoms of the timing attack are that the web
page where the user submits a credential is briefly delayed and the end user
receives multiple requests to authenticate. As we see in the fourth column of
Table 2, none of the three participants detected the attack or reported suspicious
symptoms during the interview process. In fact, one of the participants indicated
that receiving a second phone-based notification request “seemed pretty standard
for [AnonSSO].” That participant proceeded through both verification prompts

2 Future engineering efforts may allow the script to run continuously and to automat-
ically identify the login session. Since our goal was to measure participant reactions,
for simplicity, we manually activated it in the user study.

14 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

quickly. Another participant took longer to consider both PBA prompts, but
proceeded in each case.

We next explored user behaviors when they have additional context that
might alert them to something awry. In this case, the host showed the partici-
pant a false notification screen during the first authentication request with two
discrepancies from a real notification: it showed that the request originated from
a location that was thousands of miles away and was from an operating system
that mismatched what the participant was using. As shown in the fifth column
of Table 2, neither of the two participants in this scenario detected the attack
or reported suspicious behavior in the interview.

In our final scenario, participants were shown a screenshot of a computer
desktop in the phone-based authenticator prompt and asked if the image matched
what they were trying to do. The researchers intentionally ensured that the
screenshot did not match the participant’s screen: the screenshot showed a dif-
ferent browser, a different OS, and different screen size. Further, the contents
of the window did not match: one displayed a username entry page for a login
to a different website whereas the study participant was viewing the password
entry page for a login to the game website. Both participants chose to proceeded
(as shown Table 2, column 6), despite examining the prompt for over a minute.
During the post-experiment interview, both participants indicated the picture
was difficult to view through the video conferencing software, so they could not
clearly see the details or differences. One of the participants indicated the screen-
shot looked like their PC’s desktop, which may have been a false assurance.

This exploration confirmed our hypothesis that the timing attack was too
subtle to seem suspicious to end users and that the duplicate authentication
prompt would not raise concerns for them. The user study partially refuted
our hypothesis that additional context would help. The details about location
and machine type provided little value for user verification. While screenshots
may have been useful, the experimental setup appeared to affect the results and
further study may be needed. However, the post-experiment interview indicated
that even when screenshots do not match, users may still proceed anyway, as
long as the image looks familiar. One participant expressed privacy concerns if
accurate screenshots of the system were to appear within the PBA prompt.

4.5 Participant Feedback and Study Limitations

In our post-experiment interviews, most participants indicated that having PBAs
as part of a MFA scheme increased their confidence in the security of their
accounts. To them, the approach was worth the inconvenience. However, two
participants indicated that it was not worthwhile.

The presence of PBAs increased some participants’ confidence that they were
interacting with an authentic website. One user believed that an email with a
nonce serves as “proof” of security. This reaction indicates that users may be
particularly vulnerable to social engineering attacks that incorporate PBAs.

User studies have inherent limitations in terms of realism, representative pop-
ulations, and scale. Our use of researcher-provided credentials and a researcher

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 15

observing the login may have affected realism, possibly by providing inherent
assurance and by heightening user attention to the process. The video confer-
encing tool affected the screenshot study, but based on participant feedback and
actions, it did not affect the other results. Finally, our participant pool was small,
with 13 Computer Science majors, which is subject to bias. However, that bias
should have increased the attack detection rate and none of our participants
reported PBA attacks. This highlights real risks with PBAs in practice.

4.6 Potential Mitigations for Deployment

We recommend that deployers of PBA systems eliminate the usage of the simple
application-based prompt to approve or deny a request. Instead, organizations
would be more resilient against timing attacks by using the “code matching”
requirement for applications since that requires the user to link the action being
authorized on the phone with the device being authorized. This can entirely
defeat the Packet Delay Attack.

Providing additional context about the relying party or service being autho-
rized may allow end-users to identify mismatches. Such context was examined
by our participants, but despite the presence of mismatches, they did not abort
the authentication process. We recommend end-user training about how PBAs
work and the symptoms of an attack.

Additional training about typo-squatting and website mimicry would also be
useful to help users avoid malicious site impersonation. Because the content of a
website is under the adversary’s control, attackers can create convincing replicas
of legitimate sites. Training users to understand URLs may help manage this
risk.

