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Abstract— Routers in the Internet do not perform any verifi-
cation of the source IP address contained in the packets, leading
to the possibility of IP spoofing. The lack of such verification
opens the door for a variety of vulnerabilities, including denial-of-
service (DoS) and man-in-the-middle attacks. Currently proposed
spoofing prevention approaches either focus on protecting only
the target of such attacks and not the routing fabric used to
forward spoofed packets, or fail under commonly occurring
situations like path asymmetry. With incremental deployability
in mind, this paper presents two complementary hop-wise packet
tagging approaches that equip the routers to drop spoofed
packets close to their point of origin. Our simulations show that
these approaches dramatically reduce the amount of spoofing
possible even under partial deployment.

I. I NTRODUCTION

Packet forwarding in the Internet is based only on the
destination IP address contained in the packet. This permits
forging of the source IP address, commonly referred to as
IP spoofing. With as much as a quarter of the Internet able
to spoof [1], IP spoofing is a boon for miscreants. Perhaps
the most well-known misuse of IP spoofing is in launching
denial-of-service (DoS) attacks on critical infrastructure such
as Web and DNS servers, as evidenced by backscatter analy-
sis [2], [3]. Another avenue made possible by spoofing is that
of illegal content distribution. UDP-based peer-to-peer (p2p)
applications that exploit IP spoofing to mask the identity of
the sender already exist [4], [5] and it is only a matter of time
before illegal content distribution with spoofing becomes an
attractive proposition.

In light of the legal and security-related violations that
are possible with spoofing, the prevention of spoofing in the
Internet is an urgent need. Present approaches to curb IP
spoofing can be broadly divided into two categories:traceback
techniques and prevention techniques. The traceback tech-
niques [6], [7], [8], [9], [10], [11], [12] can trace packet paths
and help in identifying the perpetrators of the DoS attacks
with a high probability. These can be useful forensic tools
in law enforcement but do nothing to prevent the occurrence
of IP spoofing. Among the spoofing prevention techniques,
many focus on shielding the destination from IP spoofing [13],
[14], [15], [16], [17]. Their shortcoming lies in the observation
that they fail to protect the Internet routing fabric from
being misused in forwarding spoofed packets. The rest of
the spoofing prevention techniques possess the ideal goal of
preventing spoofing near its source. However, among these,
the filtering techniques [18], [19], [20], [21] suffer from two
main drawbacks: 1) they can potentially drop valid packets in

the face ofrouting asymmetries, a common occurrence in the
Internet and 2) they are primarily a goodwill gesture and fail
to protect the implementing domains from being spoofed. The
remaining techniques either require full deployment [22] or
the presence of a key distribution infrastructure [23].

With an expectation of prolonged partial deployment in
mind, we present a comprehensive solution to prevent IP
spoofing in the Internet. Our work is motivated by two main
goals. The first is todrop spoofed packets as close to their
origin as possible, while protecting all valid packets, even
in the face of routing asymmetries. The second goal is to
incentivize deployment and accomplish the above filtering
without requiring any infrastructure beyond what is used in
the Internet for routing packets today. It is the latter goal that
caused us to choose practical security over provable security
and impacted many of the choices made in the work presented
here. An example of one of the choices is our decision to not
use cryptographic primitives in our solution.

Our solution consists of two approaches. In the first ap-
proach,definitive packet tagging, implementing routers close
to the end-hosts guarantee that hosts in their domain are not
spoofing anyone from outside their domain. They signal this
by tagging un-spoofed packets from the network prefixes they
originate. These tags are used by the subsequent implementing
routers on the path to the destination, which verify the tags
and drop packets that are either incorrectly tagged or lack
tags when they should be tagged. This hop-wise verification
process protects all valid packets while dropping all other
packets that attempt to spoof IP addresses from domains
that implement definitive packet tagging. After verification,
each implementing router, except for the last one before the
destination, re-tags the packets with a tag of its own before
forwarding the packets towards their destinations. The re-
tagging process keeps the number of tags each implementing
router has to remember to just the neighboring implementing
routers and also limits the damage in the event such a router is
compromised. Finally, the last implementing router towardthe
destination is responsible for stripping off any tags contained
in the packets to ensure that the end-hosts do not steal them.
We propose two methods to avoid requiring the presence of
any additional infrastructure to support tag exchange among
neighboring implementing routers. The first method utilizes
border gateway protocol (BGP) route announcements to dis-
tribute the tags for various network prefixes. This method
has minimal additional overhead but fails to provide correct
tags in cases where routes are asymmetric or suppressed due



