
An Internet without the Internet Protocol

Craig A. Shue and Minaxi Gupta
Computer Science Department, Indiana University

{cshue, minaxi}@cs.indiana.edu

Abstract

The growth of the Internet has brought about many challenges for its critical

infrastructure. The DNS infrastructure, which translates mnemonic host names

into IP addresses understood by the routers, is frequently the target of cache

poisoning attacks. Internet routers are also experiencing alarming growth in

their routing table sizes, which may soon make it impossible for them to forward

packets quickly enough to meet demand. Further, concerns about IPv4 address

space exhaustion loom on the horizon despite the availability of IPv6. In this

paper, we take a fresh look at Internet routing and propose a scheme that

addresses all of these concerns cleanly. Our scheme forgoes IP addresses entirely

and instead uses host names as identifiers in packets. The scalability of routing

is ensured by encapsulating these packets in highly aggregated routing locators:

we use autonomous system numbers (ASNs), which are already an integral part

of inter-domain routing. We present data and experiments to show that a much

simpler and scalable routing infrastructure can be designed for a future Internet

by using fewer identifiers for its entities.

Key words: new Internet architecture, routing, host identification

1. Introduction

While the Internet appears to be functioning well, serious threats loom on

the horizon. One reason for concern is the scalability of routing : The routing

tables in the core of the Internet are growing at an alarming rate and many

worry that these routers may soon be unable to meet demand [1]. To add to

Preprint submitted to Elsevier April 1, 2010

these woes are the ever-looming concerns about IP address space exhaustion.

Although IPv6 [2] is widely accepted as a replacement for IPv4, its adoption

has been far from stellar1. Further, IPv6 will not address some causes of growth

in IPv4, such as multi-homing or load balancing. IPv6 forwarding also requires

greater memory and more processing time than IPv4 forwarding [4], increasing

load at routers.

We take a minimalist approach to addressing concerns about routing scal-

ability and address space exhaustion. In doing so, we asked ourselves a range

of questions. One pivotal question was: What would an Internet without IP

look like? To our own surprise, the answer was: Faster, expandable, and more

scalable! Two key observations led to this answer:

Minimalism in inter-domain routing: The border gateway protocol (BGP)

uses two different identifiers to perform inter-domain routing: It announces the

reachability of IP prefixes but the path to these prefixes is expressed in the

form of autonomous system numbers (ASNs), which helps BGP avoid routing

loops. The use of prefixes over ASNs to announce reachability has unfortunate

consequences for routing scalability: the number of prefixes in the Internet is

an order of magnitude bigger than the number of ASNs. Moreover, in 2008, the

number of prefixes advertised has increased by about 50, 000 (approximately a

20% increase) while the number of ASNs grew by about 2, 500 (approximately a

9% increase) [5, 6]2. This growth in prefixes is in part due to traffic engineering

and multi-homing, practices that are likely to continue into the future. IPv4

address space exhaustion also fuels prefix growth, with many smaller prefixes

being added to the routing tables. Consequently, we forgo the use of IP prefixes

in inter-domain routing and propose to use ASNs in routing announcements

and during packet forwarding. This simple idea has been proposed in various

1According to the Route Views Project [3], which provides border gateway protocol (BGP)
routing tables from many vantage points in the Internet, the highest number of IPv6 prefix
entries at any vantage point was only 1, 311 in July 2008.

2Previous work indicated ASNs growth rates exceed that of IP prefixes [7]. However, this
trend does not hold today.

2

contexts [8, 9, 10, 11], yet has far-reaching consequences. First, it reduces the

forwarding table sizes at the core Internet routers by an order of magnitude.

Second, it allows fixed-length lookups during packet forwarding, which are at

least an order of magnitude faster than the longest prefix match currently per-

formed on IP prefixes. Third, in the current Internet, IP prefixes act as locators

and IP addresses are identifiers for end hosts. This tangles routing and address-

ing. Accordingly, many proposals in the research community have converged on

the belief that locator-identifier separation is essential to designing a scalable

routing core for the next generation Internet [12]. Our idea makes ASNs into

locators and leaves identifiers open to innovation, naturally decoupling the two.

Minimalism in end-host identification: Most hosts today have two iden-

tifiers associated with them: IP addresses and fully qualified domain names

(for simplicity, we refer to the latter as host names or names subsequently).

The host names are indispensable, since end users rely on their mnemonic na-

ture. However, the value of IP addresses becomes unclear with the decoupling

of routing and addressing. Consequently, we propose to eliminate IP addresses

as a global identifier, leaving host names as sole end-host identifier. An instant

outcome of this choice is that it solves address exhaustion concerns. Since host

names can be up to 255 characters long [13], the scheme can accommodate

more hosts than even allowed by 128-bit IPv6 addresses. Today, host names are

translated into IP addresses by the DNS infrastructure, which the routers use

to transmit packets. Under our scheme, users will continue to use host names

but the DNS will be modified to translate them to ASNs, which the routers will

use to transmit packets.

In designing an Internet architecture without the Internet Protocol, we lever-

age the recent proposals that have advocated using locators that differ from IP

prefixes, including NIMROD [8], LISP [9], eFIT [10], and ENCAPS [11]. Since

these proposals have extensively discussed the mechanics of using locators to

scale inter-domain routing, we focus on the details of using ASNs as locators

in inter-domain routing. Specifically, we examine how ASNs impact the factors

3

that are currently causing super-linear growth in inter-domain forwarding ta-

bles, namely multi-homing, traffic engineering, and address fragmentation. We

also examine the resulting routing tables sizes and packet forwarding speeds. We

find that ASNs possess properties that can enhance packet forwarding speeds

today as well as scale Internet routing for decades to come. Using host names

as identifiers reduces the requirements for the DNS, aiding caching and reduc-

ing the viability of many cache poisoning attacks, while providing extensive

identification space and reasonable forwarding performance within destination

networks. With these results, we find that such an architecture has significant

advantages.

The rest of this paper is structured as follows. In Section 2, we provide

background material. In Section 3, we discuss the details of our architecture.

In Sections 4 and 5, we evaluate ASNs as routing locators and host names

as identifiers. Section 6 discusses practical considerations and open questions

associated with the architecture. We review related work in Section 7 and

conclude in Section 8.

2. Background

In this section, we provide some background on the causes of routing table

growth in the Internet. We also outline the key features of the proposals that

utilize a locator-identifier split to scale Internet routing.

2.1. Growth in Inter-domain Routing Tables

Routing table growth is an alarming trend on the Internet and has been an-

alyzed by the community. Bu et al. examined the causes of BGP routing table

growth and found four key factors: routers’ failure to aggregate prefixes that can

be aggregated, address fragmentation, load balancing, and multi-homing [14].

Routers failing to aggregate prefixes that can be aggregated can easily be elimi-

nated by careful router configuration on the part of network operators. Address

fragmentation is the result of IPv4 prefixes being insufficiently large: when an

organization exhausts the address space available under their first prefix, they

4

must request another for their remaining hosts. This second prefix is frequently

disjoint from the first, preventing aggregation. As a result, these two prefixes

must be advertised separately and two entries are stored in routing tables. Load

balancing, a popular traffic engineering technique, also increases the number of

prefixes in routing tables. To distribute the traffic arriving at the organization,

the originating AS may simply divide a prefix into pieces and announce the

pieces through different neighboring ASes. Since the path for each sub-prefix is

different, each sub-prefix must be stored as a unique routing table entry, inflating

growth. Finally, multi-homing also inflates the routing table size when provider-

dependent address space is used. In this approach, a customer may multi-home

and use address space obtained from one of its providers. The customer an-

nounces a sub-prefix obtained from one provider through each of its providers.

Since this sub-prefix has different routing properties from the provider’s prefix,

it must be stored as a separate entry. When provider-independent address space

is used, the prefix must already be announced separately, so multi-homing does

not cause additional growth in this case.

