
Making (Only) the Right Calls: Preventing
Remote Code Execution Attacks in PHP

Applications with Contextual, State-Sensitive
System Call Filtering

Yunsen Lei1,2 and Craig A. Shue1

1 Worcester Polytechnic Institute {ylei3,cshue}@wpi.edu
2 George Washington University yunsen.lei@gwu.edu

Abstract. PHP powers over 76% of websites worldwide, making secu-
rity vulnerabilities in its applications particularly damaging. Unfortu-
nately, such defects remain common: in 2021, nine of the top 15 most-
exploited vulnerabilities identified by CISA involved remote code exe-
cution (RCE). Prior research has attempted to contain RCE through
system call filtering (e.g., via seccomp), but these efforts are typically
coarse-grained. They allow all system calls that could potentially be in-
voked anywhere in the application, providing attackers substantial op-
portunities for exploit.
We introduce a fine-grained, state-sensitive approach that builds an au-
tomaton for each PHP script, mapping different execution stages to care-
fully curated system call subsets. At runtime, our kernel module com-
bines information from system call traces and PHP script-level events to
apply these context-driven allow-lists. We demonstrate our method’s ef-
fectiveness against real-world CVEs and against attackers crafting RCE
payloads designed to mimic legitimate calls. Our model successfully de-
tects these “stealth” attacks and maintains a low performance overhead
of only 1%—a substantial improvement over the 5% overhead observed
in prior work.

1 Introduction

PHP is a popular server-side language powering 75.4% of measured websites in
2024 [27]. PHP is the driving force behind WordPress, which itself powers 43.7%
of measured websites worldwide [28]. Unfortunately, PHP faces the same security
issues as other back-end server languages.

A critical and challenging to combat threat is remote code execution (RCE).
An attacker typically exploits an application defect to deliver and execute mali-
cious code that exceeds the application developer’s intent, potentially spawning
processes and accessing system resources without restriction. To address the
risks posed by RCE, the research community has explored various mitigation
strategies. A common approach involves a two-phase process of modeling and
enforcement. During the modeling phase, the target application is analyzed to

2 Lei and Shue

determine its intended behavior. By requiring the program’s runtime execution
to comply with the defined model, defenders can constrain the scope in which
arbitrary code can be executed.

Defenders can use a system call allow-list to enforce a program’s behavior.
The allow-list is first obtained by analyzing the target program for a set of reach-
able system calls and is then enforced through the seccomp module in Linux.
The seccomp module can be viewed as a deterministic finite automaton with a
single approve and reject state. System calls defined in the allow-list consist of
transition rules that keep the program in the “approve” state. Conversely, sys-
tem calls not in the allow-list form transition rules that move the program to
the “reject” state. The seccomp module can choose to terminate a program if a
disallowed system call is captured.

The effectiveness of the system call allow-list approach is directly related to
how tight the constraints are. Prior efforts have built allow-lists that work at the
entire PHP application granularity [12, 6] and at the HTTP request granularity
(i.e., the script specified in the HTTP URL) [4]. Unfortunately, there are signifi-
cant drawbacks to each: the first is too permissive, enabling attackers to exploit
any allowed call; the second, which is built upon seccomp, requires restarting
the PHP process or dedicating separate PHP engines per target script. Our in-
vestigation shows that even request-level profiles can permit stealthy “mimicry”
RCE. We therefore re-examine the whole system call modeling and enforcement
pipeline for PHP applications. We propose a protection system that constructs
a detailed, stateful system call profile and enforces that profile using run-time
sensors and kernel-mode system call filtering.

With this foundation, we explore important research questions: How can
we construct fine-grain profiles of PHP applications? To what extent can such
fine-grained modeling and enforcement constrain an RCE attack on the PHP
platform? What performance cost does this approach introduce to the existing
PHP platform? Does such an approach negatively impact programs’ legitimate
execution? In exploring these questions, we contribute the following:

A design for detailed PHP application profiling and sensing: We
design an automata-based approach for modeling the state of a PHP application.
We design tools to construct the automata from PHP scripts and from the
executables and libraries associated with the PHP engine (Section 3).

A system for context-aware, state-sensitive system call filtering:
We implement sensors and an enforcement module that recognizes application-
level events that precede the underlying system calls. We use these to apply
appropriate system call profiles to enforce (Section 4).

An evaluation of the security effectiveness and performance: Through
real-world RCE vulnerabilities and legitimate workloads, we compare against
seccomp-based defenses. Our approach completely stops the attacks across three
tested classes (Section 5), adding under 3% overhead for script-level enforcement
(Section 6).

Contextual, State-Sensitive System Call Filtering for PHP 3

2 Background for PHP Application Risks

In PHP applications, the risk of remote code execution is heightened by two
intertwined factors. First, attackers have various techniques at their disposal
to inject malicious code. Second, system call usage is prevalent in application
scripts. Those prevalent system calls result in a larger list of permitted system
calls, which can provide attackers with ample opportunities to mimic legitimate
system operations and thus bypass existing security measures. In this Section,
we first examine the common techniques for RCE on PHP applications and then
discuss the impact of system call frequency.

2.1 Attack Techniques

Remote Code Execution (RCE) in PHP typically requires explicit injection of
malicious code or data that the PHP engine then integrates into its execution,
unlike intra-procedural attacks like return-oriented programming, which reuse
existing instruction gadgets. We classify RCE based on how malicious code
affects the system call profile across execution scopes. One category involves
file inclusion or uploads, introducing new scripts and altering request-handling
structures. Another relies on command injection or deserialization, executing
malicious code within an existing script’s scope.