to routing policies. For such cases, we develop a second
technique, called therecursive router challenge, that facili-
tates the learning of tags for prefixes on-demand. Under this
technique, which is modeled after thetraceroute[24] utility,
a router issues challenges of increasing depths upon receiving
an unexpected tag.

The second spoofing prevention approach,deductive packet
tagging, complements the definitive packet tagging approach
and is useful under partial deployment scenarios. Under deduc-
tive packet tagging, deploying routers can verify and tag traffic
from nearby legacy domains that do not deploy definitive
packet tagging. We develop a technique calledhost probingto
allow routers deploying deductive packet tagging to learn the
validity of traffic before tagging it as valid. The host probing
technique is a variant of theTCP intercept[13] technique
which many routers implement today. In our technique, the
implementing router interferes with the TCP handshake pro-
cess of a randomly chosen host to verify tags for a network
prefix. However, unlike the TCP intercept, a host probing
router does not attempt to stitch the subsequent part of the
TCP connection.

Our approaches drop spoofed traffic near its origin and
prevent attacks not just on the end-hosts, but also on the
Internet infrastructure. Further, they incentivize deployment
by protecting the deploying domains from being spoofed. We
examine various aspects of our solution using GT-ITM [25]
topologies and Skitter data [26]. In particular, we find for GT-
ITM that when a mere10% of the domains deploy definitive
packet tagging,44% of networks are prevented from spoofing a
deploying system. The results were even more encouraging for
Skitter data, where at10% deployment,83% of the networks
could not spoof a deploying network. When deductive packet
tagging was used as well, the legacy networks that encountered
a deploying router were further limited in their ability to spoof.

The rest of this paper is organized as follows. In Sections II
and III, we describe the proposed approaches. Deployment
considerations are addressed in Section V and Section VI
highlights related work. Evaluation of the proposed approaches
is described in Section IV. Finally, Section VII concludes the
paper.

II. D EFINITIVE PACKET TAGGING

Routers deploying the definitive packet tagging approach
verify that the source address contained in each incoming
packet is not spoofed before they forward them towards their
destination. (These, and the other changes required to the
router functionality, are summarized in Section V.) The rest of
the routers in the Internet, including some even in deploying
domains, continue to forward packets as they do today. We
now describe various aspects of this approach. Throughout this
paper, we assume an adversarial model where any number of
end-hosts can be compromised but the routers, in general, are
trustworthy. The implications of untrustworthy routers inare
discussed in Section V.

A. Decision Process at a Deploying Router

A domain deploying definitive packet tagging first has to
select the routers whose functionality will be enhanced. The
set of routers should be selected so as to guarantee that every
packet that either originates from that domain or enters it will
pass through at least one deploying router. In a typical domain,
routers running external BGP (eBGP) act as border routers.
Thus, eBGP routers are a practical choice for the enhanced
functionality. Each deploying router independently picksa bit
string for each of its interfaces. This string is used to tag
packets leaving the router1.