2.2. Locator-Identifier Split Proposals

Each of NIMROD, LISP, eFIT, ENCAPS, ISLAY aim to scale Internet rout-

ing by using locators that may be different from IP prefixes. Though they differ

in details, the basic idea behind each of them is to have the routers close to

the sources encapsulate each packet in a special wrapper that contains the loca-

tors for the source and the destination. Routers in the core of the Internet will

forward packets based only on these locators. This imparts scalability to rout-

ing, since locators are expected to be fewer in number and will lead to smaller

routing tables. When such a packet reaches a router near the destination, the

router will de-capsulate the outer layer and forward the original packet to the

destination. To accomplish the mapping of end-host identifiers to locators, the

proposals advocate using a database, which will be responsible for keeping the

mapping information current. The work in APT [15] defines a mapping ser-

vice for the eFIT architecture while the work in NERD [16] specifies a mapping

5

database suite for LISP. While LISP allows several options for the mapping

database, most architectures require that the database and updates be sent to

each encapsulating router. In NIMROD [8], routers use IPv6 addresses with

32 bit locator addresses, allowing multiple locators to be specified in a single

address. The work by Krioukov et al. [7] studied these mapping databases and

questions the scalability of this approach. However, a pull-based mapping dis-

tribution system, like the DNS, may offer greater scalability. Accordingly, we

do not believe architectures that split locators and identifiers should be quickly

dismissed.

3. Architecture Details

3.1. An Example

We begin by describing our architecture through an example. Suppose a

client, host1.isp.com, in ASN 1000, wants to communicate with a server,

www.website.com, in ASN 2000 (see Figure 1). The following sequence of steps

will occur:

 ASN 2000

S D

Internet Core

1 2 3 4 5
ASN 1000

www.website.comhost1.isp.com

Fast Memory

Router Data Structures

ASN Output Interface

... ...

ASN-Based Routing Table:

Example Packet

Host Names
Source
Destination

ASNs
Source
Destination

= 1000
= 2000

= host1.isp.com
= www.website.com

Figure 1: An example scenario

1. The client, which is configured with its own ASN information, contacts its

DNS resolver to get the ASN for www.website.com. The client then creates

a packet with a header containing host1.isp.com and www.website.com as

6

source and destination addresses and 1000 and 2000 as source and destination

ASN locators. The packet is sent to the default router, 1.

2. Router 1 forwards the packet by looking up 2000 in its forwarding table,

as prescribed by NIMROD, LISP, eFIT, and ENCAPS. These routers use an

inter-domain routing protocol, such as a modified variant of BGP or HLP [17],

that exchanges ASN reachability rather than prefix reachability. Subsequent

core routers, routers 2, 3, and 4, repeat the forwarding table lookup performed

by router 2.

3. When the packet arrives at router 5, the router recognizes its own ASN loca-

tor and forwards the packet using the destination host name, www.website.com.

A later optimization, introduced in Section 3.4, augments the host name with

subnet identifiers and link layer information to expedite intra-domain forward-

ing; however, the simple name-based forwarding approach is sufficient for this

illustration.

4. To reply to the client, the server simply reverses the source and destination

host names and ASN locators.

Our architecture bears similarity to the design of the modern Internet but

also differs from it in substantial ways. In our architecture, the clients contact

the DNS resolvers only for the first packet of the connection, just as they do

today. However, the DNS response packets return only ASN locators instead

of IP addresses for end hosts. Also, the packet headers in our architecture

contain source and destination host names and ASN locators while today they

only contain IP addresses. Further, the routers forward packets based on ASNs,

which bear little resemblance to the IP prefixes used today.

3.2. Leveraging Locator-Identifier Split Proposals

As described, our architecture leverages the various scalable-routing propos-

als, including NIMROD, LISP, eFIT, and ENCAPS, but requires a few changes

to their functionality. Since these proposals implicitly assume that the end hosts

may stay the same as today, they require that the routers close to the clients

map end-host identifiers to locators. These locators are not part of the original

7

packet header. Instead, they are placed in a wrapper that encapsulates the orig-

inal packet. Routers in the core of the Internet only consult this wrapper while

making forwarding decisions. When the packet reaches a router close to desti-

nation, the wrapper is stripped off and original packet retrieved. The original

packet is then forwarded toward the destination using intra-domain routing, as

it would today. However, our architecture requires a few fundamental changes

to the scalable-routing proposals. First, locators are first-class citizens of the

network layer in our architecture – the end hosts put this information in the

packet by consulting an updated DNS-like database. This saves the routers

from having to maintain the database that maps end-host identifiers to host

names. It also saves the routers encapsulation and decapsulation effort. Sec-

ond, these proposals leave the DNS unchanged and advocate using a separate

database (residing at the routers in some cases) to maintain host identifier to

router locator mappings. Rather than use a separate database, we evolve the

DNS to hold these mappings since the DNS is no longer required in its original

form under our architecture. Finally, different proposals endorse different types

of routing locators. In our work, we show how ASNs can serve as these locators,

providing an instantiation of these designs.

3.3. Header Design

Our architecture will have two components: a layer with inter-domain rout-

ing locators which will be used by NIMROD, LISP, eFIT, ENCAPS or other

locator architectures and a layer for end-host identification which will be used

by intra-domain routing protocols. The router locators are stored in a layer

below the identification layer and that layer is dependent on which locator pro-

tocol is in use. This layered model allows the addressing layer to be utilized

over diverse locator layer implementations.

Figure 2 shows a basic design of the new identification layer that contains

variable length source and destination host names instead of IP addresses. We

leverage the IPv6 header to arrive at this preliminary design. To make pro-

cessing the variable length names easier, the header also contains the length of

8

both the names. These 8 bit values indicate the number of characters present

in the name. Notice that the length indicates the number of characters, not

bytes. Due to the restricted character set of domain names, each character can

be represented in 6 bits. Names that do not terminate on the byte boundary

are padded with zeros to the next byte boundary.

Figure 2: Header for the identification layer

3.4. Intra-domain Routing Optimizations

In the architecture described thus far, intra-domain routing is performed

on host names. This approach is feasible for smaller ASes with few domains

and host names that must be routed, as we show in Section 5.2. However,

other ASes may have large networks and service many domains. In the case of

Web hosting providers, a single IP address can provide hosting to over 10, 000

DNS host names [18]. In such ASes, routing on host names may require too

much memory or forwarding time. Fortunately, other techniques can be used to

minimize the forwarding state and lookup requirements.

In IP intra-domain routing, IP prefixes are used to direct a packet to the

appropriate subnet, at which point the packet is forwarded using link layer in-

formation. In our approach, we can map the packets from their host names to

9

their subnet and MAC addresses at an organizational name server. These pack-

ets can then be forwarded using the subnet identifier to the appropriate router,

then forwarded using the supplied MAC address. To do so, the destination host

name can be rewritten by the name server to include the subnet identifier and

MAC address, allowing routers to quickly transmit packets while preserving the

host name.

The host name rewriting approach can leverage the fixed character set of

DNS host names. Host names can contain 38 valid characters (letters, numbers,

periods and hyphens) and can be represented by a 6 bit value. However, this

representation results in 26 unused 6 bit sequences. These unused sequences

can be used to indicate whether a subnet ID and MAC are encoded in the host

name, and if so, how many bits these values use. Accordingly, each AS can

independently determine the number of subnets needed and arbitrarily encode

these IDs and the MACs in the host names. End-hosts receiving packets would

be able to detect and skip the subnet ID and MAC addresses and examine the

host name portion to identify the communicating end-point.

Authoritative DNS Server

Incoming

Packet

Detects destination ASN
matches router’s own ASN

Inter-domain Routing

Intra-domain Routing

Detects host name lacks
 intra-domain routing tags

Sends to intra-domain
routing engine

 Sends to
 name server to
 obtain subnet ID

Routes packet based
on subnet ID

 Sends packet
 with subnet ID
 and MAC to router

AS Border Router

AS Intra-Domain Router

Intra-domain Routing

Routes packet based
on subnet ID

Maps host name to subnet
ID and MAC, prepends fields

to host name

AS Intra-Domain Router

Intra-domain Routing

Detects subnet ID matches
router’s subnet, forwards

packet using MAC address

Destination
Host

Figure 3: Intra-domain routing process

In Figure 3, we show how routers within a destination AS would direct a

packet to the intended host. When the packet arrives, the router would recognize

that the destination AS matched the router’s own AS. It would then direct

the packet to the intra-domain forwarding engine. The intra-domain engine

10

would examine the host name field looking for a reserved value indicating the

subnet ID and MAC address have been embedded. On the first packet for a

connection, this information would not be present. The router would then send

the packet to the network’s authoritative DNS server. That DNS server would

then perform a lookup and map the host name to its respective ID and MAC

address3. Once mapped, the name server would alter the packet’s destination

host name and embed a reserved value indicating the subnet ID and MAC

address were set. The name server would then insert these two values, followed

by the original destination host name. At that point, the name server sends the

packet back to the intra-domain router. The intra-domain router can then look

at the destination host name, recognize the subnet ID, and send the packet to the

appropriate next hop. Subsequent intra-domain routers forward the packet on

the subnet ID until it reaches a router in the subnet. That final intra-domain

router forwards the packet to the host by crafting a packet with a link-layer

header containing the MAC address encoded in the address. At this point, the

destination host can receive the packet, extract its own host name, and confirm

it is the destination. The recipient can simply swap the source and destination

host name in replies it sends. The original sender can then use the source

host name, which will include the subnet ID and MAC address, in subsequent

packets, allowing the host to bypass the destination network’s name server.