1 <?PHP
2 $file_path = $_GET['file'];
3 include($file_path);
4 include('app_dir/' . 'dependency.php');
5 /* rest of the code ... */ ?>

Fig. 1: A file inclusion vulnerability through user-supplied path

File Upload and Inclusion Attackers often exploit arbitrary file upload
vulnerabilities to place malicious scripts within the PHP application’s source
directory. Then, the attacker can execute their own uploaded script by access-
ing it directly via a URL or with a local file inclusion vulnerability (line 3 in
Figure 1). For applications that need write access to its code directory (e.g., a
WordPress updates its plugin), the attack may be more covert by overwriting
existing scripts during the upload process (such as altering dependency.php on
line 4 in Figure 1).

Injection and Deserialization This method exploits functions that process
unvalidated user inputs, allowing attackers to embed and execute malicious code.
For instance, an attacker might craft a payload that is dynamically evaluated
via functions like eval or injected into a template engine. In addition, unsafe
deserialization can instantiate objects with carefully crafted fields, triggering
unwanted function calls.

4 Lei and Shue

Figure 2 illustrates a Server-Side Template Injection (SSTI) attack on the
Twig PHP template engine [24]. In a misconfigured or older version of Twig,
attackers can construct the controllable parameter to inject a template that
registers a callback function, then invoke it through another parameter. For
example, setting greeting using registerUndefinedFilterCallback and name
using getFilter. Such attacks are typically the result of improper configuration
or unsafe template features rather than an inherent flaw in Twig itself.

1 <?PHP
2 $twig->render("Hello " .$_GET['greeting'] .$_GET['name']);
3 /* rest of the code ... */ ?>

Fig. 2: A Minimal Server Side Template Injection Example

Figure 3 illustrates a deserialization attack involving a PHP class called Log-
Writer, which includes a destruct magic method that writes content to a file
when the object is unset, or the script ends. The separate script (lines 1–5) re-
trieves data from a request parameter and calls process_data, appearing harm-
less at first. However, an attacker can submit a serialized LogWriter object,
manipulating its filename and log_content properties to write arbitrary files.
In large applications using multiple libraries, attackers can construct complex
object chains to trigger a series of malicious actions. This is akin to Return-
Oriented Programming but is known as Property-Oriented Programming [10].
Tools like those in [20, 1] automate finding such “gadgets” in common PHP li-
braries.

1 <?PHP
2 require("dep.php");
3 $data = unserialize($_GET['data']);
4 process_data($data);
5 /* rest of the code ... */ ?>

6 <?PHP # dep.php
7 class LogWriter {
8 public $filename;
9 public $log_content;
10 public function __destruct() { file_put_contents(
11 $this->filename, $this->log_content);}
12 function process_data($data) {
13 $data->value += 1; } ?>

Fig. 3: Code vulnerable to Unsafe Deserialization attacks

Contextual, State-Sensitive System Call Filtering for PHP 5

2.2 System Call Pervasiveness and Mimicry

All of these attacks arise from software defects. Ideally, flawless code would
prevent them, but in reality, security vulnerabilities keep surfacing in production
software. Consequently, we need a cross-application mitigation strategy that
does not rely on a “perfect” application. System call filtering can help, but to
be effective, it must be stringent enough to limit attackers’ options. Although
web applications legitimately require file and network operations during request
processing, these same capabilities can be exploited for malicious purposes.

A basic seccomp-style filter, for instance, lacks awareness of the specific PHP
application it protects; it must permit every system call reachable from the PHP
engine or its extensions. APIs like shell_exec pose a particular risk, since they
rely on powerful system calls (fork, exec), leaving wide avenues for arbitrary
code execution if an RCE vulnerability is discovered.

Recent work moves toward dynamic system call specifications, adapting the
filter to different execution stages (e.g., initialization vs. serving [13], or updated
each execve call [11]). In the PHP domain, Saphire [4] filters system calls on a
per-request basis. However, even a request-level scope can still be too broad: a
single request may involve multiple scripts, all of which share the same system
call set. While the filter permits system calls that are essential for legitimate
request components, it cannot distinguish these from identical system calls ini-
tiated by malicious code.

The attack examples we have described above illustrate the need for more
state-aware filters to prevent RCE attacks. In file inclusion or upload attacks, the
malicious code executes as a new, separate script within a request’s scope. For
injection and deserialization, the malicious code is executed within an existing
script. Effective defense mechanisms must, therefore, perceive the scope in which
a system call is issued and enforce a multi-state model, each aligning with a
specific execution context or phase of a request.

3 Design: Automata-Based Enforcement

We build an automaton for each PHP script to precisely capture valid system
call behavior. Figure 4 depicts how, in a trusted environment, we use two sen-
sors: one examines the compiled PHP binary and its libraries, and the other
inspects the application’s PHP source code. Based on their outputs, we generate
an automaton per script.

Once these automata are ready, we instrument the PHP executable so that
specific points in its execution trigger software interrupts, which then get handled
by the kernel. In production, when clients connect, these interrupts provide the
kernel with execution context, which is tracked via a stack that represents the
application’s state. Each system call is then checked against the relevant script
automaton and the current execution context. If the automaton permits the call
in that state, it is allowed; otherwise, it is rejected.

6 Lei and Shue

Kernel-Mode Enforcement Module
(Section 4.4)

Binary Sensor
(Section 4.1)

/usr/bin/php7.4
/usr/lib/php/calendar.so
/usr/lib/php/ctype.so
....
/usr/lib/php/xsl.so

Resolve System Calls

PHP Script Sensor
(Section 4.2)

/var/www/ia/add_event.php
/var/www/ia/calendar.php
/var/www/ia/config.php
...
/var/www/ia/view_logs.php

Automata of PHP Application
(Section 3.1)

Binary

Script
Construct

Model Built Prior to Production Operation
1. All operations in user space
2. Construction is prior to user exposure
3. Part of the Trusted Computing Base

Runtime Execution Sensor
(Section 4.3)

SystemTap
STAP_PROBE

Software Interrupt
with Function Context

Performance
Monitoring Unit

System Call
Filtering

Stack

Adds
new
item

System Call
in Model?