Figure 1 depicts the decision process at a deploying router.
For traffic originating from within the domain2, the router
uses knowledge about the prefix ranges belonging to its own
domain to drop spoofed packets. For packets arriving from
other domains, the deploying router first checks if it has any
tag records stored for neighboring routers, possibly multiple
records for each [source address prefix, incoming interface]
pair. (Multiple tags can exist for each [source address prefix,
incoming interface] combination due to multi-homing and
load balancing. Our approach allows routers to learn and
store all such combinations, ensuring correct operation even
in the case of path asymmetry, multi-homing, load balancing
or pathologies, such as route flapping. We discuss how tags
of neighboring BGP routers are learned and where they are
stored in Section II-B.) If no tag records exist, the router has
no means of distinguishing a spoofed packet from a packet
that comes from a domain that does not implement definitive
packet tagging. Such packets are forwarded as they would be
today. If at least one tag record exists, the packet must contain
a valid tag. The packet is considered spoofed (and is dropped)
if the tag contained in the packet either does not match any of
the tags stored at the router or if the packet lacks a tag when
it should have one3.

Each packet that passes the above check is forwarded.
Before forwarding, the router strips the existing tag. Also, in
the event the router knows that the packet would encounter
another implementing router while en-route to the destination,
the local tag corresponding to the outgoing interface is placed
in the packet. The process of tag stripping and conditional
re-tagging ensures that the end-hosts receiving the packets do
not steal router tags, which can be misused for spoofing. In
Section II-B, we discuss how the routers find out whether
another implementing router would be encountered in the path
toward destination and where this information is stored.

B. Learning Tags and Deployment Status of Neighbors

Each deploying router needs to know two pieces of infor-
mation for processing incoming packets: 1) the tags of neigh-

1This process may require a packet to be tagged twice while traversing the
same AS. While this may seem unnecessary, this results in a limited scope
of each tag, which results in greater security.

2Edge routers have different interfaces for traffic originating from within the
domain and the traffic entering the domain from outside. Thus, these routers
can easily distinguish between these two types of traffic.

3Packets containing source or destination IP addresses frominvalid prefix
ranges should be dropped by each router and it is possible to do it today.



Fig. 1. Flow chart of the definitive packet tagging process.

boring deploying routers (these are the tags incoming packets
would contain) and 2) whether the packets would encounter
another deploying router on the path to the destination (for
deciding whether or not to put its own tag in outgoing packets).
Various options exist for learning tags and deployment status
of neighboring routers, such as those proposed for securing
BGP [27]. However, they all require additional infrastructure,
which could hinder deployment. Consequently, we propose
two methods for gathering the required pieces of information.
These methods are described in Sections II-B.1 and II-B.2.

An important consideration is that of storing the information
gathered about deployment status and tags of neighboring
routers. Various options exist: The routers can store the de-
ployment status for each destination prefix in the forwarding
information base (FIB) by simply incorporating an extra bit.
The FIB is an obvious choice because this information is
needed while forwarding packets, during which the FIB is
consulted anyway. However, the FIB is not suited for storing
tags of neighboring routers because multiple tags can exist
for each [source address prefix, incoming interface] combina-
tion. This will complicate the current FIB forwarding, which
expects just one entry for each prefix unless load balancing
is in use. For storing the tags of neighboring routers, we
introduce an additional data structure, called thetag table,
which is consulted for each incoming packet. This table is very
similar to the FIB and even indexed by network prefixes. The
only difference is that the tag table stores incoming interfaces
and tags corresponding to each prefix instead of the outgoing
interface as the FIB does.

1) Leveraging BGP Route Announcements: BGP an-
nouncements are primarily used to convey the autonomous
system (AS) path information for the announced pre-
fixes. However, BGP also supports the COMMUNITIES at-
tributes [28], which are widely used for implementing policy
routing. These attributes could be used to distribute tags and
1-bit deployment status among neighboring deploying routers.
Unfortunately, the basic COMMUNITIES attribute is only32

bits in size and many of the values are already standardized.
This leaves us with very few usable bits and hence very little
security. As a result, it is not a compelling option for tag
distribution.

Fortunately, BGP also allows for EXTENDED COMMU-
NITIES attributes [29] which are now supported by all major

vendors. This allows creation of anopaque extended commu-
nity with a 48-bit value field. This value field could contain the
tag used by the last deploying router and its 1-bit deployment
status. If better security is desired beyond the 47-bit tags, a
deploying router could use the value field to send its own IP
addresses instead, allowing the next deploying router to send
a special packet directly to learn the tag.