When sending a packet, an end-host can begin the process by encoding their

subnet and MAC address with the host name, allowing the response to bypass

their own name server. Accordingly, the mapping infrastructure is only needed

for the first packet in the connection, much like modern DNS. However, unlike

modern DNS, the lookups are divided: the host name to ASN mapping takes

place in a regular DNS lookup and is shared across the Internet. However,

the host name to subnet ID and MAC mapping is confined to the destination

AS. This separation of mapping infrastructure allows DNS resolvers to perform

3If no entry exists, the name server may simply discard the packet and optionally send an
ICMP message indicating the error.

11

extensive, long-term caching for host name to AS mappings, which are fairly

static. At the same time, host name to subnet ID and MAC mapping, which

may change often, is not cached. This allows an authoritative name server to

load balance a host name across systems.

These changes to intra-domain packet routing and forwarding affect the

routers and the protocols they use to communicate. These engines must be

replaced with data structure accommodating the session ID and have logic to

divert packets to the name server and to forward using encoded MAC addresses.

The routing protocols must be altered to exchange session IDs; however, these

changes are not substantial, making replacement routing protocols straight-

forward. The current protocol could be retained but the meaning of the ex-

changed information can be reinterpreted. For example, in an AS that choses

to use a 16 bit subnet ID, the routers could exchange 16 bit prefixes with the

network portion representing the subnet ID, yet recast the leading 16 bits of the

prefix to a subnet ID when writing them to the forwarding tables.

3.5. Intra-domain Protocols

The changes described in this work require modifications in intra-domain

protocols, such as the dynamic host control protocol (DHCP) and the address

resolution protocol (ARP). However, the changes to these protocols are straight-

forward.

In DHCP, the DHCP server must communicate the network information to

a client. The server must provide at least one DNS host name, a subnet ID, and

the encompassing ASN to the client. The DHCP server must communicate this

mapping information, along with the client’s MAC, to the authoritative DNS

server the first time it assigns the mapping and each time it changes. Unlike IP

addresses, which are often timeshared, DNS host names are less likely to require

timesharing and can be retained for a longer period of time. Alternatively, the

DHCP server can provide the authoritative DNS server with a TTL value for

the mapping record.

Like DHCP, changes to the ARP protocol are straightforward. Rather than

12

map a link layer address to an IP address, the modified ARP will map to a host

name and vice versa. However, dynamics involving ARP also change. In IP,

hosts could use the subnet information to determine whether a host was in the

same subnet, allowing it to know when to use ARP. With host names, hosts

on the same subnet may have completely distinct host names. As a best effort,

hosts can ARP for other hosts that share the same domain name. Otherwise,

the host would issue a DNS request for the host name. When providing results

to a host inside the AS, the local resolver can additionally provide the subnet ID

and MAC address in addition to the AS information. When the client receives

this response, the host can confirm the destination is in the same subnet and

use the supplied MAC to reach the destination. Accordingly, unless hosts use

DNS names with a hierarchical structure, the usage of ARP may substantially

decrease. However, this will not introduce increased reliance upon the local

resolver, since this resolver is already required to map host names to IP addresses

in the modern Internet.

3.6. The New DNS

The DNS today contains at least 42 different record types [19]. This in-

cludes records to find mail servers and authoritative DNS servers for the domain,

records to map host names to IP addresses, and records to map IP addresses to

host names (reverse DNS mapping). Each of these records have a time to live

(TTL) associated with it, allowing the client resolvers to determine how long

to cache the record. The DNS functionality required under our architecture is

simpler since only one type of record is required to map host names into routing

locators. In previous work, we found that domains are largely co-located [18],

frequently resulting in just a single routing locator for each domain, or in rare

cases, a small number of locators. Thus, the DNS response for www.example.com

may simply be “example.com X 24”, where X is the ASN locator for the do-

main example.com and 24 is the TTL for the record. This simplicity has two

outcomes. First, name servers will have to maintain very few records to repre-

sent all of their hosts. Second, since one response covers all the hosts in that

13

domain or sub-domain, client resolvers only have to get the locator once for all

the hosts in that domain until the TTL expires. This thwarts statistical and

related data attacks to poison the DNS cache, since only a single record can

be obtained. Further, since domains tend not to change provider networks fre-

quently, the TTL times for these records may be longer than the TTLs used in

the more fine-grain DNS records of today. This significantly reduces the number

of queries the DNS server must field from clients.

Other DNS record types simply leverage the DNS as a distributed database,

but are not actually a key component of the system. However, the proposed

architecture can use reserved host names to support these records as well. The

MX record is used to find the mail servers for a domain. In our scheme, we can

reserve the host “mail” in each domain to serve as an alias to the domain’s mail

server, if it exists. For example, “mail.example.com” would map to a number

of other mail server names (e.g. mail-1.example.com and mail-2.example.com).

When the packet crosses the authoritative DNS server at the destination, any of

these delegates could be selected and the subnet ID and MAC address supplied

in the destination address. Other record types, such as RP, SRV, and TXT records,

as well as other less common DNS records, would use host delegations, much

like MX records, each with their own reserved host name.

4. Examining ASNs as Locators

Currently, there is an order of magnitude fewer ASNs in the Internet than

there are IP prefixes. These ASNs have had with linear growth in recent

years [20]. While this bodes well for smaller forwarding tables at the core

routers, we must examine the issue of ASN growth carefully: if ASNs grow

tremendously and overtake the growth in the number of prefixes, all the ben-

efits would be lost. Here, we examine the issue of ASN growth, approaches

to maintain modern traffic engineering goals, the size of resulting forwarding

tables, and packet forwarding speeds.

14

4.1. Growth in ASNs

As the Internet grows and new administrative domains are formed, some

growth in the number of ASNs is inevitable. In Figure 4, we show historical

ASN growth and a linear fit for these results. While some growth may be

required, other factors also affect ASN growth and their impact needs to be

carefully examined. For example, work by Huston indicates that ASN growth

is fueled by the growth in multi-homing at edge networks [21, 22]. However,

locator-identifier split architectures using ASNs as locators will not exhibit such

growth.

 5000

 10000

 15000

 20000

 25000

 30000

 2002 2003 2004 2005 2006 2007 2008

N
um

be
r

A
S

N
s

Year

Actual ASNs
Linear Fit - Actual

Projected ASNs (no MH)
Linear Fit - Projected

Figure 4: Historical ASN growth and project growth without multi-homing

In our scheme, organizations need not acquire ASNs simply in order to multi-

home. Instead, the organization can simply rank each of its providers, indicating

the primary provider, secondary provider, and so on. The organization would

then simply add each of its providers and their ranks to a mapping database

entry for the address range. Upon receiving a packet destined to that organiza-

tion, the encapsulating router would consult the mapping database and select

the provider with the highest priority. If that provider becomes unreachable,

the provider with the next highest priority will be selected automatically. Ac-

cordingly, an organization can obtain the benefits of multi-homing, yet not have

to participate in BGP, nor acquire an ASN, nor inflate inter-domain routing

tables.

15

We now estimate how many of the ASNs in the current Internet exist pri-

marily for multi-homing. Such stub networks would not require an ASN in our

scheme. While our approach is necessarily conservative, we find that almost a

third of the ASNs in the current Internet exist solely for the purpose of multi-

homing. These ASNs are unnecessary in our architecture and can be eliminated,

aiding scalability.

Methodology: To estimate the number of multi-homed ASes, we identify ASes

composed solely of multi-homed prefixes. We use the approach by Bu et al. [14]

to determine a multi-homed prefix. In this approach, a prefix is considered

multi-homed if and only if that prefix is a subset of a prefix from a neighboring

AS. Accordingly, we consider an AS to be fully multi-homed if all of the prefixes

it originates are sub-prefixes of neighboring ASes. This approach does not help

in identifying ASes that use provider-independent prefixes for multi-homing and

hence causes us to under-estimate the number of multi-homed ASes.

