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Abstract. To achieve economies of scale, popular Internet destinations
concurrently serve hundreds or thousands of users on shared physical
infrastructure. This resource sharing enables attacks that misuse per-
missions and affect other users. Our work uses containerization to create
“single-use servers” which are dynamically instantiated and tailored for
each user’s permissions. This isolates users and eliminates attacker per-
sistence. Further, it simplifies analysis, allowing the fusion of logs to help
defenders localize vulnerabilities associated with security incidents. We
thus mitigate attacks and convert them into debugging traces to aid re-
mediation. We evaluate the approach using three systems, including the
popular WordPress content management system. It eliminates attacker
persistence, propagation, and permission misuse. It has low CPU and
latency costs and requires linear memory consumption, which we reduce
with a customized page merging technique.

1 Introduction

Internet servers are designed to handle many clients simultaneously. These servers
use multiple processes or threads of execution to balance requests and make effec-
tive use of computing resources. Unfortunately, this model intermingles process-
ing from many clients within a single execution context. When these servers have
security defects, attackers can exploit the vulnerabilities to gain unauthorized
access, modify the server’s content, and harm other current or future users [31].

Exacerbating this problem, when a server accesses other resources, such as
databases, it is often configured with a super-set of all privileges associated
with the server’s users. This can lead to “confused deputy” attacks [13], wherein
an adversary exploits a vulnerability to cause an application server to misuse
its authority when interacting with a resource provider. SQL injection attacks,
which are estimated to be used in nearly two-thirds of all web attacks [3], are a
common form of confused deputy attack.

In this work, we propose a “single-user server” model where each incoming
client gets directed to its own isolated container. We explore a set of research
questions: How can this single-use server model limit attack propagation, persis-
tence, and privilege escalation? Can containerization provide low enough over-
heads to support a large number of concurrent users? To what extent can we
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improve the resource consumption of the approach? What impact can the single-
use server model have on attack reconstruction and analysis?

The first two research questions lead to novel contributions in container man-
agement and access control. Our single-use server model places every application
server in its own Docker container with permissions tailored to the associated
end user. When a client first connects to a server, it has anonymous user priv-
ileges and tightly constrained access to backend resources, such as a database.
When a user authenticates, our approach automatically alters the permissions
associated with the container to match the privileges associated with the authen-
ticated user. Since the permissions for each application server and container are
tailored, they do not have the elevated privileges necessary to enact a confused
deputy attack. The container approach provides isolation and the destruction of
a container upon the client’s disconnection eliminates attacker persistence.

The third research question leads to novel contributions to memory dedu-
plication. Our approach, called Focused Kernel Same-page Merging (FKSM),
actively merges two container’s processes if they run the same programs.

The final research question leads to novel contributions in attack analysis and
localization. To detect access violations, we create monitoring infrastructure for
communication between clients and the application server as well as between
the application server and any back-end resources. This monitoring also enables
forensic reconstruction of attacks. In this work, we:
– Design a Single-Use Server (SuS) approach that includes the compo-

nents needed for authentication, container management, and the collection
of forensics for arbitrary applications (Section 3). Our design improves secu-
rity by cleanly separating the untrusted execution environments for individual
users from each other and from the control plane that routes, authorizes, and
monitors requests.

– Implement a Single-Use Web Server using a novel combination of
lightweight containers and network middleboxes to support three web ap-
plication services, including the popular WordPress platform (Section 4).
Our implementation demonstrates that applications can be ported with min-
imal codebase modifications. We also enable fine-grained permissions to be
safely enforced by proxy middleboxes. We further develop a memory dedu-
plication approach that saves 26% of memory for each container while the
merge time is only a fraction of the state-of-the-art UKSM [40] approach.

– Evaluate the security and performance of our SuS implementation
(Sections 5 and 6). We find the containerization approach prevents several
exploits against vulnerable versions of WordPress without requiring applica-
tion software patches. It incurs less than 5% CPU overhead, needs only 2GB
of RAM to run 100 concurrent containers, and shows only a 20% increase
in response time when running 100 concurrent containers.

– Reconstruct attacker steps by leveraging the per-user logging enabled
by SuS (Section 5.2). When exploring a known CVE attack on our SuS
WordPress system, we find that a back-tracing workflow can quickly localize
the search space for debugging and remediation, reducing the search space
from thousands of files to only two functions.
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2 Background and Related Work

In this section, we review work in the most related areas and discuss how our
approach is different from various perspectives.
Security through Isolation: Parno et al. proposed CLAMP to protect LAMP-
stack websites [27]. CLAMP assigns individual users to isolated VMs running
copies of the web server code. Users can upgrade their VM’s permissions via
a separate, trusted authentication portal. Unfortunately, CLAMP provides only
42% of the performance of native operations. The CLAMP authors acknowledged
significant impediments to the practical deployment of such a system and did
not complete an analysis of VM start-up on normal operation, citing the signifi-
cant overhead of VM start-up and limitations of delta virtualization. In contrast,
in our work, we designed and implemented customized memory improvements
and performed an end-to-end evaluation, including on-demand server generation.
Our result shows that SuS incurs modest overheads and achieves greater scala-
bility. Taylor [36] introduces a software-defined networking (SDN) controller to
demultiplex users’ traffic and guide their packets to isolated VMs. The Taylor
work lacks the resource restriction component present in CLAMP, but adds at-
tack attribution. Our SuS model improves performance and scalability; further,
it uses log fusion to reconstruct attack steps, which was not previously explored.