The use of EXTENDED COMMUNITIES attributes allows
for a peaceful co-existence with legacy routers. Because
these community attributes are optional and transitive, legacy
systems would simply ignore this extra information, but still
propagate it further when re-announcing routes.

Though elegant and simple, the BGP route announcements
fail to distribute the required information among neighboring
deploying routers in two scenarios. First, under asymmetric
routing conditions, the tags and arrival interfaces learned
would be incorrect (though the deployment status will stillbe
learned correctly). Second, the suppression of route announce-
ments due to route export policies can prevent routers from
announcing certain routes to other routers. This can prevent
deploying routers from receiving the required information
about many prefixes. To overcome these limitations, we have
developed therecursive router challengetechnique, which we
describe next.

2) Recursive Router Challenges: The recursive router
challenge technique allows a router to learn the deployment
status and tags of its neighboring deploying routers on-
demand. Short of knowing the routing policies of its neighbors,
the best way to learn this information is at the granularity of
the source address prefixes contained in incoming IP packets.

We model the recursive router challenge technique after the
traceroute[24] utility. In order to verify the tag corresponding
to a [source address prefix, incoming interface] pair, a router
creates a UDP packet with adepth field and nonce value.
The source IP address in the packet is that of the initiating
router and the destination address is that of a random host
in the prefix range whose tag is to be verified. Choosing a
random host minimizes the risk of an attacker trying to fool
routers into learning tags when no deploying router exists in
the path. The random nonce value is used to prove the liveness
of the challenged router’s response. Each deploying router
that encounters this UDP packet decrements the depth field
before sending it towards its destination. However, if the depth



becomes zero when decremented, the receiving router swaps
the source and destination IP addresses in the packet and routes
the packet as it normally would. When the swapped packet
travels to the initiating router, it follows the path packets whose
tag is to be verified would have taken and thus contains the tag
of the last deploying router. This allows the initiating router
to validate the intended tag even when routes are asymmetric.

Just as in the case oftraceroute, the initiating router starts
with a depth field of one and increments up to a fixed
maximum configured value4 if the tag it receives in reply to the
challenge does not match the tag it attempted to verify. Beyond
the maximum possible value of the depth field, the initiator
assumes the lack of an implementing router and assumes that
the tag it set out to validate was incorrect.

Clearly, while a router is verifying the tag contained in a
packet using the recursive router challenge technique,it cannot
hold the incoming packetbecause this could incur large delays.
To avoid this situation, definitive packet tagging operates
in two modes: astart-up mode, in which no packets are
dropped and each tagged packet is re-tagged, and astandard
modewhere the router has learned all the relevant tags and
deployment statuses. The start-up mode allows a router to
avoid dropping valid traffic immediately after booting. The
standard mode can be used to prevent spoofing once the router
has been operating long enough to accumulate an extensive
amount of information.

Determining when a deploying router can transition from
start-up to standard mode would largely be an engineering
decision. An approach similar to thehot standbyprotocol [30]
can help a faster transition to the standard mode if routes
are booted up with the necessary information about tags and
deployment status (such as from a previous run in case of a
reboot). Alternately, the core routers could track the percentage
of packets (later confirmed as valid) that would be discarded
by switching to standard mode. When this percentage drops
below a certain percentage (e.g.,0.01%), the router would
transition to standard mode.

We note that recursive router challenges are required only
when a route changes. Typically, when a route change occurs,
the new route is selected from a small number of alternate
routes, such as when route flapping occurs [31]. If our ap-
proach learns each of these alternate routes, due to previous
route changes, when future route changes occur, they will not
result in the loss of legitimate packets. Additionally, when
route changes are detected by BGP, routers could temporarily
drop into start-up mode to learn any new tags that result from
the change.

An important concern is malicious hosts issuing router
challenges to learn router markings. Routers deploying defini-
tive packet marking prevent such occurrences from hosts on
their networks by dropping packets containing recursive router
challenges. They also drop such packets if they know they are
the last deploying router on the path to the requester’s prefix.