We use two types of data from the Route Views Project [3] in order to

perform this analysis. The first is a BGP RIB from November 15, 2008. From

this RIB, we determined which AS originates each prefix. Next, we obtain

all the BGP updates during the entire month of November for each of the 42

Route Views vantage points. We examine the AS path in each routing update to

determine the peers for each AS4. For each prefix, X, in the RIB, we determine

which ASes, if any, have a super-prefix, Y, that encompasses the prefix. If the

ASes originating prefixes X and Y are directly connected, we consider prefix X

to exist for the purpose of multi-homing. If a stub AS is composed solely of

multi-homed prefixes, that AS is considered to exist primarily for multi-homing.

Results: We find that 8,732 (31.2%) of the 27, 974 ASNs in the Internet pri-

marily exist for multi-homing. This estimate is a lower bound because we are

unable to infer multi-homed ASes that do not use provider-dependent address-

ing. These results suggest that our scheme would require only 19, 242 ASNs.

4Some links may be missed if no associated updates were issued during the month snapshot.
This would cause an underestimation of multi-homing.

16

With the widespread usage of provider-independent prefixes for multi-homing,

likely fueled by address fragmentation, this is likely a significant underestimate

of the amount of ASNs that could be reclaimed. Further, since modern ASN

growth is largely expected to be fueled by multi-homing and since such growth

would not affect ASNs in our scheme, ASN growth in our approach may dra-

matically decrease. In Figure 4, we have shown the projected growth with

multi-homing eliminated. While largely a vertical displacement from the cur-

rent ASNs, we note that the projected ASN growth without multi-homing is

slower than modern growth (1, 890 ASNs per year vs. 2, 494) even with these

conservative estimates.

4.2. Addressing Loss of Precision in ASNs

Modern ASNs are typically associated with several IP prefixes. This is

caused by several factors, as outlined in Section 2, which include address frag-

mentation, failures to aggregate, load balancing, and for other traffic engineering.

While the first two factors may not be inherently valuable, load balancing and

traffic engineering are powerful tools that must be accommodated in these ar-

chitectures. We now examine how each of these factors impact forwarding table

size.

While the routers’ failure to aggregate prefixes that are aggregatable hinders

modern routing, it does not impact inter-domain routing under locator-identifier

split proposals because these prefixes are mapped to the same aggregated lo-

cators by the encapsulating router. Similarly, address fragmentation is also

resolved in the mapping table: while each prefix would require separate map-

ping table entry, they would result in the same locator being used, masking the

growth from inter-domain routers. Accordingly, neither failures to aggregate

nor address fragmentation would affect inter-domain forwarding table size or

ASN growth. Further, this aggregation would not result in a loss in routing

flexibility.

Load balancing at the originating AS, like multi-homing, can leverage the

mapping database to avoid causing growth in the inter-domain forwarding ta-

17

ble. As in the case of multi-homing, an organization may associate multiple

providers with its address range in a mapping database entry. However, unlike

multi-homing, which ranks the providers to indicate the primary provider, load

balancing would use the same rank for multiple providers. When an encapsulat-

ing routing processes a packet destined to such a load-balanced address range,

it consult the mapping database, independently and randomly selects one of

the associated locators, and uses that locator in all subsequent packets to that

address range. Alternatively, the mapping router could partition the host name

space for the destination and route each partition via separate routes. These ap-

proaches facilitate traffic engineering while avoiding route fluttering and growth

in the inter-domain forwarding tables.

Once mapped, subsequent inter-domain routers have only an AS number to

direct packets. Previously, these routers could divide traffic to a destination

AS by treating each prefix associated with that AS independently. Accord-

ingly, load balancing or special traffic engineering protocols, such as MPLS [23],

could exert fine-grain control. Unfortunately, with AS numbers as destinations,

routers could only exert course-grain control. In this scheme, these routers have

only three options: 1) accept the course-grain limitations of ASNs, 2) proba-

bilistically divide traffic to an AS and induce route fluttering, or 3) leverage

the name layer to help make decisions. In the third case, routers could select

an arbitrary set of bits in the destination host name and use these to divide

traffic. While such operations would be quick and avoid ASN growth, it would

add slight complication to forwarding operations.

An alternative to addressing the course-grain traffic engineering problem

would be to split each existing AS into multiple ASes, increasing the number

of forwarding table entries. Routers would then be able to use the ASN for

forwarding, yet retain fine-grain control. Accordingly, we must estimate such

growth when calculating the forwarding table size.

Today, a forwarding table entry at the core routers is comprised of IP prefix

and the associated next hop information. Under our architecture, it will be the

ASN and its associated next hop information. A simple way to estimate forward-

18

ing table sizes under our architecture would be to count the number of ASNs

advertised in the Internet and subtract the ASNs that exist solely for multi-

homing purposes. However, doing so would fail to account for growth caused

by traffic engineering, in which ASes use multiple distinct paths to route their

traffic. While simple load balancing can be accomplished in our scheme without

causing growth, other traffic engineering may cause growth in forwarding table

sizes and must be examined.

We now estimate the number of forwarding table entries under our scheme.

We find that even without optimizing modern routing for our architecture, for-

warding tables under our scheme would require 35.1% of the forwarding table

entries in modern routers, even after accounting for traffic engineering.

Methodology: To estimate the number of forwarding table entries in the pres-

ence of traffic engineering, we examined all update messages received by each of

the 42 vantage points in the Route Views Project during the month of Novem-

ber, 2008. For each update, we recorded the originating AS and the path used

to reach the advertised prefix. If a stored prefix was updated, we deleted the

old entry and stored the new entry. To exclude simple load balancing and solely

multi-homed stub ASes, which do not increase ASNs in our scheme, we applied

rewriting rules to the route updates. Specifically, load balanced IP prefixes were

rewritten as their aggregated prefix and solely multi-homed ASes were replaced

in the AS path by the appropriate provider AS for the prefix.

During a routing change, some updates to the prefixes for an AS may not be

atomic. Accordingly, some prefixes may be updated to the new path while others

still reflect the old path, leading to a temporary increase in path diversity for an

AS. We regard this transient state as an artifact of current routing practice and

not as a traffic engineering goal. To exclude this inflated diversity, we performed

periodic snapshots of the routing table after a brief period of inactivity. This

analysis allowed us to estimate the number of unique paths used to reach each

AS originating a prefix. Since each path is potentially an indication of traffic

engineering, it allowed us to estimate an upper bound on the number of entries

19

per ASN.

Results: Our data had information about 30,672 ASes and 288,685 prefixes.

We found that 27% of the ASes had a median of one unique route, indicating

that the AS path was identical for each prefix originated by that AS. These ASes

could be summarized by a single entry in the forwarding table. An additional

25% of ASes had a median of two unique routes, indicating that an extra AS

entry would be required to exactly duplicate modern traffic engineering goals.

In total, 76% of ASes would require 4 or fewer entries and 94% of ASes would

require 10 or fewer entries. Accounting for each extra entry due to traffic en-

gineering after excluding load-balancing and solely multi-homed ASNs yielded a

total of 101,310 entries, which was approximately 35.1% of the 288,685 prefixes

in the BGP forwarding tables at the time. This indicates that in spite of traf-

fic engineering, the forwarding tables at the core routers under our scheme will

have about one third the number of entries in the worst case.

4.3. Forwarding Table Lookup Performance

Today, forwarding table entries consist of IP prefixes of variable lengths and

routers perform a longest prefix match to determine the interface for a packet.

Under our scheme, packet forwarding will occur on fixed length ASNs. Now, we

examine the impact of this factor on packet forwarding speeds. We find that

ASN-based packet forwarding makes lookup and update operations an order of

magnitude faster while requiring less than one-third of the memory requirements

of IPv4 forwarding in software routers.

Methodology: Modern software routers use the trie data structure to perform

longest prefix matching on IP prefixes [24], which are variable in length. A trie

must perform O(log(n)) memory references, where n is the number of bits in an

IP address. These software routers are an important area of research where high

performance is required [25, 26]. However, hardware routers often use Ternary

Content Addressable Memory (TCAM) to store their forwarding tables to store

entries. With these data structure, each lookup can be performed in parallel and

still yield a constant lookup (O(1)). Unfortunately, TCAMs are 1) expensive to

20

produce, 2) limited in capacity, and 3) draw significant electricity, which is be-

coming an acute problem [27]. ASN-based routing differs from both approaches

because ASNs are fixed length. Thus, exactly one match has to be found. To

exploit the fixed-length nature of ASNs, we explore a hash table lookup method.