Radiatus, by Cheng et al. [6], builds off CLAMP and introduces more strin-
gent security measures. The result of such a design is a web development frame-
work that requires developers to use their API to create an application. Porting
an existing application to use Radiatus thus requires re-implementation. Our
SuS model aims to provide strong security isolation and can be deployed on
widely used web applications like WordPress and HotCRP with minimal code
base modification (≤ 50 lines of code).
Lighter Weight Virtualization: Some Internet services use lightweight virtu-
alization like containers to facilitate fast deployment, fine-grained scaling, and
component failure isolation [34, 35]. Prior work has also sought ways to reduce
the resource consumption and cost of starting and running applications with
these technologies [15, 2]. Serverless computing platforms benefit from these
lightweight virtualization technologies. SuS is different from the serverless model.
Our work takes a user-based view of the application and constrains the user’s
behavior based on the functions and resources the user is supposed to access.
We focus on security and forensics aspects.
Memory Deduplication: Kernel Same-page Merging (KSM) on Linux allows
applications to share identical pages by comparing the page content. Previous
work improves KSM in terms of scanning speed and resource utilization [33,
11, 41]. UKSM [40] improves KSM by prioritizing statically-duplicated memory
regions and reducing computational cost through Adaptive Partial Hashing [12].
Our merging approach differs from these existing works in the way duplicate
pages are identified. We compare our FKSM with UKSM on deduplication speed
and effectiveness to show the benefit of active and strategic scanning.
Forensic Analysis of Exploits: Data records can help defenders understand,
analyze and replay past events that are related to attacks. Dunlap et al. [8]
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proposed Revirt, which uses checkpoint logging and roll-forward recovery to
replay entire attack events. To facilitate the human understanding of collected
forensics, researchers have proposed different approaches [10, 7, 32] to visualize
the data. In our work, we focus on constructing execution traces in an informed
way that leverages per-user isolation, facilitating visualization integration.

3 An Untrusted Application Server Design
Application servers are complex, making them ripe for attack. We create mon-
itoring and protection components so that attacks become valuable learning
opportunities for defenders to improve software without negative outcomes.

3.1 Threat Model

The SuS model is a server-side defense system aimed at preventing adversaries 1)
from successfully executing any backend request above their intended privilege
level and 2) from making changes to server files that would enable them to attack
other users. We assume that adversaries can only access the server program’s
host machine via network communication and that they will attempt exploits
via the packet payloads in the server program’s communication protocol.

We assume the application server within a single-use container can be ex-
ploited and adversary-controlled. The adversary may arbitrarily control one or
more clients and containers. We assume that the container facilitates access to
information stored in one or more backend resources (e.g., in databases or file
shares) but that it otherwise only stores per-user session state. For the defender,
we assume that they leverage the SuS capability to configure the levels of access
based on their applications and different user roles. Such configuration exer-
cises a least-privilege principle, helping defenders mitigate exploitation against
unknown vulnerabilities.

We exclude attacks that cause privileged users to misuse their legitimate
privileges, such as social engineering or cross-site request forgery. Similarly, we
exclude attacks against our trusted computing base (TCB), which includes the
operating system, the back-end resource servers, and the SuS infrastructure com-
ponents themselves (such as middleboxes and container managers). While we
evaluate container scalability and performance, we exclude flooding-based denial-
of-service attacks and assume defenders employ current best practices. While a
trusted kernel is a common threat model assumption, and one we use as well, we
recognize that efforts to escape a container and elevate privileges are possible.
Given the importance of kernels and containers, we anticipate other continued
efforts to improve and protect them. The scope of the SuS approach is to explore
the feasibility of using lightweight virtualization to run server instances that are
tailored to a single user. Our approach could be used with other lightweight
isolation and virtualization technologies as needed.

3.2 Design Components

Our SuS model assumes that each server instance will support only a single client,
although this could be extended to enable a container to serve a group of related
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users, albeit with no protection between them. We will place each application
server in a separate container and examine each container for indications of
compromise (IOCs) that merit further analysis. Any container that lacks an IOC
is deleted once it is no longer needed by a client. Figure 1 shows the following
SuS model components. We now describe these components in detail.
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Fig. 1: Design overview of Single-use Server architecture. The middleboxes, au-
thentication, and management components coordinate to provision SuS contain-
ers and assign them to clients, provide a means of upgrading privileges to the
backend resource, and contain and analyze exploited application servers.

3.3 Application Containers
We place each application server in its own isolated execution container. These
containers are instantiated by cloning an existing server. Before the container
interacts with a client, we consider the container to be “pristine.” While it is pris-
tine, the container can be trusted since it is unreachable by an adversary. Once a
container interacts with a client, we consider the container “contaminated” and
inherently untrustworthy.

3.4 Container Management
The centralized Container Manager mostly performs management tasks includ-
ing server instance configuration, container provisioning, reclamation, or freezing
(if an attack is detected). Because the Container Manager knows which pair of
processes are created from the same resource, it also communicates with the
FKSM kernel module to initiate page deduplication.