Finally, we recommend that organizations consider human interaction with
PBAs and minimize the number of times users must employ them. A miscon-
figured environment may unnecessarily prompt individuals to use phone-based
authenticators, which may desensitize users and cause them not to carefully vet
authentication prompts. With the sparing usage of such authentication prompts,
users may review them more carefully.

5 Concluding Remarks

We explored the use of phone-based authentication systems, which are in widespread
use on the Internet. Despite assurances to the contrary, we showed that these sys-
tems offer little resistance to phishing attacks. One common phone-based authen-
ticator mechanism can also be defeated by strategic timing attacks. We explored
the attack scenarios and showed that they were unnoticed by technically-inclined
participants in a user study.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 1651540.

16 M. Tolbert, E. Hess, M. Nascimento, Y. Lei, and C. Shue

References

1. Akhawe, D., Felt, A.P.: Alice in warningland: A large-scale field study of browser
security warning effectiveness. In: USENIX Security Symposium. pp. 257–272 (Aug
2013)

2. Amran, A., Zaaba, Z.F., Mahinderjit Singh, M.K.: Habituation effects in computer
security warning. Information Security Journal: A Global Perspective 27(4), 192–
204 (2018)

3. Anderson, B.B., Kirwan, C.B., Jenkins, J.L., Eargle, D., Howard, S., Vance, A.:
How polymorphic warnings reduce habituation in the brain: Insights from an FMRI
study. In: ACM Conference on Human Factors in Computing Systems. pp. 2883–
2892 (2015). https://doi.org/10.1145/2702123.2702322

4. Avatier: Azure active directory seamless single sign-on. https://docs.microso
ft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso (2020),
accessed April 29th, 2021

5. Avatier: Which companies use multi-factor authentication with their customers?
https://www.avatier.com/blog/companies-use-multi-factor-authenticati
on-customers/ (2021), accessed April 29th, 2021

6. Bravo-Lillo, C., Cranor, L.F., Downs, J., Komanduri, S., Sleeper, M.: Improving
computer security dialogs. In: IFIP Conference on Human-Computer Interaction.
pp. 18–35. Springer, USA (2011)

7. Breński, K.P.: Evil Hotspot–are public hotspots safe? Ph.D. thesis, Zakład Struk-
turalnych Metod Przetwarzania Wiedzy (2017)

8. Brustoloni, J.C., Villamarín-Salomón, R.: Improving security decisions with poly-
morphic and audited dialogs. In: ACM Symposium on Usable Privacy and Security.
pp. 76–85 (2007). https://doi.org/10.1145/1280680.1280691

9. Cristofaro, E.D., Du, H., Freudiger, J., Norcie, G.: Two-factor or not two-factor? A
comparative usability study of two-factor authentication. CoRR abs/1309.5344
(2013), http://arxiv.org/abs/1309.5344

10. Das, S., Dingman, A., Camp, L.J.: Why Johnny doesn’t use two factor: A two-
phase usability study of the FIDO U2F security key. In: Financial Cryptography
and Data Security. pp. 160–179 (2018)

11. Das, S., Wang, B., Tingle, Z., Camp, L.J.: Evaluating user perception of multi-
factor authentication: A systematic review. CoRR abs/1908.05901 (2019), http:
//arxiv.org/abs/1908.05901

12. Dasgupta, D., Roy, A., Nag, A.: Multi-factor authentication. In: Advances in User
Authentication, pp. 185–233. Springer, USA (2017)

13. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: ACM SIGCHI
Conference on Human Factors in Computing Systems. pp. 581–590 (2006).
https://doi.org/10.1145/1124772.1124861

14. Doerfler, P., Thomas, K., Marincenko, M., Ranieri, J., Jiang, Y., Mosci-
cki, A., McCoy, D.: Evaluating login challenges as a defense against account
takeover. In: The ACM World Wide Web Conference. p. 372–382 (2019).
https://doi.org/10.1145/3308558.3313481