Allow Block

Yes No

System
Call

PHP
Executable

Send to kernel via a ioctl call

Context
Provider
Extesion

PHP API to
system calls

database

Extract PHP API from
PHP scripts

User Functions
to PHP API
database

Fig. 4: The left side of the diagram shows the instrumentation and model con-
struction that occurs prior to production operation. Through a set of sensors,
we build an automaton for each PHP script. During operation (depicted on the
right), we fuse that prior model with probe and system call data from the PHP
executable to filter system calls that deviate from the model.

3.1 Threat Model: Trusted Models and Kernel

Like other approaches that aim to constrain untrusted PHP server applications,
we rely on a trusted kernel for security decisions and assume we can examine
the PHP binary and scripts in a trusted environment to build our models.

We trust that the constructed model can be read by the kernel without
malicious alteration (e.g., from a trusted account on the server). We trust that
the kernel can safely load our constructed model and that we can instrument
the PHP executable before any client connections. Once a client connects, an
attacker may attempt corruption through system calls.

The defender’s goal is to block at least one necessary system call the attacker
needs to compromise the environment. The attacker’s goal is to corrupt the
environment through a set of system calls without any of the required system
calls being blocked by the defender. The attacker may utilize mimicry techniques
to operate using system calls that are likely to be allowed by the module as
desired, but they must eventually attempt to corrupt the environment to enact
the attack.

3.2 From a PHP Script to an Automaton

When an HTTP server (e.g., Nginx or Apache) receives a request (e.g., GET,
POST), it uses configuration data to determine which PHP script to run. We
call this the target script. During execution, the target script may include other
scripts—included scripts—which can likewise include additional scripts. Scripts

Contextual, State-Sensitive System Call Filtering for PHP 7

1 <?PHP # req1.php
2 if (isset($_GET['admin'])) {
3 include('admin/'. 'dep2.php'); }
4 else {
5 include('inc/'. 'dep3.php'); }
6 $code = $GET['file'];
7 eval($code);
8 /* rest of the code ... */ ?>

9 <?PHP # dep2.php
10 include(dep4.php);
11 logAdminAccess('access.log');
12 loadAdminTemplate();
13 /* rest of the code ... */ ?>

14 <?PHP # dep3.php
15 include(dep4.php);
16 loadVisitorTemplate();
17 /* rest of the code ... */ ?>

Fig. 5: The code on the left is an example of a vulnerable PHP application
consisting of two request handling scripts: Req1.php and Req2.php. The diagram
on the right shows how the program can be transformed into a DFA-based system
called filtering that leverages the application context in its decisions.

with global-scope code run immediately upon inclusion, while others only define
classes or functions.

We can represent the target script’s inclusion and execution of a dependent
script as a unique and identifiable execution stage. These execution stages can be
conceptualized as a state in a Deterministic Finite Automaton (DFA). Formally,
our DFA is defined as (Q,Σ, δ, q0, qN):

States Q. Each state qi represents an execution phase in the script. We
create a state for the global scope code of each script (including included
scripts) and additional states for specific function scopes. Each state qi is
associated with a system call allow-list Ai. This variable state granularity
definition enables flexible system call policies.
Alphabet Σ. This consists of both system call symbols (identified by their
kernel call numbers) and application-level events (e.g., entering a script,
exiting a script, or calling a function).
Transition Function δ. Given a state and an input event, it determines the
next state. System calls allowed in the current state lead to self-transitions

8 Lei and Shue

(e.g., δ(qi, sk) → qi for sk ∈ Ai) while events like script_entry or script_-
script_exit move execution to different states.
Initial State q0. The PHP engine is awaiting a request to process.
Final State qN . Reached when the script completes processing the request.

Figure 5 shows a sample automaton for a target script req1.php. Depending
on the admin parameter, dep2.php or dep3.php is included; each of these in turn
includes dep4.php. Afterward, req1.php reads a GET parameter (file) and calls
eval. The DFA starts in q0, transitions to a script-specific state (e.g., q1) upon
request start, then moves to new states when it includes other scripts or enters
function scopes. At each state, only the system calls listed in its allow-list are
permitted. The final state qN indicates the end of request handling.

The DFA approach naturally covers script-level system call specifications,
but it can also apply at the function level. As shown in Figure 5, we can enforce
a dedicated filter for security-critical functions like eval, effectively blocking any
system calls within those functions. Such granular policies help mitigate risks
without unduly restricting legitimate functionality.

A more detailed DFA yields tighter state-level allow-lists, further limiting
the system calls available to attackers. By confining powerful calls to fewer re-
gions of trusted code, the defender reduces the chance an attacker can exploit
vulnerabilities and successfully execute malicious operations.

3.3 Profiling: PHP APIs to System Calls

The automaton from the previous section can support fine-grained enforcement.
To construct such a model, we need to understand when system calls will nat-
urally occur in a PHP application. This is a two-step process, and this section
describes the first step: discovering the system calls, if any, associated with each
PHP API function.

The PHP API consists of internal PHP functions and methods, as well as ad-
ditional functions and methods provided by dynamically linked shared libraries.
These API implementations are written in lower-level languages and compiled
into executable and shared object files. To profile the system calls invoked by
each PHP API function or method, we analyze their implementations to deter-
mine the system calls they use. This analysis can be recursive since one API
function or method may invoke others, forming a control flow graph (CFG) with
inter-procedural calls. We annotate the CFG with any system calls discovered
during the analysis and store this information in a mapping database for quick
retrieval of system call details for each API function or method.

A significant challenge in this profiling process lies in resolving function refer-
ences. At the PHP engine level, function calls may target other functions where
the exact call target is initially unknown. This occurs when the call instruction
uses registers or memory locations to specify the target function. We tackle these
details in Section 4.1.

Contextual, State-Sensitive System Call Filtering for PHP 9

3.4 Profiling: User-defined Functions to APIs

The second step in mapping a PHP application to its system calls involves iden-
tifying all PHP API calls made by the application’s scripts. Unlike built-in APIs,
functions and methods defined within scripts are written in PHP and referred
to as user-defined functions. To capture all relevant PHP API calls, we recur-
sively analyze these user-defined functions, as they may invoke other user-defined
functions or PHP APIs.