This approach requires a single memory reference in the absence of collisions,

yielding a performance of O(1). Accordingly, the performance of ASN-based

packet forwarding would be similar to simple hash table performance and could

be efficiently implemented with low SRAM density, yielding fast lookups with

lower cost and energy consumption. Because we lack access to tools for hard-

ware testing, we focus on comparing the software implementations of longest

prefix matching and ASN-based forwarding approaches.

Until 2006, ASNs were two bytes in size, allowing for direct indexing into the

forwarding table: the destination ASN could simply be used as an index into

an array of 216 entries. If each forwarding table entry required only four bytes

of next-hop information, this would require a mere 256KBytes, minimal com-

putation, and a single memory reference, yielding almost optimal performance.

Recently, 4-byte ASNs have become available [6]. Since this larger address

space was designed for future growth, it is essential to include the 4-byte rep-

resentations in our performance analysis. Accordingly, we assume 4-byte ASNs

subsequently.

To compare the performance of routing in our approach with current routing,

we use software implementations of lookup algorithms. In practice hardware im-

plementations are used to accelerate forwarding lookups because hardware can

yield faster memory accesses, can facilitate parallelism, and accelerate opera-

tions such as hashing. While we are unable to implement these approaches in

hardware, the software implementations serve as a lower-bound on performance

and can show the potential benefits of a new algorithm.

To evaluate the hashing approach, we use a hash table implementation, the

unordered map data structure from the TR1 C++ library, to store and access

entries. For a baseline comparison, we use a software implementation of a Tree

Bitmap trie for IPv4, which is described in detail in our prior work [4].

21

To populate the ASN-based hash table, we store an entry for each of the

ASNs required for the forwarding table described in Section 4.1. This requires

101,310 entries. For the IPv4 baseline, we load each of the prefixes found in a

November 15, 2008 routing table for a Route Views router, which is from the

same time as the ASN analysis. This routing table had 288,685 IP prefixes.

All performance tests were done on a machine with a Pentium IV 3.2 GHz

processor with 2GBytes RAM. To measure the timings, we use the RDTSC

instruction, which can be used to measure the elapsed cycle count, yielding

nanosecond timing resolution.

Results: In Table 1, we show the results of our ASN and IPv4 models. In the

second column of Table 1, we show the results of the ASN approach. We note

that this results in very low memory usage. The performance of this scheme

is excellent, requiring only 155ns on average to perform a lookup or an update

operation. In the third column, we show the results for the IPv4 baseline. We

can see that the IPv4 routing table requires over three times as much memory,

about 9.73 MBytes, and takes longer to perform a lookup, averaging about

1, 129 ns.

Forwarding Approach: ASNs IPv4
Number of entries: 101,310 288,685
Storage required (MBytes): 2.90 9.73
Lookup Times (ns):

Average: 155 1,129
Standard Dev.: 40 253
Minimum: 133 543

Update Times (ns):
Average: 157 4,018
Standard Dev.: 96 1,283
Minimum: 134 2,528

Table 1: Performance of ASN-based and IPv4 forwarding.

From this analysis, we confirm that ASN-based lookups have excellent per-

formance and with hardware optimizations may greatly accelerate the packet

lookup process, access control list (ACL) processing, and additional data-plane

operations, expediting packet forwarding.

22

5. Examining Host Names as Identifiers

Using host names as end-host identifiers impacts DNS latency only in posi-

tive ways. This is because in our scheme, locators exist at domain or sub-domain

granularity and requests need not be sent to remote authoritative DNS servers

for each individual record. Beyond this, the usual DNS caching practices today

continue to be effective and may be able to use longer TTLs since domains tend

not to change as frequently as individual records. Also, since the inter-domain

routing component of our architecture leverages the well-researched NIMROD,

LISP, eFIT, and ENCAPS-like proposals, we assume that inter-domain routing

is scalable. We now examine two other issues, namely, the impact of increased

layer three packet header size and feasibility of conducting intra-domain routing

on host names.

5.1. Packet Header Growth

Methodology: Using host names as addresses may result in higher packet

header overhead. In order to calculate this overhead, we need to know the

length of an average domain name. To determine this, we collected zone files

from the .com and .net generic top-level domains (gTLDs) on June 8, 2007.

These zone files contain each second level domain registered under these gTLDs

on that day. Ideally, we would have liked to have the zone files from the rest of

the gTLDs and all the country-code TLDs (ccTLDs). However, getting access to

that data was not possible. To compensate, we collected data from the DMOZ

Open Directory Project [28]. The project contains user submitted links and

is the largest and most comprehensive directory of the Web. Our input data,

collected on October 28, 2006, has 9,633,835 unique URLs and 2,711,181 unique

second and third-level domain names. We then combined the DMOZ data and

the zone file data, eliminating any duplicate domains. Combined, the data set

contained 79,088,314 unique domains. This represents a significant percentage

of the 128 million total domains in the Internet in June 2007. Using this data,

we determine the distribution of the number of characters in a domain name.

23

Results: While the maximum number of characters in a host name could be

255, individual labels separated by the ’.’ character could be up to 63 charac-

ters. In our data, the maximum length of any domain was 67 characters. The

distribution was roughly normal, with a median of 15 characters long, shown

in Figure 5. If hosts within domain names follow a similar pattern, the host

name would be a median of about 30 characters. Further, due to restrictions

in the DNS character set (only case-insensitive letters, numbers, dashes, and

periods are valid), only 6 bits are required to encode each character, resulting

in a 23 byte address. Along with an extra byte to encode the name’s length,

host addresses would be 24 bytes, which is 50% larger than an IPv6 address. If

the subnet ID and MAC were encoded in the host name as well, this would add

around 7 bytes, yielding a 31 byte name. While larger, these addresses can be

easily fit within modern packet size limitations.

Figure 5: Length of domain names in the Internet

5.2. Intra-domain Routing Scalability

In our architecture, once traffic reaches the destination network, it must be

forwarded based on its host name. Since destination networks may be large, we

must examine the issue of intra-domain scalability closely. Packet forwarding

24

would use three identifiers: 1) the host name, which a name server must be able

to quickly map to a subnet ID and MAC, 2) a subnet ID which must be quickly

routed, and 3) a MAC address for transmitting the packet at the last router.

Fortunately, these overheads are easily managed by a network.

Modern DNS servers must currently map a large number of host names to

lower level identifiers. In our approach, this step is even less work: the servers

would only store one record type, requiring only about 8 bytes of results for each

record (2 bytes for the subnet ID and 6 bytes for the MAC address). However,

these DNS servers would be provisioned on an AS-wide basis rather than tied

to individual domains. Large ASes with a large number of entries may need

multiple machines to store these records. However, since these entries can be

arbitrarily divided alphabetically, these lookups could easily be load-balanced

across multiple authoritative servers.

Routing on subnet IDs and MACs is straight-forward for routers. The subnet

IDs, which are likely to be 16 bits or smaller for most ASes. In such cases, direct

array indexing can be used, which requires only 384 KB of memory for 65,536

entries and yields almost optimal performance on routers. For MAC address

transmission, routers must simply copy the MAC address to the link layer,

eliminating the need for any mapping overheads.

6. Discussion of Issues

6.1. Integrating ASNs as Locators

Here, we discuss aspects of integrating ASNs as locators in the locator-

identifier split proposals. In some protocols, such as ENCAPS and LISP, the

IP packet header is reused for inter-domain routing in order to facilitate de-

ployment. In this case, the locators would be 4 byte values and be placed in

the IP header as source and destination addresses. Since both architectures

require packets to be encapsulated before they reach the inter-domain routers,

ASNs can be used directly as the locators without being confused with the IPv4

addresses used for end-hosts. Since the ASN fits into the IPv4 address space,

routers using modern IP forwarding can operate without changes. Protocols

25

that do not use IPv4 encapsulation have more latitude on how to incorporate

the ASN in their locators.