15. Downs, J.S., Holbrook, M.B., Cranor, L.F.: Decision strategies and susceptibility to
phishing. In: ACM Symposium on Usable Privacy and Security. pp. 79–90 (2006).
https://doi.org/10.1145/1143120.1143131

16. European Commission: Payment services (psd 2) - directive (eu) 2015/2366. https:
//ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-236
6_en (2015), accessed June 6th, 2022

Exploring Phone-Based Authenticator Vulnerabilities in SSO Systems 17

17. Felt, A.P., Ainslie, A., Reeder, R.W., Consolvo, S., Thyagaraja, S., Bettes, A.,
Harris, H., Grimes, J.: Improving SSL warnings: Comprehension and adherence.
In: ACM Conference on Human Factors in Computing Systems. pp. 2893–2902
(2015). https://doi.org/10.1145/2702123.2702442

18. Government of Singapore: Police advisory on scam survey leading to the misuse of
singpass access to digital services. https://ec.europa.eu/info/law/payment-se
rvices-psd-2-directive-eu-2015-2366_en (2022), accessed June 6th, 2022

19. Hong, J.: The state of phishing attacks. Communications of the ACM 55(1), 74–81
(Jan 2012). https://doi.org/10.1145/2063176.2063197

20. Jover, R.P.: Security analysis of sms as a second factor of authentication: The
challenges of multifactor authentication based on sms, including cellular security
deficiencies, ss7 exploits, and sim swapping. Queue 18(4), 37–60 (2020)

21. Kerkhoff Technologies, Inc.: Netfilterqueue. https://github.com/kti/python-ne
tfilterqueue (2021), accessed April 29th, 2021

22. Kondracki, B., Azad, B.A., Starov, O., Nikiforakis, N.: Catching trans-
parent phish: Analyzing and detecting MITM phishing toolkits. In: ACM
Conference on Computer and Communications Security. p. 36–50 (2021).
https://doi.org/10.1145/3460120.3484765

23. Konoth, R.K., van der Veen, V., Bos, H.: How anywhere computing just killed your
phone-based two-factor authentication. In: International Conference on Financial
Cryptography and Data Security. pp. 405–421. Springer (2016)

24. Lee, K., Kaiser, B., Mayer, J., Narayanan, A.: An empirical study of wireless carrier
authentication for SIM swaps. In: Symposium on Usable Privacy and Security. pp.
61–79 (2020)

25. Microsoft: Microsoft digital defense report. https://www.microsoft.com/en-u
s/security/business/security-intelligence-report (2020), accessed April
29th, 2021

26. Microsoft: Optimize reauthentication prompts and understand session lifetime for
Azure AD multi-factor authentication. https://docs.microsoft.com/en-us/azu
re/active-directory/authentication/concepts-azure-multi-factor-authe
ntication-prompts-session-lifetime (2020), accessed April 29th, 2021

27. Niemietz, M., Schwenk, J.: Owning your home network: Router security revisited.
CoRR abs/1506.04112 (2015), http://arxiv.org/abs/1506.04112

28. ReportLinker: Global multi-factor authentication (mfa) industry. https://www.re
portlinker.com/p03329771/Global-Multi-Factor-Authentication-MFA-Indu
stry.html (2021), accessed April 29th, 2021

29. SecDev: Scapy. https://github.com/secdev (2021), accessed April 29th, 2021
30. Selenium: Seleniumhq browser automation. https://www.selenium.dev/ (2021),

accessed April 29th, 2021
31. Sinigaglia, F., Carbone, R., Costa, G., Zannone, N.: A survey on multi-factor au-

thentication for online banking in the wild. Computers & Security 95, 101745
(2020)

32. Spaulding, J., Nyang, D., Mohaisen, A.: Understanding the effectiveness of ty-
posquatting techniques. In: ACM/IEEE Workshop on Hot Topics in Web Systems
and Technologies (2017), https://doi.org/10.1145/3132465.3132467

33. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: An
empirical study of SSL warning effectiveness. In: USENIX Security Symposium.
pp. 399–416 (2009)

34. Zaaba, Z.F., Boon, T.K.: Examination on usability issues of security warning di-
alogs. Age 18(25), 26–35 (2015)