To identify PHP API calls within scripts, we transform all application scripts
into control flow graphs (CFGs). Each basic block in a CFG consists of a sequence
of instructions represented as PHP Abstract Syntax Tree (AST) nodes. By an-
alyzing these AST nodes, we perform recursive graph traversal to discover all
referenced PHP internal APIs.

PHP can resolve function names and method functions dynamically, which
our profiling must support. For the method names, we adopt a static analysis
process that tries to backtrace a variable AST node’s definition or initial assign-
ment. This static analysis helps resolve a variable’s class type, which gives us
a full class_name::method_name association. We leverage dynamic profiling to
resolve the function names that remain unknown. When constructing the DFA,
we map these API invocations identified in each script with their underlying sys-
tem calls. We add those calls to the relevant nodes associated with each script’s
corresponding state.

3.5 Enforcement: Context and Filters

The existing seccomp module lacks the visibility needed to match a system call
to a specific scope in a process’s execution. The module only knows the process
ID that is associated with a system call. That module also statically associates a
system call filter with a process, making the filter insensitive to the state within
a process. In contrast, our design needs to keep the kernel enforcement module
in lockstep with the state of the user space program. This requires synchronized
context from the user space process to the kernel enforcement module.

Our approach uses a software interrupt to signal transitions. In addition,
we pass an application-level event’s specification to the kernel in advance. The
specification tells the enforcement module how to collect an event’s context data
when a corresponding interrupt handler is invoked. To trigger the interrupt at the
desired execution stage, we instrument a PHP extension to insert the interrupt’s
instruction. The PHP extension is developed to overwrite a set of PHP execution
hooks. Each hook is essentially the entry and exit point of a PHP application-
level event (e.g., a script entry or request start).

Before production usage, the filtering module registers callback functions that
the interrupt handler will invoke to collect user context. To get a system call,
we adopted the same process as seccomp, which tags the target process with a
flag to indicate the need to examine a system call when invoked.

10 Lei and Shue

4 Implementation: Sensors and CFGs

Our automata-based enforcement design requires profiling work and detailed
run-time sensors to operate. We now describe the details of implementing this
design. We start with the instrumentation of the PHP executables and libraries
and then describe the script-level instrumentation. We then describe our run-
time sensors and the kernel enforcement.

4.1 PHP API to System Calls

Our goal is to map each built-in PHP API function or method to its associated
system calls. The PHP engine can be built with various dynamically linked
libraries; in the instance (PHP 8.4) we used for evaluation, there were 89 such
libraries.

We implemented this mapping using the angr tool [23], specifically the CFG-
Fast API, to build control flow graphs (CFGs) for the PHP binary and its linked
libraries. These CFGs form the foundation of our binary analysis. First, we iden-
tify all function symbols defined in the PHP binary. We then locate basic blocks
in the CFG that end with call instructions, which can be classified as either
direct or indirect calls.

For direct calls, we resolve targets by directly identifying function definitions
or through entries in the process linkage table (PLT). PLT entries reference dy-
namically linked functions and are typically resolved at runtime via lazy binding,
where initial calls redirect to corresponding global offset table (GOT) entries.
Using the GOT entry address, we access the relocation table (.rela.plt) to
obtain the symbol type and an index into the dynamic symbol table (.dynsym).
With this index, we identify the function’s symbolic name, the owning library,
and ultimately its offset within the library’s symbol table. This method allows
us to map PHP API functions to their dynamically-linked implementations.

Indirect calls typically reference memory locations or registers, often involv-
ing function pointers or dynamic resolution (e.g., via dlsym). During the static
analysis phase, we label unresolved indirect calls and record their call site ad-
dresses. Then we use DynamoRIO [8] to instrument these calls to log the relative
addresses of the call site and target, along with the module path. Running PHP’s
test suite lets us correlate this data to identify the target function’s library and
offset.

These methods allow us to establish an initial mapping between PHP inter-
nal APIs and their callee functions. We then traverse each callee function’s CFG
to identify system calls. On x86_64 systems, system calls are invoked using the
syscall instruction, which stores the system call number in the eax register. If
the eax register is populated with an immediate value (e.g., mov eax, 0x01),
determining the system call number is straightforward. In cases where the eax
register is populated with a non-immediate value, we emulate the basic block con-
taining the syscall instruction—or the preceding block—to identify the stored
system call number. This information is then compiled into a database, mapping
PHP internal APIs to their implementing system calls.

Contextual, State-Sensitive System Call Filtering for PHP 11

This mapping between PHP internal APIs and their associated system calls
is independent of the API’s arguments. Although the actual system calls invoked
by a PHP API could vary depending on its parameters, our mapping captures
the complete set of possible system calls for each API.

4.2 User-defined Function CFGs to APIs

For PHP APIs, we examine each user-defined function to identify the internal
PHP APIs it invokes. Our static analysis starts by using php-cfg [17] to build
CFGs. We modify php-cfg to embed original source line numbers within the
SSA nodes, making it easy to integrate dynamic profiling data.

Our analysis starts by traversing the abstract syntax tree (AST) to detect
function and class definitions. We then inspect call-related AST nodes, extract-
ing names for direct function calls and static methods. For dynamic method
calls (e.g., $a->method()), we track each variable back to its last assignment to
resolve its class. Specifically, we handle class resolutions arising from new instruc-
tions, resolvable function returns, or global variables. However, PHP’s dynamic
typing and callback registration mechanism can still obscure function names or
class types. To resolve these, we employ a runtime profiler that logs user-defined
and internal calls along with their script locations. This dynamic profiling com-
plements our static analysis, resolving calls that cannot be determined statically.