When forwarding packets, the routers simply consult the locator layer and

use the destination ASN address for packet forwarding. To make such decisions,

the routers must be able to map ASNs to out-going interfaces. BGP performs

such mapping from prefixes to out-going interfaces. In LISP and eFIT, the

forwarding table simply maps ASNs to out-going interfaces. When a router re-

ceives a packet destined to a host within its own ASN, it must remove the locator

layer and use the embedded network layer information to forward the packet to

the end-host. In our architecture, the hosts perform the mappings. However,

we justify this design decision by comparing push and pull-based mappings for

network-wide resolvers and showing the scalability benefits.

6.2. Pull vs. Push-based Databases

The database that maps end-host identifiers to host names is an important

consideration in our architecture and in locator-identifier split proposals. Some

approaches, such as LISP and CRIO [29], use a push-based mapping database.

These systems require routers to store mappings and perform them on any

packet that arrives. Other approaches, such as the DNS, ENCAPS, and our

architecture, use a pull-based mapping and request entries only when needed.

A pull-based approach can allow hosts to perform the mappings but does intro-

duce extra delay during connection establishment such as the DNS overheads

associated with the modern Internet. Given the importance of this mapping,

we examine whether our scheme would be viable with a push-based architecture

in which routers perform the mappings. We find that a pull-based database is

more scalable.

6.2.1. Push-based Databases

For small mapping databases, a push-based architecture offers greater per-

formance, since all entries are locally available. Unfortunately, as the mapping

database grows, the growth increases at each encapsulating router. The work by

Krioukov et al. [7] shows that such an approach for a mapping database cannot

26

scale long-term, threatening the entire scheme. Here, we look at the overheads

that would be incurred to support a push-based database.

Upon startup, all routers would have to learn about the domain name to ASN

mappings of existing domains. This could be a large amount of information given

the number of domain names in the Internet today. However, this information

is not required to be propagated often. The primary source of overhead comes

from the addition and deletion of domain names. (The actual domain name to

ASN mapping of a particular entry rarely changes.) These changes will have to

be propagated in a timely manner, though some delay is acceptable. We now

estimate the control plane overheads of these changes.

Data Used: Toward this goal, we take daily snapshots of the .com and

.net zone files from May 17, 2007 to May 24, 2007. These files contain the

domain names in these TLDs. We then compare each day with the previous

day and determine the number of changes (addition or deletion) between them.

This yields 7 snapshots of daily changes, shown in Table 2. Given that the .com

TLD is the biggest and the busiest [30], we hope to have captured the hardest

case.

Analysis: The first key observation from Table 2 is that millions of domains

get added or deleted each day in the .com and .net TLDs. Next, we estimate

how many new control plane packets will be needed to propagate these updates.

For that, we need to know the length of a domain name. From the analysis

in Section 5.1, we note the median character length of 15 characters. Using

this information, and the maximum Ethernet packet size of 1500 bytes, we esti-

mate the number of new update packets changes to domain names will require.

Table 2 shows the the number of update packets per day and per minute.

To put these update numbers in perspective, we compare them with the

BGP update rate. To do so, we examine the snapshots from the Route Views

Project [3] from February 15 to March 19, 2007. From this, we took the total

number of BGP updates per day for each of 46 sites and divided them evenly to

find the number of updates per second. Averaged across the sites, these results

showed a daily average of 51.3 updates per minute, with a standard deviation

27

Snapshot .com .net Total Required Updates
per Day per Minute

1 3,849,085 384,726 4,233,811 32,320 22.44
2 2,432,957 250,500 2,683,457 20,485 14.23
3 2,149,471 211,933 2,361,404 18,026 12.52
4 1,078,509 87,914 1,166,423 8,904 6.18
5 3,877,005 351,652 4,228,657 32,280 22.42
6 4,227,177 475,554 4,702,731 35,899 24.93
7 1,650,616 155,533 1,806,149 13,788 9.58

Table 2: Total changes in a day to the .com and .net zone files

of 24.21. The average maximum rate was 143.65 updates per minute. In fact,

the average minimum rate was 31.03 updates per minute, which is greater than

the maximum rate in a push-based scheme.

From these results, we find that a push-based database could be supported

for today’s Internet. However, the overheads incurred in maintaining these

records is on the same order as BGP updates, which are considered to occur at

an alarming rate. With the scalability concerns of such a database, we question

whether such an approach is viable in the long-term.

6.2.2. Pull-based Database

Pull-based mapping architectures have been successful on the Internet. The

DNS has demonstrated that pull-based architectures can easily scale to billions

of entries on modern hardware. By using a pull-based database for mapping

identifiers to locators, routers can scalably provide an encapsulation mapping.

Further, work on DNS has found that caching individual DNS records for popu-

lar destinations at edge networks has been quite effective in boosting resolution

performance [31]. In this section, we analyze whether such caching is also effec-

tive for domain to ASN mappings.

Data Used: To judge the effectiveness of caching domain name to ASN

mappings, we obtained a log of all the DNS requests for a week starting June

13th from clients within our department. These logs indicate the time the

request that was made and the hostname being resolved. Table 3 shows an

overview of the data. We note that the total number of unique domains queried

by hosts from within our department in an entire week is 4 orders of magnitude

28

less than the total number of domains on the Internet, which greatly supports

the caching approach.

Start Date June 13, 2007
End Date June 19, 2007
Number of Queries 2,991,793
Number of Domains Queried 29,947
Total Number of Domains 128 million

Table 3: DNS Query Information

Analysis: In Figure 6, we plot a cumulative distribution function (CDF) of

the percentage of DNS queries covered by the given percentage of DNS domains.

We note that this graph only shows the most popular 20% of domains, yet

reaches a coverage of 97% of the requests. In fact, caching only the 1, 200 most

popular domains (4% of the unique domains requested) would yield a theoretical

cache hit rate of 88.89%. These results are similar to the work in [31], which

found that the most popular 20% of host names accounted for about 80% of the

queries

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Percent of Domains

Figure 6: CDF of the percentage of DNS queries for top percentages of domains

While Figure 6 supports caching, it does not account for any churn in the

cache resulting from client usage, which could make it hard to leverage the

29

benefits of caching. To examine cache churn, we used a cache of 1, 200 entries.

(We realize that the limits we impose on the cache size are artificial since an

average edge router should be able to cache all the unique domains accessed in

our case. However, we use these limits to test cache churn anyway.) We found

that a simple cache using a least recently used (LRU) eviction policy achieves a

cache hit rate of 86.02% on our data. We conclude that caching popular domain

to ASN mappings appears to be a fruitful approach.

With the effectiveness of caching and lower mapping update overheads, we

recommend a pull-based database in resolvers in order to ensure scalability,

should hosts require such support.

6.3. Partial Deployment and Transition Plan

With all the networking infrastructure in place, any new Internet proposal

must be effective even when partially deployed. However, substantial changes to

IP routing have been successful, even though they are not as widely recognized.

Multiprotocol Label Switching (MPLS) [23] is commonly used in transit ASes

for traffic engineering. This protocol encapsulates IP traffic within an AS and

decapsulates the packets before leaving the AS. MPLS can be used both as a

tool and as a model for deployment of our architecture. While currently limited

to intra-domain traffic, AS numbers can be used as labels in MPLS and en-

able inter-domain MPLS deployments, allowing course-grain traffic engineering

without requiring packet encapsulation and decapsulation at each AS boundary.

The first AS in a string of MPLS-aware networks would effectively be perform-

ing the encapsulation step. In such an architecture, the MPLS header would

represent half of the ASN layer, providing the information for the destination,

but not the source. Before reaching the first legacy AS or after entering the

destination AS, the MPLS header would be stripped as it is today, with the

packet routed on the destination network layer address.

Leveraging inter-domain MPLS provides a transition plan for routing on

ASNs, allowing packets to cross multiple networks without consulting the net-

work layer. However, these routers should also implement a revision to the

30

protocol to allow a source ASN to be specified as well to later support end-

to-end deployments and avoid the mapping overheads at routers for replies.

With inter-domain MPLS and transit packet routing on ASNs, the network

layer header becomes decoupled from routing, allowing incremental partial de-

ployment between edge networks. For example, two networks could use IPv6

or name-based routing headers to communicate across a network-layer agnostic

core as long as both edge networks support the name layer protocols. This core

support is essential to innovations in host identification.