3.5 Authentication Container and Permissions
Many application servers must identify the user associated with a given client.
In our model, we cannot rely on the untrusted application to accurately report
the client’s authentication status. Instead, all user authentication is handled by
a trusted Authentication Container, which has a minimal code base that can be
more easily verified and protected. This separation of roles is somewhat similar
to the Kerberos authentication model [17].
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The Container Manager communicates with the Authentication Container to
adjust container permissions. If the Authentication Container confirms a client’s
identity, the Container Manager increases privileges in the SuS-to-backend mid-
dlebox and backend infrastructure to reflect the new user permissions. In essence,
the SuS container gains only the privileges associated with the connected user.

Our privilege model differs from traditional web server configurations. An
application container does not need a superset of users privileges during the
configuration (e.g., WordPress installation recommends granting all privileges
in the WordPress database). Such a configuration has the potential risk of let-
ting adversaries ultimately control the entire WordPress database in case of an
exploited WordPress instance. In our SuS model, the same exploitation is limited
to the database privileges of the account associated with the exploited container.
In other words, the adversary may issue queries, but the queries will only suc-
ceed if they can be performed within the limited permissions associated with the
container. We treat database server privilege errors as evidence of compromise.

3.6 Client-Side Demultiplexing and Forwarding
Our Client-to-SuS middlebox acts as a load balancer that demultiplexes clients
and directs each to a separate SuS container and as a proxy that handles all
encryption functionality. This keeps cryptographic keys out of the untrusted
SuS container environment while letting the middlebox vet unencrypted data.
It controls access and blocks client communication in the event of an access
violation. It logs network traffic for forensic reconstruction. This allows defenders
to pinpoint the client messages that preceded the violation, potentially revealing
the vulnerability exploited in the SuS container.

3.7 Guarding Backend Resources

The narrowly-tailored permissions the Container Manager configures for back-
end resources solve many Confused Deputy attacks. However, a SuS-to-backend
middlebox provides fine-grained restrictions that some backend implementations
cannot support. For example, an authenticated user should have UPDATE priv-
ileges to the application’s users table so the user can change the associated
email address or password. However, that privilege should be limited to certain
rows, such as the rows for which the column USERID matches the authenticated
user’s identifier. The SuS-to-backend middlebox must be protocol-aware to per-
form resource access control effectively. We designed the system to easily swap
between backend modules for protocols such as SQL and NFS. The modules in
the middlebox must implement specific API functions that (1) parse and condi-
tionally modify resource requests and (2) detect permission violations in request
responses. The middlebox also observes any errors or responses from the backend
resource and informs the Container Manager to act accordingly. The middlebox
logs the communication for incident analysis of any attacks and it prevents access
between potentially compromised SuS containers and the backend resources.

3.8 Constructing Execution Events
The client-side and backend-side traffic are logged by the corresponding mid-
dleboxes and associated with users’ identities. With our design, this traffic is
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automatically separated to represent a single user’s interaction with the service.
While helpful, the network traffic alone is insufficient because it lacks insight into
the user’s interaction with the application. In Section 4.6, we describe the server
profiling component that provides such detail. Since SuS logs the per-user server
instances, it has a significant advantage in fusing and reconstructing logged data
to facilitate the understanding of the provenance and the impact of an incident.
We discuss the implementation of log integration in Section 4.7.

4 Implementation
To provide concrete examples and show evidence of generalization of our SuS
design, we create implementations using three different Web applications: 1)
WordPress [39], a popular Internet content management system estimated to
be used in over 35% of all websites on the Internet [37]; 2) HotCRP [14], a
system for managing paper submission and peer reviews for conferences; and 3)
an anonymized learning management system (LMS) used in our organization for
the administration and delivery of class materials. For simplicity, we focus on
WordPress and simply describe where HotCRP and our LMS applications differ.

All three applications require a web server, a PHP runtime, and a database
server. Since PHP is used in over 78% of popular websites [38], we focus on PHP
web applications. We use the popular Docker container system to implement our
containers. We test multiple versions of the WordPress software to measure the
impact of the single-use server approach on attacks against versions of Word-
Press with known vulnerabilities. In the remainder of this section, we describe
the implementation details of our SuS containers, the Container Manager, the
Authentication Container, the middleboxes, and our protocols.

4.1 Container Configuration
We build a Docker container image through a “Dockerfile” for each application we
need to protect in a SuS container. The application container is configured under
a private network which is created through Docker’s command line interface. We
assign each container a unique IP and expose the necessary ports.

Under their standard deployment, most web applications must be configured
to communicate external components such as server applications and resource
databases. The SuS model separates server instances but does not fundamentally
interrupt the data flow. Therefore, a similar configuration effort is required.
Using WordPress, HotCRP, and our LMS as case studies, we find that only
minor modifications are required and mainly involve the following aspects:

Authentication: The authentication logic must relocate from the untrusted
container into the Authentication Container. For all three applications, we rewrite
the login URL and direct the user to their assigned SuS container after successful
authentication. For HotCRP, users must log in for most features and be directed
to a pristine container. Our LMS application was configured as a relying party as-
sociated with a single-sign-on identity provider. Therefore, the redirection URL
is encoded with the parsed SSO response.