In practice, we find that we can successfully resolve all calls in the PHP
applications we evaluated, including popular and complex PHP applications like
WordPress. In the event that the instrumentation fails to resolve a function, our
implementation records the failure to enable manual resolution.

4.3 SysTap Probes for Runtime Context

We developed a minimal PHP extension called context_collector that uses
SystemTap’s STAP_PROBE macro to help track runtime events without modifying
the core PHP engine.

This extension gathers runtime context by declaring pointers to memory
locations for storing event-related data. Each variable is wrapped with a STAP_-
PROBE macro from the SystemTap tool [22]. This macro inserts an inline NOP
instruction after the variable declaration and uses the .pushsection assembler
directive to record probe specifications—such as the NOP’s address and register
allocations—in the note section of the extension’s ELF binary. The ELF binary
is loaded as a shared library in the PHP engine.

The context_collector uses PHP’s built-in hooks to intercept the original
function handler. In our custom handler, we embed the STAP_PROBE macro to
collect context such as the request URL, script name, and function name. This
custom function handler still invokes the original handlers to maintain normal
application behavior.

At runtime, probes are activated using the perf_event_open system call,
which replaces the NOP instruction with a software interrupt (INT3). Probes

12 Lei and Shue

can be disabled by closing their file descriptors, which restores the original NOP
instruction. This design minimizes overhead when the PHP process does not
enforce system call filtering.

4.4 Kernel Enforcement: Automata Checks

To collect context information from the software interrupts enabled in Sec-
tion 4.3, we developed a kernel module that registers an interrupt handler for
our custom STAP_PROBE probes with the Performance Monitoring Unit (PMU).
The PMU manages the creation of the underlying probe structure, which invokes
the handler function. The kernel module’s header file is accessible to the con-
text_collector extension, ensuring consistent encoding and parsing of context
data between the two components.

The enforcement module processes two types of events: regular system calls
and application events triggered by software interrupts. For system calls, the
module queries the current system call profile to decide whether to allow or
deny the operation. For application events, the module advances the automaton
based on event attributes such as request URLs or script names.

To manage system call profiles, our implementation uses a fixed-size bitmap,
mapping each system call to a specific bit. We utilize the kernel’s DECLARE_-
BITMAP and bitmap_ APIs to create, set, and check the bitmap values. Each pro-
file requires ⌈NR_syscall/8⌉ bytes of memory, providing constant-time lookups
and fixed memory usage. This approach is more efficient than traditional sec-
comp, where each seccomp_rule_add invocation increases the BPF bytecode size
and results in linear growth for lookup times.

4.5 Artifacts Availability

The source code and scripts supporting this paper are publicly available at:
https://github.com/yunsenlei/phpsys_filter.

5 Security Evaluation

We aim to answer two research questions: To what extent can fine-grained model-
ing and enforcement constrain an RCE attack on the PHP platform? Does such
an approach negatively impact programs’ legitimate execution? To what extent
can the approach protect itself from attacks?

5.1 Prevention: Real-World Vulnerabilities

We tested our defense on two VMs running Nginx and PHP 7: one used our
approach, and the other used Saphire. We focused on PHP application vulnera-
bilities using WordPress CVE-based exploits.

Attackers have significant flexibility after injecting malicious code. Attack-
ers commonly use the system API to spawn new processes, enabling malicious

Contextual, State-Sensitive System Call Filtering for PHP 13

Table 1: Comparison of Saphire and our approach across RCE attacks from
reported WordPress CVEs.

CVE Saphire Our Approach

Process
Launch

CVE-2018-7602 Yes Yes
CVE-2018-7600 Yes Yes
CVE-2020-35729 Yes Yes
CVE-2023-39362 Yes Yes
CVE-2023-39147 Yes Yes

System Call
Mimicry

CVE-2018-12613 No Yes
CVE-2020-8644 No Yes
CVE-2021-26120 No Yes
CVE-2022-1329 No Yes
CVE-2023-28115 No Yes

actions beyond PHP’s scope. A more advanced approach, system call mimicry,
uses legitimate PHP APIs to replicate benign behavior at the system call level,
avoiding obvious malicious calls like sys_exec.

Table 1 compares these strategies (labeled Process Launch and System Call
Mimicry) across Saphire and our approach. Both block overt calls like sys_exec
(already excluded from their allow-lists). However, our context-aware state ma-
chine better detects mimicry attacks, addressing subtle threats more effectively.

Saphire uses a request-level system call profile and blocks attacks in two
scenarios: (1) the requested URL has an empty allow-list profile, automatically
rejecting any system calls or (2) the attack uses system calls not included in the
allow-list for that request. Scenario (1) applies to RCE attacks via file uploads
where the malicious script, such as uploaded_script.php, is accessed directly
through its URL. This script is unprofiled during the allow-listing phase, making
such attacks easy to detect. Our evaluation primarily focuses on Scenario (2).

For instance, RCE via file inclusion allows attackers to embed malicious
scripts into legitimate requests, exploiting permissive system call profiles. Us-
ing CVE-2022-1329 [19] as an example, a WordPress vulnerability permits non-
admin users to modify plugin source code. This enables attackers to execute
malicious scripts within any legitimate request. Our state machine model pre-
vents such attacks by detecting script inclusions that violate defined transition
rules and enforcing script-level system call profiles. This remains effective even
if uploaded scripts overwrite legitimate ones.

For RCE via injection and deserialization, malicious code alters existing script
behavior without introducing new scripts, often bypassing detection due to broad
permissions. For example, CVE-2021-26120 targets the Smarty PHP template
engine [26], exploiting a flaw in the Smarty_Internal_Template object that
grants unauthorized access to its parent Smarty object. This allows attackers
to overwrite template caches, executing malicious code when affected pages are
reloaded. Our state machine detects the attack by monitoring function-level
events, such as code evaluation and template rendering. This granularity distin-

14 Lei and Shue

guishes system calls triggered by these events, enabling our approach to detect
and prevent malicious actions that bypass traditional defenses.