While the core routing infrastructure is being updated, hosts can begin sup-

porting the ASN header and the name-based routing headers. These hosts can

be provisioned with this support long before the protocol is used. IPv6, for

example, has had support in many modern operating systems for years, despite

its lack of widespread deployment. At the same time, name servers can be

provisioned with the extra DNS records required for configuring hosts, namely

the ASN records for domains. This information can be provided in response to

queries, but would not yet be used by hosts.

Once ASN header support is in place, edge networks can begin supporting

the name-based routing headers and subnet identifier mapping. These networks

can detect whether a given destination network 1) supports the name-based

routing header and 2) whether all transit networks on the path support the

ASN layer using BGP. Each originating AS can place a transitive, optional,

globally-reserved BGP Community value in their routing advertisements to in-

dicate the AS supports the name-based routing header. It would place an ad-

ditional non-transitive BGP Community value in the advertisement indicating

the full path to the AS is compliant. Any router receiving these Community val-

ues would forward the information indicating the originating AS is compliant.

Any router supporting ASN headers would place the BGP Community in the

advertisements they forward only if the incoming advertisement already had the

Community present. However, legacy routers would not add this Community

value in the announcements it forwards. Accordingly, if a route advertisement

arrives with both Community values, it indicates the originating AS supports

31

the ASN header and that all routers on the path to that AS do as well.

Once an AS has confirmed that a destination network and path support the

ASN header, it can allow its hosts to begin using the ASN and the name-based

routing headers. When a host performs a DNS request, the ISP’s DNS resolvers

act as a proxy for the request, caching results as needed. With help from

the inter-domain routers, these resolvers can determine whether the indicated

destination AS can be reached with the ASN and name-based routing layers. If

so, the resolver can add DNS records indicating this fact. The host can then

decide to either use legacy IP traffic or use the ASN and name-based routing

layers. These hosts could be configured with a default value to prioritize the

ASN/name-based routing approach after deployment is widespread.

Once most hosts have enabled support, organizations can begin removing

legacy IP addresses for individual hosts and begin leveraging techniques such as

NAT to provide backward compatibility to the remaining hosts using IP traffic.

Eventually, the IP traffic will decrease to the point where organizations can

discontinue IP usage, forcing the remaining hosts to upgrade.

While the transition from the modern IP network to name-based routing

will be slow, it can be done gracefully allowing networks to independently opt in

while facilitating pair-wise edge network deployment using inter-domain MPLS-

based ASN routing layer tunnels.

6.4. Host Mobility

Host mobility is becoming increasingly important with smaller devices that

travel from network to network. Approaches to separate location and identity

can naturally support mobility. The Mobile IP approach [32] is designed for

host mobility in IP networks and leverages tunneling. However, when NIMROD,

LISP, ENCAPS, or eFIT are used, the destination router can update the locators

in the inter-domain routing layer in packets destined to mobile hosts and forward

them to the host’s visiting network. In replies, the mobile host can include

the visiting network locator, allowing the other host to learn its new location,

and avoiding triangular routing. While our approach is compatible with host

32

mobility, the underlying inter-domain routing protocol is the appropriate place

to incorporate mobility functionality and we rely upon these mechanisms to

support it.

7. Related Work

In this work, we leverage ASNs for inter-domain routing and packet forward-

ing and use DNS host names for host identification. These identifiers have been

suggested in two prior works, HLP [17] and TRIAD [33, 34], respectively. In

HLP, the authors propose a successor to BGP which provides greater routing

scalability and uses announcements at the AS granularity rather than on in-

dividual IP prefixes. Our approach could directly leverage the HLP efforts to

perform inter-domain routing. However, HLP has a different goal than our work:

it seeks to prove the feasibility of a new routing protocol while our approach

assumes an existing routing protocol and discusses the changes needed to the

protocol to accommodate our new Internet design. While HLP is designed to

work with IP traffic and router forwarding tables would still need to map IP

addresses to prefixes, the protocol could be modified to incorporate ASN-based

forwarding tables as well. To a lesser extent, GIRO [35] leverages AS numbers

and combines them with geographical location to aid in shortest physical path

routing. While the GIRO scheme focuses on a different problem, our analysis

may provide insight on GIRO deployment.

In TRIAD, the authors proposed routing on domain names directly, with a

focus on content distribution and caching. The protocol performs name-based

routing above the network layer and uses IP addresses as ephermal routing

tags to forward packets between TRIAD hosts. Once the packet arrives at a

TRIAD host, that machine performs a name-based lookup to determine if it

has the content locally, and if not, locates the closest TRIAD node that is

likely to have the content. Our approach resembles TRIAD in that we use host

names for identifying hosts and we leverage network-layer tunneling to reach

the destination. However, the approaches are quite different: TRIAD aims to

maintain the existing IP scheme while our approach is designed to transition

33

away from IP addresses entirely. Our approach reduces the state at inter-domain

routers and expedites processing at intra-domain routers.

The coupling of locators (IP prefixes) and identifiers (IP addresses) in the

current Internet has been widely recognized as major weakness of the current

Internet architecture. Accordingly, multiple works have focused on separating

locators and identifiers, including eFIT [10], LISP [9], ENCAPS [11], and IS-

LAY [36]. We described them in detail in Section 2. In CRIO [29], the authors

utilize tunneling between points of presence, which are are far fewer than the

number of prefixes, yielding smaller forwarding tables sizes. The end goal of

each of these approaches is to reduce the number of entries in the forwarding

tables at the core routers.

Changes to end-host addressing has been the focus of several works, in-

cluding IPv6 [37], GSE [38], IPNL [39], SNF [40], Layered Naming [41], and

ROFL [42]. The goals in these works range from simply expanding the address

space, as in IPv6 and GSE, or showing that hierarchical addressing is not es-

sential for routing, such as in ROFL. In IPNL, the authors seek to formally

integrate NAT into the Internet by using encapsulation and manipulating DNS

behavior. In prior work [43], we examined the feasibility of using host names

directly for inter-domain packet forwarding. This analysis showed us that sim-

ply forwarding packets using host names would not scale across the Internet.

However, this work provided valuable background for this work. In HIP [44]

and AIP [45], the authors use public key cryptography to create secure host

identities. Seamless end host mobility has been a subject of research as well.

Works, such as FARA [46] and i3 [47], have focused on end-host mobility and

utilize rendezvous mechanisms to facilitate communication.

The compact routing field has evaluated the long-term scalability of many

routing approaches. In the work by Krioukov et al. [7], the authors note that

ASes are a natural choice for locators and that there are an order of magni-

tude fewer ASes than the number of announced prefixes. The transition to

ASNs would immediately reduce forwarding tables by an order of magnitude,

which would relieve our current concerns about router forwarding table capac-

34

ity. However, the authors caution that this could be simply a one-time benefit

and indicate that the rate of growth of ASes exceeds that of IP prefixes. While

raising this concern, the authors did not examine the causes of this AS growth.

However, upon considering the causes of growth, we find that under a split loca-

tor and identifier scheme using ASes several growth factors would be eliminated,

slowing ASN growth. Further, the Krioukov work also indicates the mapping

from identifiers to locators requires a global distributed mapping database, re-

ducing scalability. However, a pull-based database, such as the DNS, can per-

form these mappings in a scalable manner. Accordingly, we believe split locator

and identifier schemes merit consideration.

Other works provide insights on the design of next generation architectures.

In [48], the authors propose using resilient overlay networks to increase reliabil-

ity for end-hosts. In this system, end-hosts join small overlay networks which

have diverse network vantage points, generally allowing hosts to reach a desti-

nation assuming any physical connection exists to the destination. In [49], the

authors survey current architecture design options and implications, with a fo-

cus on allowing future evolution of the Internet. In [50], the authors advocate a

separation of infrastructure providers from service providers by creating virtual

networks and allowing infrastructure to be shared by multiple architectures.

8. Conclusion

IP addresses have been a cornerstone of the Internet for as long as we have

known the TCP/IP-based Internet. Both host names and autonomous system

numbers (ASNs) were added later: host names were added to provide users

with a mnemonic way of addressing machines and ASNs were added to make

BGP loop free. This paper explored a new Internet which breaks away from IP

addresses and instead embraces names as host identifiers and ASNs as locators.

This design decouples routing from addressing, which IP addresses (inadver-

tently) entangled. The outcome is a faster, expandable, and more scalable In-

ternet. We outlined the key features of our architecture and justified the choices

using actual data sets from the Internet. While there is still more work required

35

to test the feasibility and to make the architecture practical, we hope that this

paper will continue the discussion of the future of the Internet in the research

community.