Shared Resources: The SuS-to-Backend Middlebox (Section 4.5) can sup-
port backend resources such as databases. Some services, like HotCRP, use a
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mail server for message transmission. This can be handled via an external server
or a shared service (which itself could be in the SuS system). For simplicity, we
simply use a mail server on the container host in our experiments.

4.2 Container Manager
The Container Manager creates a thread to maintain a pool of available contain-
ers for new clients. Our pooling strategy hides latency by ensuring a container is
ready when a client arrives. When stopped, the Container Manager terminates
all threads and containers and removes container credentials from the database.
We use a startup script as the entry point that setup control arguments for
the rest of the container processes. After parameter configuration, the script
then fires up the web application. The scripts receive these arguments from the
Container Manager as part of the container startup process. An internal control
manager handles the generation of each container’s control arguments (including
IP address, database credential with minimal privilege, PHP settings, etc.).

Optimizing memory usage for SuS is important. Our memory deduplicator
is implemented as a kernel module in Linux and a userspace component which
is part of the Container Manager. The communication between the kernel and
userspace is achieved through a ioctl call in which the manager passes a pair
of in-container process IDs that requires merging. Container processes’ IDs are
obtained by intercepting the Docker event interface and examining the corre-
sponding cgroup directory on a container startup event. After receiving the pro-
cess IDs, our kernel module’s callback function scans the processes’ pages. Before
merging, we compute and store page metadata in a two-layered hashmap. This
structure combines xxHash checksums with Blake2b checksums for each page to
perform faster merge comparisons. The first layer is indexed off xxHash’s first
bytes, and the second layer stores the full xxHash and points to a red-black tree
indexed off the Blake2b hash. The mergeable pages between two processes are
first maintained in a link list and then merged using existing kernel functions.

4.3 Authentication Container
The Authentication Container operates a web page that prompts clients for
credentials. Upon receiving the user’s credentials, it tries to validate them and
notifies the Container Manager whether the client has a new role. The Container
Manager then accesses the database and appropriately upgrades the privileges
of the account associated with the client’s assigned SuS container. The Au-
thentication Container finally redirects the user back to a specific URL on the
appropriate SuS container. That URL encodes data that allows the script to set
authentication cookies to set the user identity in the application.

This authentication model requires that the two redirect messages be cryp-
tographically validated. We encode nonces and a message authentication code
in the redirect messages to ensure the authenticity of all passed parameters. We
derive the keys using information preconfigured by the Container Manager. This
approach allows the Authentication Container to statelessly validate messages
from any SuS container without requiring an interaction with the Container
Manager. We omit the details of these messages for brevity.
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4.4 Client-to-SuS Middlebox
The main task for the client-to-SuS container middlebox is determining the ap-
propriate container for each client. We embed the user information in an HTTP
cookie called SUS_DEMULTIPLEX_COOKIE to perform the client demultiplexing.
We implement the middlebox using Python’s asnycio library and use its API
functions to handle the TLS termination. The middlebox can thus parse the
HTTP request to extract the user information within the Cookie header. After
parsing the HTTP header, it updates an internal mapping structure with the
relation between the user information and its assigned SuS container IP. The
validity of the SUS_DEMULTIPLEX_COOKIE determines whether a new container
request is needed. After a SuS container is purged for inactivity, the middlebox
removes the corresponding internal mapping. Upon receiving the first response
from the SuS container, the middlebox rewrites the HTTP response in a Set-
Cookie field with appropriate cookie value and expiration to ensure the client
sends subsequent requests with the cookie value. It then encrypts the response
message and sends it back to the client.

We also implement a second cookie named SUS_LOG_COOKIE, which is used
only on the server side to uniquely name each request for logging and event
reconstruction purposes (See Section 4.6 and Section 4.7 ).
4.5 SuS-to-Backend Middlebox
The SuS architecture ensures that the database can enforce the table-level con-
straint by itself. Fine-grained query scoping requires configuration similar to
prior work [16]. In our work, we create a proxy middlebox between the SuS
containers and the MySQL database. As described in Section 3.7, one task that
middlebox performs is query scoping, which limits table access to certain rows.
We define a ResourceRestrictTable that maps the tuple (Role, Resource, Access
Type) to an Access Predicate. An Access Predicate is an extra limitation that
can be applied to the query by appending it to the query’s WHERE clause or an
assertion to check the presence of a specific row selector in the WHERE clause. The
middlebox also maintains a UserContext dictionary that maps container IP to
user information (e.g., user_id, role). For each database query, the middlebox
first retrieves the user’s role based on the container IP. Then it extracts the re-
source (table) and access type (e.g., SELECT, INSERT). The middlebox retrieves
the Access Predicate using the above three values. An access predicate may have
a variable, as in the case ID = :user_id. In this case, the middlebox inserts the
corresponding value from the UserContext dictionary entry before appending it
to the query. The modified query is then sent to the MySQL database, and the
response is forwarded to the container from which the query originated as usual.
This silently restricts the data available to each user. The middlebox monitors
and logs MySQL server responses for permission violations and regards any such
error messages as an indication that the container has been compromised. Upon
detecting such an error, the middlebox issues a request to freeze the container.