5.2 Profile Correctness: Legitimate Use

In a system call allow-list, the filter flags calls outside the list as “positive” and
permitted calls as “negative.” The previous section measured how each approach
blocks unauthorized calls (“true positives”) and avoids letting them through
(“false negatives”). Here, we assess how they allow legitimate calls (“true neg-
atives”) and prevent mistaken blocks (“false positives”), indicating the profile’s
completeness. A complete profile correctly maps all valid system calls to the
application or its states, preventing false positives.

We compare the system calls extracted by our approach with those from
Confine [12], Sysfilter [6], and Saphire [4]. Confine automates extraction from
containers, so we use a single PHP container for comparison. Sysfilter extracts
calls from the program binary, while Saphire targets PHP’s internal APIs. Like
Saphire, we apply our filter only after PHP begins handling a request, using all
mapped PHP internal API calls.

Table 2: A comparison of the system calls extracted across four approaches for
the entire PHP engine. A lower number of allowed system calls may provide
fewer attack opportunities.

Approach Number of system calls extracted
Confine [12] 194
sysfilter [6] 159
Saphire [4] 123
Our work 119

In Table 2, we compare the number of system calls extracted by each ap-
proach. Confine and sysfilter generate more calls due to their broader analysis
scope (a container or entire PHP process). By contrast, Saphire and our method
attach filters when PHP handles a request, capturing only the calls triggered by
scripts. Saphire’s profile also includes additional epoll calls required between
requests. Our 119 calls form a superset of all potential calls a PHP script can
make before automaton-based modeling. In practice, scripts use fewer calls; for
example, WordPress scripts average 32 calls in their allow-list.

In addition to the comparison, we tested our profiles for false positives by
generating various request workloads targeting the application. A false positive
would incorrectly block a legitimate request, resulting in an error response. To
comprehensively assess this, we created multiple WordPress user accounts with
varying privilege levels, from administrator to regular users. We employed auto-
mated scripts to execute actions permitted by each user role: administrative tasks
included modifying site configurations, whereas normal user activities involved

Contextual, State-Sensitive System Call Filtering for PHP 15

viewing, commenting, and posting content. Using Xdebug [7] with php-code-
coverage [3], we measured code coverage. In our experiments with WordPress,
benign requests achieved a code coverage of 54%, and no system calls were mis-
takenly rejected.

5.3 Potential Attacks on the Sensors and Enforcement Systems

Our approach relies on system call traces and user-level context events, which
attackers may attempt to disrupt or compromise. With a trusted kernel threat
model, attackers have limited means to prevent the kernel from detecting system
calls. The threat model also assumes that effective attacks must use system calls,
making it infeasible for adversaries to avoid them entirely.

Prior work has highlighted concerns for system call interposition frame-
works, particularly regarding time-of-check/time-of-use (TOCTOU) issues. As
with seccomp, we avoid pointers and evaluate the system call arguments (e.g.,
an immediate number) directly [25]. This avoids the conditions needed for a
TOCTOU attack.

Attackers might also target mechanisms capturing user-level context events:
two potential evasion strategies [21] include 1) Memory Permission Alter-
ation: Changing Virtual Memory Area (VMA) flags to prevent the kernel’s
install_breakpoint function from operating. This can be done by modifying
ELF binaries or remapping process memory. 2) False Context Injection: Us-
ing ptrace to manipulate the execution of a PHP application and inject false
context data. Both strategies require root privileges, making them harder to
execute in practice.

Our evaluation, assuming an attacker with root privileges, confirmed the
feasibility of these evasion techniques. However, as these attacks require root
access, they are considered beyond the scope of this study. An attacker with
such privileges could execute most server-side operations without bypassing the
detection system.

6 Performance Evaluation

This section explores the research question: What performance cost does this
approach add to the PHP platform?

6.1 Experiment Setup

We consider four cases that use different filtering approaches:
1. No Filter: Base case: no system call filter used.
2. Request Aware: Our filtering approach is configured to sense the applica-
tion’s current request during runtime and filters system calls based on a per-
request profile (as in Saphire).
3. Script Aware: Our filtering approach is configured to sense the interleaving
of PHP script and filter system calls based on a per-script profile.

16 Lei and Shue

4. Saphire: This shows Saphire’s system call filtering approach. It uses seccomp
as the underlying enforcement module and filters system calls at the per-request
level.

We conduct experiments on Ubuntu 22.04 with 4 CPU cores at 2.4 GHz and 8
GB of RAM, using PHP 7.4 for Saphire compatibility. We select WordPress [30]
due to its popularity and realistic workloads, and use Apachebench to generate
requests with varying concurrency and URL patterns. Our performance metric
is the request response time.

6.2 Single URL Workload

In Saphire, when users concurrently access a single URL, the system call profile
for a PHP worker is established during the first request. This profile remains
unchanged for subsequent requests, leading to overhead primarily driven by the
operations of the underlying seccomp module. Although the request is unchanged
in this scenario, our approach still dynamically updates the system call profile
for each incoming request or script event. We then apply this updated profile to
enforce the appropriate system calls.

Table 3: Average request response time (in milliseconds)

Filtering
Approach

Concurrent
Users 10 25 50 100

No Filter 248 646 1302 2631
Request-Aware 252 657 1318 2667
Script-Aware 252 659 1339 2724
Saphire 260 677 1371 2765

Table 3 shows the request response time. Our request-aware filtering approach
can generally keep up with the baseline across different concurrency levels, which
only add 1% of overhead on average. Saphire adds around 5% overhead.