Acknowledgments

We would like to thank Andrew Kalafut for his analysis of the changes in the

zone files. We would like to thank D. Kevin McGrath for providing the analysis

of BGP update messages. Finally, we would like to thank Rob Henderson for

providing the DNS data used in our cache examination.

References

[1] D. Meyer, L. Zhang, K. Fall, Report from the IAB Workshop on Routing

and Addressing, IETF RFC 4984 (Sep. 2007).

[2] R. Hinden, S. Deering, E. Nordmark, IPv6 global unicast address format,

IETF RFC 3587 (Aug. 2003).

[3] University of Oregon Advanced Network Technology Center, Route Views

project, http://www.routeviews.org/.

[4] C. Shue, M. Gupta, Projecting IPv6 forwarding characteristics under

Internet-wide deployment, in: ACM SIGCOMM IPv6 Workshop, 2007.

[5] Potaroo, Bgp routing table analysis reports, http://bgp.potaroo.net/

(2008).

[6] Potaroo, The 32-bit AS number report, http://www.potaroo.net/tools/

asn32/index.html (2008).

[7] D. Krioukov, K. Claffy, K. Fall, A. Brady, On compact routing for the

Internet, in: ACM SIGCOMM Computer Communications Review (CCR),

2007.

[8] I. Castineyra, N. Chiappa, M. Steenstrup, The Nimrod routing architec-

ture, IETF RFC 1992 (Aug. 1996).

36

[9] D. Farinacci, V. Fuller, D. Oran, D. Meyer, S. Brim, Locator/ID separation

protocol (LISP), IETF Internet Draft (Jul. 2008).

[10] D. Massey, L. Wang, B. Zhang, L. Zhang, A scalable routing system design

for future Internet, in: ACM SIGCOMM Workshop on IPv6 and the Future

of the Internet, 2007.

[11] R. Hinden, New scheme for Internet routing and addressing (ENCAPS) for

IPNG, IETF RFC 1955 (Jun. 1996).

[12] L. Zhang, S. Brim, A taxonomy for new routing and addressing architecture

designs, IETF Internet Draft draft-rrg-taxonomy-00.txt (Mar. 2008).

[13] P. Mockapetris, Domain names - implementation and specification, IETF

RFC 1035 (Nov. 1987).

[14] T. Bu, L. Gao, D. Towsley, On characterizing BGP routing table growth,

Computer Networks 45 (1) (2004) 45 – 54.

[15] D. Jen, M. Meisel, D. Massey, L. Wang, B. Zhang, L. Zhang, APT: A

practical transit mapping service, IETF Internet Draft (Nov. 2007).

[16] E. Lear, NERD: A not-so-novel EID to RLOC database, IETF Internet

Draft (Sep. 2007).

[17] L. Subramanian, M. Caesar, C. Ee, M. Handley, M. Mao, S. Shenker,

I. Stoica, HLP: A next generation inter-domain routing protocol, in: ACM

SIGCOMM, 2005.

[18] C. Shue, A. Kalafut, M. Gupta, The Web is smaller than it seems, in: ACM

SIGCOMM Internet Measurement Conference (IMC), 2007.

[19] A. Kalafut, C. Shue, M. Gupta, Understanding the implications of DNS

server provisioning, in: ACM SIGCOMM Internet Measurement Confer-

ence (IMC), 2008.

37

[20] A. Dhamdhere, C. Dovrolis, Ten years in the evolution of the internet

ecosystem, in: IMC ’08: Proceedings of the 8th ACM SIGCOMM con-

ference on Internet measurement, ACM, New York, NY, USA, 2008, pp.

183–196. doi:http://doi.acm.org/10.1145/1452520.1452543.

[21] G. Huston, Analyzing the Internet’s BGP routing table, The Internet Pro-

tocol Journal 4 (1).

[22] G. Huston, Exploring Autonomous System numbers, The Internet Protocol

Journal 9 (1).

[23] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol label switching archi-

tecture, IETF RFC 3031 (Jan. 2001).

[24] G. Varghese, Recent research directions, http://www-cse.ucsd.edu/

users/varghese/research.html (2004).

[25] J. Naous, G. Gibb, S. Bolouki, N. McKeown, NetFPGA: Reusable router

architecture for experimental research, in: ACM SIGCOMM Workshop on

Programmable Routers for Extensible Services of Tomorrow, 2008.

[26] K. Argyraki, S. A. Baset, B. Chun, K. Fall, G. Iannaccone, A. Knies,

E. Kohler, M. Manesh, S. Nedveschi, S. Ratnasamy, Can software routers

scale?, in: ACM SIGCOMM Workshop on Programmable Routers for Ex-

tensible Services of Tomorrow, 2008.

[27] R. Bolla, R. Bruschi, F. Davoli, A. Ranieri, Energy-aware performance

optimization for next-generation green network equipment, in: ACM SIG-

COMM Workshop on Programmable Routers for Extensible Services of

Tomorrow, 2008.

[28] DMOZ, Open directory project, http://www.dmoz.org/.

[29] X. Zhang, P. Francis, J. Wang, K. Yoshida, Scaling global IP routing with

the core router-integrated overlay, in: IEEE International Conference on

Network Protocols (ICNP), 2006.

38

[30] VeriSign, Domain name industry brief, http://www.verisign.com/

static/042161.pdf (Jun. 2007).

[31] J. Jung, E. Sit, H. Balakrishnan, R. Morris, DNS performance and the effec-

tiveness of caching, in: ACM SIGCOMM Internet Measurement Workshop,

2001.

[32] C. Perkins, IP mobility support for IPv4, IETF RFC 3344 (Aug. 2002).

[33] D. Cheriton, M. Gritter, TRIAD: A new next generation Internet architec-

ture, Tech. rep., Stanford Computer Science (March 2000).

[34] M. Gritter, D. Cheriton, An architecture for content routing support in the

Internet, in: USENIX Symposium on Internet Technologies and Systems

(USITS), 2001.

[35] R. Oliveira, M. Lad, B. Zhang, L. Zhang, Geographically informed inter-

domain routing, in: IEEE International Conference on Network Protocols

(ICNP), 2007.

[36] F. Kastenholz, ISLAY: A new routing and addressing architecture, IETF

Internet Draft (May 2002).

[37] S. Deering, R. Hinden, Internet protocol, version 6 (IPv6) specification,

IETF RFC 2460 (Dec. 1998).

[38] M. O’Dell, GSE - an alternate addressing architecture for IPv6, IETF In-

ternet Draft (Feb. 1997).

[39] P. Francis, R. Gummadi, IPNL: A NAT-extended Internet architecture, in:

ACM SIGCOMM, 2002.

[40] A. Jonsson, M. Folke, B. Ahlgren, The split naming/forwarding network

architecture, in: Swedish National Computer Networking Workshop, 2003.

[41] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Sto-

ica, M. Walfish, A layered naming architecture for the Internet, in: ACM

SIGCOMM Computer Communications Review (CCR), 2004.

39

[42] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica,

S. Shenker, ROFL: Routing on flat labels, in: ACM SIGCOMM, 2006.

[43] C. Shue, M. Gupta, Packet forwarding: Name-based vs. prefix-based, in:

IEEE Global Internet (GI) Symposium, 2007.

[44] R. Moskowitz, P. Nikander, Host identity protocol (HIP) architecture,

IETF RFC 4423 (May 2006).

[45] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,

S. Shenker, Accountable Internet protocol (AIP), in: ACM SIGCOMM,

2008.

[46] D. Clark, R. Braden, A. Falk, V. Pingali, FARA: Reorganizing the address-

ing architecture, in: ACM SIGCOMM Computer Communications Review

(CCR), 2003.

[47] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, Internet indirection

infrastructure, in: ACM SIGCOMM, 2006.

[48] D. Andersen, H. Balakrishnan, M. F. Kaashoek, R. Morris, The case for

resilient overlay networks, in: IEEE Workshop on Hot Topics in Operating

Systems, 2001.

[49] S. Ratnasamy, S. Shenker, S. McCann, Towards an evolvable Internet ar-

chitecture, in: ACM SIGCOMM, 2005.

[50] N. Feamster, L. Gao, J. Rexford, How to lease the Internet in your spare

time, ACM SIGCOMM Computer Communications Review (CCR) 37 (1)

(2007) 61–64. doi:http://doi.acm.org/10.1145/1198255.1198265.

40