4.6 Tracing Application Execution
We implement a PHP extension that leverages request hooks to mark the start
and end of a request and log important contexts such as URLs and cookies. The
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SUS_LOG_COOKIE cookie (inserted by the Client-to-SuS middlebox as mentioned
in Section 4.4) is extracted at the request_start hook function. In addition to
the request information, we also leverage the function execution hook to record
function execution information, including the function name, the function call
site (the file and line at which the function is called), and the function’s pa-
rameter values. In this hook, a SUS_LOG_COOKIE value will be propagated if
the function execution is part of the request handling. Because PHP handles
requests synchronously, this propagation is scoped by the request_start and
request_end hook functions.

The profiling extension is application-independent and can be loaded and
unloaded through the PHP runtime’s configuration file when PHP processes
start. We found that accessing a complete list of function parameter values can
incur significant overhead. Therefore, we only obtain the first three elements’
values for composite-type parameters. In addition, we limit the parameter tracing
depth when a composite-type parameter contains other composite-types.

Since the profiling extension runs within each SuS container, the profiling
data may be tainted. An attacker with control of the SuS container may manip-
ulate the profiling extension to provide false data. We leverage Linux’s auditd
from outside the container to implement rules that monitor ptrace and accesses
to PHP’s configuration directory. These rules can effectively detect an attacker’s
attempt to subvert the profiling modules through code injection and module
replacement. Previous work explores syscall semantic reconstruction for inter-
preted program [18, 5]. Tracing syscalls from outside the container can enable
legitimacy estimates of the PHP execution trace. Mismatches between the syscall
traces and PHP traces could themselves be indicators of container compromise.

4.7 Integrating Execution Traces
As mentioned in Section 3.8, logs from different users can easily be separated
because of the single-use design. Our system generates: (1) an HTTP log from
the Client-to-SuS middlebox, (2) PHP execution logs from profiling modules, and
(3) a resource query log from the SuS-to-backend middlebox. These logs depict
an interaction from different perspectives and, when integrated, constitute an
execution trace of the whole event.

The first step in constructing the trace is parsing unstructured PHP logs
into per-request call graphs. We implement a syntactical parser based on php-
ast [30] to locate the user-defined function’s definition (a script that defines the
function and the line ranges of the implementation) and functions that will be
called in the global scope. This statically-learned information is combined with
our profiling data to construct the graph. The former allows us to determine
the calling relation between two function log entries (e.g., whether function A
is called within the block of function B). The latter allows us to identify the
root node of a chain of function execution. The resulting request call graph
is essentially a tree that starts with a root node named RINIT describing the
request. Each child of the RINIT node is a global scope function followed by
subsequent function calls and ends with PHP sink functions such as mysqli_-
query. To link the HTTP log to the request call graph, we only need to match the
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SUS_LOG_COOKIE cookie. This approach allows us to link accurately even with
the server application’s URL rewriting. To link the call graph with the resource
log query, we match the query string with the PHP function’s parameter.

Table 1: CVEs and defenses considered in our security evaluation.
Category CVE Vulnerability Description SuS Attack Mitigation

Single-user
Instances

2012-3578
[20]

Input type validation failure en-
ables script file upload and execu-
tion of arbitrary SQL queries and
database credential leak

At SuS container startup,
each wp-config PHP file
is written with a database
user of minimum privilege

Table-Level
Privilege

Constraints

2021-24182
[24]

Union-based SQL injection on
wp_tutor_quiz_question_-
answers

Deny access to sensi-
tive tables for unauthen-
ticated or limited users
(e.g., student roles)

2021-24183
[25]

Union-based SQL injection on
wp_tutor_quiz_question

2018-19207
[1]

Allows update to wp_setting table
to register new admin account

Limit update access to the
wp_setting table to ad-
ministrator users

Row-Level
Query

Scoping

2019-9879
[21]

Privilege escalation exploit allows
unauthenticated user to register
new admin user

Query scoping prevents
wp_capability used as
the row selector when up-
dating wp_usermeta

2020-13693
[23]

Privilege-escalation exploit allows
unauthenticated user to change
wp_usermeta table to register with
bbp_keymaster role

2019-9880
[22]

Allows unauthenticated user to re-
trieve all user information in wp_-
user table Query scoping adds row

selector to limit user ac-
cess to only their own
data

2009-2762
[19]

Input validation failure allows re-
set of administrator’s password
for account hijack or account-level
denial-of-service

5 Security Evaluation
To evaluate the security benefits of the single-use server, we first consider the
attacker’s goal and common techniques in exploiting the confused deputy. Nor-
mally, attackers aim to access resources beyond what the application is designed
for or what a user is allowed. This often requires the attacker to inject specific
queries or misuse existing queries in the application code. For the injection case
(the first three cases in Table 1), we consider two common attack vectors: file
uploads and SQL injection. For the query misuse cases, we examine a set of
attacks of this type (The fourth to eighth cases in Table 1).