6.3 Complex Workload

When multiple users simultaneously request different URLs, each request must
receive the correct system call profile. Our method automatically switches pro-
files at runtime using script entry/exit events. In contrast, Saphire must either
restart the PHP process or dedicate separate worker pools to different request
URLs. This can lead to resource imbalances. When configuring pools of PHP
workers, a defender with Saphire needs to consider the size of the pool. Each
script that can be requested must have a pool associated with it. It can be chal-
lenging for the defender to size the pool to optimally match the dynamics of user

Contextual, State-Sensitive System Call Filtering for PHP 17

access patterns. In the worst-case scenarios, a small pool of workers is constantly
active while large portions of workers in a different pool are idle and underuti-
lized. For instance, if 50 concurrent users hit two URLs in a 1:4 ratio, one pool
may be overused while another remains idle, slowing overall performance. Our
approach instead loads all possible profiles into a single enforcement module,
avoiding such inefficiencies.

7 Related Work

The risks of remote code execution (RCE) are well-recognized, and the research
community has made significant efforts to understand PHP applications and mit-
igate these risks. We broadly classify related work into three areas: profiling and
enforcing models for PHP applications, restricting system calls in applications,
and uncovering vulnerabilities in PHP applications.

7.1 Modeling PHP Applications for Protection

Static and dynamic analyses, combined with runtime protection, are often used
to detect or prevent RCE attacks. These methods require runtime behavior to
adhere to a pre-constructed model. ZENIDS [14] exemplifies this approach by
recording a PHP application’s behavior with benign user inputs and building an
execution profile using an inter-procedural control flow graph. While ZENIDS
captures informative user-level context, such as request data, it lacks insight
into system-level interactions, which are the primary focus of attackers in RCE
scenarios. Saphire [4] takes a different approach by extracting a request-level sys-
tem call profile for PHP applications to prevent RCE attacks. Saphire is effective
when malicious actions include system calls not covered by a request-level pro-
file. However, its coarse-grained approach struggles to handle more subtle attack
strategies that require fine-grained detection.

Our work uses a similar approach to these modeling efforts, focusing on fine-
grained restrictions for system calls during program execution. By integrating
detailed runtime state sensing and a custom enforcement module, we leverage
this context to constrain system calls more effectively.

7.2 Restricting System Calls in Applications

System calls mediate unprivileged user-space access to privileged system re-
sources. Wagner and Dean [29] introduced four modeling approaches: (1) a basic
allow-list, as in seccomp, which must include all calls a program might make;
(2) a call graph model, incorporating control flow; (3) an abstract stack model;
and (4) a digraph model capturing transitions between consecutive calls.

Most existing work targets general programs rather than PHP. For instance,
SFIP [5] enforces digraph-based transitions and tracks system call origins (in-
struction addresses). However, this lacks sufficient context for PHP’s interpreter-
based calls, which often stem from a single internal API. Our approach tracks

18 Lei and Shue

which specific PHP function or script initiates a system call, allowing more pre-
cise checks. Similarly, temporal system call specialization [13] refines profiles
based on whether a server is initializing or serving requests. Other recent ef-
forts use eBPF for programmable system call security [18], but still lack the
fine-grained, script-level state awareness our method provides. In contrast, we
automatically derive a detailed automaton for each PHP script and apply state-
sensitive filters without manual labeling of program stages.

7.3 Discovering PHP Script Vulnerabilities

Prior work has identified RCE as a key threat in PHP applications. Huang et al.
introduced WebSSAIR [16] to detect insecure information flows enabling script
inclusion from user input. UChecker [15] focuses on file upload RCE by modeling
and verifying exploit conditions via an SMT solver. Backes et al. [2] use a code
property graph (CPG) that combines abstract syntax trees, control flows, and
dependencies. By querying the CPG for patterns such as tainted inputs reaching
sink functions, developers can detect vulnerabilities before deployment.

Our work is compatible with these prior efforts. The efforts in this section
can be used to detect and correct the underlying errors in software. Until those
vulnerabilities are identified and patched, our work can decrease the likelihood
that an adversary can successfully exploit these vulnerabilities to implement an
attack. Our approach can offer these benefits because, in contrast to the work
in this section that aims to identify the software vulnerabilities, our script-level
approach aims to detect and block system calls that do not match existing
profiles. For more detailed sensitivity, developers can identify specific functions
warranting heightened resolution (e.g., eval, template functions).

8 Discussion and Concluding Remarks

Applicability to other languages: The profiling approach is specifically de-
signed for the PHP language for serving web applications. This allows us to
fully explore any practical challenges of implementing the approach, such as
unintended filtering or performance issues. However, our instrumentation and
enforcement techniques generalize beyond PHP. In particular, we use the perf_-
event_open interface, which leverages Linux uprobe events. Many other frame-
works (e.g., Node.js, Python) provide similar hooks at the HTTP request level,
function entries, or script imports, making it straightforward to adopt our ap-
proach for other languages.

PHP Just-in-Time Compilation: PHP 8 introduced Just-in-Time (JIT)
compilation as part of the Opcache extension. However, JIT-compiled code does
not integrate seamlessly with runtime profiling tools that rely on intercepting
PHP function calls. To address this limitation, third-party developers have cre-
ated new tracing APIs [9]. In PHP 8.4, JIT compilation is not enabled by default,
reducing its prevalence in most configurations. Our instrumentation extension
remains compatible with the latest version of PHP when JIT is disabled.

Contextual, State-Sensitive System Call Filtering for PHP 19

Conclusion: Our work has explored a practical security problem in PHP
applications. We have designed an automata-based approach that enables de-
tailed, state-based filtering. In evaluation, we have found it is more sensitive and
can prevent attacks that go unnoticed by current state-of-the-art techniques. We
found the performance overheads for the approach are low, enabling practical
deployment.