We explore SuS effectiveness against attacks by classifying these exploits
based on the SuS feature that stops or mitigates the attack. For each vulner-
ability, we apply an exploit to a test environment, both with our SuS model
and without it. With the SuS model, the defender is required to configure the
enforcement policies, while the control uses a shared server of the same software.
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5.1 Evaluation: Real-Word Vulnerabilities

Single-user Instances For a server deployed using SuS model, file upload vul-
nerabilities are naturally mitigated because any uploaded script is only accessible
within the attacker’s container. Further, the uploaded script can only execute
database queries within the limited permissions granted to that container (e.g.,
credentials saved in files like wp-config.php). We used CVE-2012-3578 [20] to
evaluate SuS’s effectiveness. As expected, the attack was successful in the shared
server scenario. Our script, which aimed to delete WordPress accounts, failed in
the SuS model since the container lacked the necessary permissions.

Table-Level Privilege Constraints Since each SuS container is configured
with a unique database user account, we can configure different table access priv-
ileges based on the identity associated with the client. This prevents confused-
deputy attacks since it eliminates privileged access that must be granted on a
shared sever. For SQL injection attacks, queries which are manipulated to access
any sensitive tables, such as mysql.user, are denied. In Table 1, we select three
representative CVEs and show how SuS is configured to address these attacks.

Row-Level Query Scoping This class includes attacks in which a mali-
cious user takes advantage of permissions that they were intentionally given in
order to access or modify data that is disallowed by the security policy. This typ-
ically happens when the backend resource’s native access control system is too
coarse-grained to properly implement the desired policy. Our SuS-to-Backend
middlebox enforces access control at the row level. We evaluate such a control’s
effectiveness through 4 different CVEs, as shown in Table 1.

5.2 Case Study: Exploring Execution Traces

While SuS can block the requests that trigger security exceptions, this alone does
not help a security analyst to identify the root cause of an exploit. To illustrate
how SuS logging can guide the process of localizing vulnerabilities, we consider
a case study. We explore the GdprOptions vulnerability (CVE-2018-19207) and
analyze the data. Using the trace construction workflow from Section 4.7, we
construct a graph of relevant events from each HTTP request and SQL inter-
action. As mentioned above, the GdprOptions vulnerability is prevented by our
SuS model because the UPDATE query needed to change the WordPress site set-
tings exceeds the permissions associated with the client. This allows us to prune
our analysis to graphs that contain the denied update query. The result, depicted
in Figure 2, shows progression from an HTTP POST request (the first block) to
/wp-admin/admin-ajax.php, and a series of PHP function calls that end with
a denied SQL query (the last block).

In the trace, the PHP execution starts in the WordPress codebase and even-
tually enters the code base of a plugin (gdpr142/Includes
/Ajax.php). After execution of the processAction, the query is prepared and
processed by a sequence of query-related functions until it is issued by the _do_-
query function. Since the query is simply passed through those helper functions
unmodified, it suggests that the issue originates in or near the processAction or
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POST /wp-admin/admin-ajax.php 
action=wpgdprc_process_action 
data={type=save_setting, append=false, option=users_can_register, value=1}

HTTP Request

do_action() 
admin-ajax.php

apply_filters() 
class-wp-hook.php

processAction() 
gdpr142/Includes/Ajax.php

update_option('users_can_register', 1) 
gdpr142/Includes/Ajax.php 

update(query_string) 
wp-db.php

query(query_string) 
wp-db.php

_do_query(query_string) 
wp-db.php

UPDATE `wp_options` SET `option_value` = '1'
WHERE `option_name` = 'users_can_register'

Rejected Query

query_string = UPDATE `wp_options` SET `option_value` = '1' WHERE `option_name` = 'users_can_register'

Fig. 2: The pruned trace shows how the HTTP request (yellow) is handled by
PHP functions (blue) and leads to the rejected SQL query (red). For readability,
we use the string “query_string” as shorthand to represent the full SQL query
that appears as parameters in the PHP nodes.

update_option functions. The documented patch to the vulnerability confirmed
that the processAction was indeed the cause [26]. With such data, a defender
can remedy the issue by patching the software or removing the plugin.

In a non-SuS system, this exploit might not be noticed for days or weeks, at
which point logs may be overwhelming to analyze, and there will be no clear trail
back to the request that triggered the exploit. In contrast, SuS’s user separation
allows the query to be rejected, signaling the need for immediate analysis. In this
particular example, there are a total of 802 functions and 12 script files that are
accessed between the HTTP request and the SQL query (assuming the analyst
can identify the malicious request). SuS allows an analyst to quickly narrow the
potential cause of the vulnerability to only two functions (processAction and
update_option) within a single file (gdpr142/Includes/Ajax.php), out of the
1000+ PHP scripts in a WordPress installation.

We also conducted the same attack reconstruction analysis for other CVEs
described in Table 1 as well. The log reduction benefit applies to other CVEs too;
reconstructed traces average 18 functions with an average total of 1188 lines.