References

1. Ambionics Security: PHPGGC: PHP Generic Gadget Chains. https://github.c
om/ambionics/phpggc (2023), gitHub repository

2. Backes, M., Rieck, K., Skoruppa, M., Stock, B., Yamaguchi, F.: Efficient
and flexible discovery of php application vulnerabilities. In: 2017 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). pp. 334–349 (2017).
https://doi.org/10.1109/EuroSP.2017.14

3. Bergmann, S.: php-code-coverage: Library for collecting test coverage statistics for
php code. https://github.com/sebastianbergmann/php-code-coverage (2023),
gitHub repository

4. Bulekov, A., Jahanshahi, R., Egele, M.: Saphire: Sandboxing PHP applica-
tions with tailored system call allowlists. In: 30th USENIX Security Symposium
(USENIX Security 21). pp. 2881–2898. USENIX Association (Aug 2021)

5. Canella, C., Dorn, S., Gruss, D., Schwarz, M.: Sfip: Coarse-grained syscall-flow-
integrity protection in modern systems (2022)

6. DeMarinis, N., Williams-King, K., Jin, D., Fonseca, R., Kemerlis, V.P.: sysfilter:
Automated System Call Filtering for Commodity Software. In: International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID) (2020)

7. Derick Rethans: Xdebug: Debugger and profiler tool for php. https://xdebug.o
rg/ (2023), available: Xdebug Official Website

8. DynamoRIO Contributors: DynamoRIO: Dynamic Instrumentation Tool Platform.
https://dynamorio.org/, accessed: 2023-12-17

9. Engineering, D.: PHP 8 observability (2021), https://www.datadoghq.com/blog
/engineering/php-8-observability-baked-right-in/, accessed: 2024-12-01

10. Esser, S.: Utilizing code reuse or return oriented programming in php application
exploits. In: Proceedings of the Black Hat Conference. Las Vegas, NV, USA (2010)

11. Gaidis, A.J., Atlidakis, V., Kemerlis, V.P.: Sysxchg: Refining privilege with adap-
tive system call filters. In: Conference on Computer and Communications Se-
curity. p. 1964–1978. CCS ’23, Association for Computing Machinery (2023).
https://doi.org/10.1145/3576915.3623137

12. Ghavamnia, S., Palit, T., Benameur, A., Polychronakis, M.: Confine: Automated
system call policy generation for container attack surface reduction. In: 23rd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID
2020). pp. 443–458. USENIX Association, San Sebastian (Oct 2020), https:
//www.usenix.org/conference/raid2020/presentation/ghavanmnia

13. Ghavamnia, S., Palit, T., Mishra, S., Polychronakis, M.: Temporal system call
specialization for attack surface reduction. In: 29th USENIX Security Symposium
(USENIX Security 20). pp. 1749–1766. USENIX Association (Aug 2020), https:
//www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia

14. Hawkins, B., Demsky, B.: Zenids: Introspective intrusion detection for php applica-
tions. In: 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). pp. 232–243 (2017). https://doi.org/10.1109/ICSE.2017.29

20 Lei and Shue

15. Huang, J., Li, Y., Zhang, J., Dai, R.: Uchecker: Automatically detecting php-
based unrestricted file upload vulnerabilities. In: 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). pp. 581–
592 (2019). https://doi.org/10.1109/DSN.2019.00064

16. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web
application code by static analysis and runtime protection. In: Proceedings of the
International Conference on World Wide Web. p. 40–52. WWW ’04, ACM, New
York, NY, USA (2004). https://doi.org/10.1145/988672.988679

17. ircmaxell: php-cfg: A library to build and work with a control flow graph in php.
https://github.com/ircmaxell/php-cfg (2023), accessed: 19-Nov-2023

18. Jia, J., Zhu, Y., Williams, D., Arcangeli, A., Canella, C., Franke, H., Feldman-
Fitzthum, T., Skarlatos, D., Gruss, D., Xu, T.: Programmable system call security
with ebpf (2023), https://arxiv.org/abs/2302.10366

19. National Vulnerability Database (NVD): Cve-2022-1329 detail: Elementor website
builder plugin for wordpress vulnerability. https://nvd.nist.gov/vuln/detail
/CVE-2022-1329 (Apr 2022), accessed: 19-Nov-2023

20. Park, S., Kim, D., Jana, S., Son, S.: FUGIO: Automatic exploit generation for PHP
object injection vulnerabilities. In: 31st USENIX Security Symposium (USENIX
Security 22). pp. 197–214. USENIX Association, Boston, MA (Aug 2022), https://
www.usenix.org/conference/usenixsecurity22/presentation/park-sunnyeo

21. Quarkslab: Defeating ebpf uprobe monitoring. https://blog.quarkslab.com/def
eating-ebpf-uprobe-monitoring.html (2024), https://blog.quarkslab.com/d
efeating-ebpf-uprobe-monitoring.html, accessed: 2025-04-20

22. Red Hat, IBM, Intel: SystemTap Language Reference (2023), https://lrita.gi
thub.io/images/posts/systemtap/langref.pdf, accessed: 2024-02-05

23. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In: IEEE Symposium on Security
and Privacy (2016)

24. Symfony: Home - twig - the flexible, fast, and secure php template engine. https:
//twig.symfony.com/, accessed: 19-Nov-2023

25. The Linux Kernel Documentation: Seccomp BPF (SECure COMPuting with fil-
ters) (2024), https://docs.kernel.org/userspace-api/seccomp_filter.html,
accessed: 2024-07-07

26. The Smarty Project Contributors: Smarty: A template engine for php. https:
//www.smarty.net/ (2023), accessed: 2024-02-07

27. W3Techs: Usage statistics and market share of php for websites. https://w3tech
s.com/technologies/details/pl-php (2024), accessed: 2-Dec-2024

28. W3Techs: Usage statistics and market share of wordpress. https://w3techs.com/
technologies/details/cm-wordpress (2024), accessed: 2-Dec-2024

29. Wagner, D., Dean, R.: Intrusion detection via static analysis. In: Proceedings
2001 IEEE Symposium on Security and Privacy. S&P 2001. pp. 156–168 (2001).
https://doi.org/10.1109/SECPRI.2001.924296

30. WordPress: Blog tool, publishing platform, and cms – wordpress.org. https://wo
rdpress.org (2023), accessed: 19-Nov-2023