6 Performance Evaluation
Scalability and performance are key considerations for the SuS model. Since con-
tainers can use shared read-only mount points, and the remaining temporary file
write space is needed in shared servers anyway, disk utilization is not a signifi-
cant concern for the SuS model. However, we must explore what additional CPU
and memory resources, if any, would be required by allocating separate server
instances for each client and isolating them in separate containers. We must also
explore the latency overheads associated with directing traffic to the appropri-
ate container, logging its interactions, and enforcing permissions associated with
those containers. We explore each of these topics in turn.
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All our SuS containers run within a virtual machine with 16 GB of RAM, an
allocation of 4 host CPU cores, and a 40 GB virtual hard drive. The VM runs on
a physical host with 192 GB of RAM, 20 cores running at 2.20GHz, and 21 TB of
hard drive space, configured with RAID. Our containers are not configured to use
or enforce any CPU or memory limits. This configuration allows a comparison
with the performance results associated with CLAMP [27].

6.1 RAM Usage
Before comparing memory usage between the SuS and the shared server model,
we explore multiple server configuration options to ensure a fair comparison. We
use WordPress as an example to show the impact of these options and determine
the best choice for each model. We first configured different web servers using
PHP with a static pool. For the shared and SuS server, the PHP worker pool
size is set to the maximum number of concurrent users and one per container,
respectively. The memory usage is calculated through Linux’s free command.
In the shaded portion of Table 2, we show the memory usage ratio (i.e., SuS

Shared )
of the SuS model versus the shared server model. Our experiment shows that the
shared server only uses a subset of the configured workers and achieves memory
sharing that the SuS model does not.

Table 2: The ratio of memory ( SuS
Shared ) used by WordPress in the SuS model

verses the shared server model across varying numbers of concurrent users in
10 trials of experiments. The shaded results omit copy-on-write sharing while
FKSM uses such page sharing in the kernel.

Server Configuration
Concurrent Users 10 25 50 100

Apache PHP-FPM original approach 3.94 5.01 6.97 8.1
Our FKSM 2.72 3.37 4.71 5.39

Nginx PHP-FPM original approach 4.13 5.08 5.67 7.37
Our FKSM 2.85 3.47 3.86 5.0

Lighttpd PHP-FPM original approach 4.02 4.96 5.48 6.9
Our FKSM 2.89 3.33 4.65 5.59

For subsequent experiments, we select nginx with PHP-FPM as the default
configuration for SuS because its relative lightweight and server popularity. Using
PHP-FPM with a single PHP worker, we pre-spawn a fixed number of SuS
containers and use web clients to interact with the servers. We measure active
containers’ memory usage while serving pages to clients. In Table 3, we see that
the per-container memory usage decreases as the number of concurrent clients
increases. This is likely the result of amortizing fixed costs.

The application server’s basic properties play a significant role in the overall
memory usage and the practical deployability of SuS. The 2.02 GBytes for 100
concurrent users can be easily handled by modern web servers. The web server
hosting the LMS has ample memory and can easily scale to support the more
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Table 3: Per-container memory usage (in MiB) with active clients across three
applications using nginx and PHP-FPM. Results averaged over 10 trials.

SuS Application
Concurrent Users 10 25 50 100

memory
usage in

MiB

WordPress 31.25 30.02 29.21 28.37
HotCRP 27.80 27.71 27.55 27.16

LMS 23.12 22.90 21. 14 20.70

than 1,000 active users in the system. Likewise, the HotCRP service can han-
dle one hundred concurrent users with less than 3 GByte of RAM, which may
meet the needs of most conferences. For high-volume websites such as Word-
Press, when considering our FMSK improvement, the memory usage will reduce
to be relatively the same as the LMS application. But even without further op-
timization, compared with CLAMP’s VM-based approach, each SuS container’s
memory usage is only half as much as a VM-based Webstack’s (64 MB).

Table 4: The average merge time (tm) and per-container memory saving (ms)
comparison between our FKSM and the UKSM approach across 10 trials with
varying container counts. UKSM requires parameter tuning for best perfor-
mance; the default works better in workloads with < 25 containers.

KSM Approach
Concurrent Users 10 25 50 100

tm (secs) Our FKSM 1.24 3.24 8.51 18.56
UKSM [40] 95.75 88.5 105.25 143.25

ms (MiB) Our FKSM 8.92 9.84 10.02 10.03
UKSM [40] 4.98 5.30 5.14 5.00

We compare UKSM with our own Focused Kernel Same-page Merging (FKSM)
approach, in which the container manager actively initiates the merging requests
and records merge completion time and the average memory saved for each con-
tainer. In contrast, UKSM constantly runs in the background without a clear
merge completion point. Therefore, to make a fair comparison, we record the
memory statistics for 10 minutes and choose the time needed for UKSM to com-
plete 80% of memory savings for its performance statistics. We show these results
in Table 4. FKSM focuses on mergeable pages only between pairs of processes,
enabling quick merging. In contrast, UKSM makes multiple rounds of local and
global samplings and may not discover all merging opportunities (resulting in
48% less memory saving on average). In the shared region of Table 2, we show the
FKSM savings, which average around 30%. We examine how web retrievals can
lead to unique states to process requests. We found that the memory usage will
increase by around 2MB for both page-sharing approaches. Our approach still
saves 26% of memory per container. We also found that when ASLR is enabled,
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the memory saving of FKSM and UKSM is significantly reduced to less than 5%.
While the original UKSM paper [40] reports 39% of memory saving for contain-
ers, we found that this result is only achievable with a fully duplicated LAMP
stack, where most saving is attributed to duplicated MySQL processes. In our
settings, multiple containers share a single database with different credentials.

Table 5: The CPU usage (in percent) for both the shared and Single-use Server
across 10 trials. For both deployments, the first load on WordPress triggers a
bootstrapping process that causes the CPU usage to be higher than the second
(and subsequent) page loads. In SuS, the first page load also causes the Container
Manager to assign a container to the newly-connected user.

Configuration
Concurrent Users 10 25 50 100

First
Load

Shared 21.01% 23.19% 31.49% 41.33%
SuS 56.85% 77.02% 85.94% 93.62%

Second
Load

Shared 4.36% 10.10% 17.53% 34.83%
SuS 16.26% 22.40% 27.60% 39.50%

Table 5 shows the median CPU usage (obtained using mpstat) for a four-
core system with each tested case across 10 trials using the same container
configuration as our per-container memory usage experiment with WordPress as
the SuS-hosted application. The CPU usage difference between SuS and a shared
server appears related to the processes needed to fork and isolate containers. For
SuS, each container has a complete process set. For the shared server setup, it
only needs to run a single server application and shared PHP worker processes.
On the initial load, the 100 concurrent users each cause the accessed PHP scripts
to be compiled on SuS, whereas in the shared server, a single compilation suffices
due to PHP’s OPcache [28]. This likewise explains the closer results for SuS and
the shared server models on subsequent loads.

To avoid the PHP bootstrapping and compiling process, as mentioned above,
we configured the Container Manager to perform this bootstrapping when cre-
ating a SuS container to prime it. Our implementation handles this by sending
a pre-provision request to the fresh-started SuS container. We note that such
a process can also be configured by the Opcache preload [29] feature but re-
quires specifying the scripts in the correct dependency order to compile. Our
request-based approach avoids this requirement.

6.2 Page Retrieval Times
We examine and compare the latency between SuS and Shared server using
WordPress, which is known to be a heavyweight application [4]. We generate
concurrent client requests using multiple instances of wget to get WordPress’s
main page (each main page access requires 7 different assets files and triggers
22 unique MySQL queries). While website complexity varies in practice, this ex-
periment compares the workload’s impact across different server configurations.
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Fig. 3: CDFs of 200 home page load trials in WordPress 5.1.1. with 10, 25, 50,
100 concurrent users in SuS and shared server (“control”) scenarios.

Figure 3 shows page load times under different settings. As we mentioned
above, one overhead is the multiple script compilation process. Given this, the
first two settings for SuS are with and without pre-provision. In addition, we
consider a third pool refilling setting where the container manager maintains a
pool watcher thread to ensure sufficient available containers.

From Figure 3, we see that when using pre-provisioned containers, the load
times for the SuS and shared server models are similar, from 10 to 50 concurrent
users. The SuS model becomes slower at 100 concurrent users. We believe there
are two main sources of delay. First, the SuS model requires the CPU to spend
extra cycles to context switch between processes, which is saved for shared servers
because of sharing worker processes across requests. Second, our Client-to-SuS
middlebox must request a new container from the Container Manager for the first
request from a new client, adding initial latency and load. For the pool refilling
setting, we observed only a minor impact on the page load time (characterized by
the difference between the second (orange) and third (green) lines in Figure 3).

In CPU usage and page load time, SuS has results close to a shared server.
When memory is not the bottleneck, SuS is able to achieve similar throughput
as a shared server. This significantly outperforms the VM-based approach in
CLAMP, which had only 42% of the throughput of a shared server [27].
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Fig. 4: Profiling affects page load time. Unless applied to production traffic, this
logging overhead would occur in post-hoc analysis.

6.3 PHP Profiling Overhead

Our PHP profiling module adds extra runtime procedures to obtain the func-
tion’s execution context. Then it asynchronously sends the collected traces to a
profiling data receiver. The profiling overhead does not affect each asset retrieval,
only the request handled by PHP. This experiment measures the overhead by
comparing the PHP request’s round trip time with and without the module.

Figure 4 indicates that the profiling adds around 10ms delay on individual
PHP requests. WordPress makes many function calls (around 25,000 user-defined
functions for each PHP request on average). Given this statistic, our profiling
module adds less than 1µs for each function call. The PHP profiling overhead
does not need to affect production traffic since analysts can disable this func-
tionality in normal usage and only enable it in post hoc analysis in which the
profiling module is enabled in a pristine container, and the previously logged
HTTP request and back-end resource requests are replayed. Tools like TCPre-
play [9] enable such event-based traffic replaying. Accordingly, defenders may
choose whether to enable the feature for live traffic or only in incident response.
Since our system prunes unrelated interactions, the replay logs may be small.

7 Conclusion

Our work introduces SuS containers that prevent adversaries from exploiting
vulnerabilities in front-end Internet servers. These protections require only small
code base alterations. Overheads introduced by the containerization approach
are limited, with 2GB RAM sufficient for 100 containers and only a 5% increase
in CPU consumption. The memory consumption of the approach is practical
in some settings. Our FKSM saves 26% of memory for active containers. High-
volume servers may benefit from future work in copy-on-write container cloning.
This approach captures logs at the middleboxes and execution engine. The ap-
proach can allow analysts to reconstruct an incident and localize a vulnerability.
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