4The maximum value would be configured much like how hosts choose an
initial TTL value in their packets: the value should be big enough to reach the
destination but small enough to give up after a reasonable number of tries.

Hosts not covered by these scenarios can issue challenges.
However, as our simulations later show, information gathered
through such challenges are not useful in a vast number of
cases.

C. Tag Theft

Our discussion thus far indicates that tags need to be
available only to legitimate routers. While ideal, there are
circumstances in which tags can be stolen by malicious users.
We now briefly explore ways tags can be stolen.

Tag theft can occur in a few different ways. First, a compro-
mised or malicious router could publicly share all of the tags it
sees. Second, end-hosts in edge networks without a deploying
router may be able to see some tags. When sending packets,
edge network routers will tag packets unless they know the
destination network lies on a path without a deploying router.
This is required since edge routers do not have full deployment
status information. If another deploying router exists on the
path to the destination, it can remove the tag. Otherwise, the
packet reaches the destination network with the tag in place. At
this point, it is trivial for the host to “steal” the tag. A variant
on this second approach allows end-hosts to proactively issue
recursive router challenges to these destination networks. But
again, the challenge must traverse an all-legacy path before
reaching a compliant router in a different edge network.

While tag theft is clearly undesirable, it would not im-
mediately undermine the approach as a whole, as we show
in Section IV-C. Intuitively, tags have only local signifi-
cance, since each tag is specific to a given router’s out-
going interface and because each compliant router performsre-
tagging. Accordingly, the network topology and packet routing
significantly curtails the number of hosts that can abuse a tag,
should it be stolen.

III. D EDUCTIVE PACKET TAGGING

The definitive packet tagging approach reduces spoofing by
preventing deploying networks from being spoofed and from
being able to spoof addresses. However, it does nothing to curb
the spoofing of IP addresses belonging to legacy networks,
which can happen when definitive packet tagging is partially
deployed. To limit spoofing attempts by legacy networks, we
propose an optional and complementary approach calledde-
ductive packet tagging, to be deployed by the same routers that
would deploy definitive packet tagging. The deductive packet
tagging approach allows near-by upstream deploying routers
to verify and tag a legacy network’s traffic. This approach can
provide significant spoofing protection by exploiting the tree-
like branching of edge networks; a single edge router near the
core can provide most of the benefits of the definitive approach
to numerous edge networks.

Before a router can tag outgoing packets deductively, it
needs to determine the valid prefixes from which un-spoofed
packets can arrive. This task was trivial under definitive packet
tagging because routers knew which prefixes could originate
from their domains. However, it is not simple to determine this
information for traffic originating in other domains. To infer



valid prefixes belonging to legacy domains, we propose a tech-
nique calledhost probing, which we describe in Section III-A.
After verification, the router adds the [verified source address
prefix, incoming interface] combination to its tag table with a
blank tag. Any un-tagged packets arriving from a prefix and
interface that has a blank tag table entry would subsequently
be tagged deductively. Subsequent deploying routers would
verify this tag as if it were a definitive tag.

A. Host Probing Technique

The host probing technique is a variant of the TCP intercept
technique [13] which is deployed by many routers in the
Internet today. In this discussion, we focus on TCP for ease of
exposition; however, we note that our approach can be adopted
to any protocol that has a request-response nature. In TCP
intercept, a local router at the receiver mimics the destination
host and performs a TCP handshake with the sender. If the
handshake succeeds, it becomes confident that the sender is
indeed interested in a two-way connection. At that time, the
TCP intercepting router “stitches” the connection betweenthe
sender and the receiver. The stitching process requires the
router to be involved throughout the duration of the connec-
tion. Host probing differs from TCP intercept in that the router
does not perform connection stitching, avoiding the costs of
long-term connection mapping. Instead, it immediately resets
successfully verified connections after the TCP handshake
stage. This interferes minimally with connection performance
because the source can simply retry the connection.

In particular, in host probing, for each selected TCP SYN
packet, a deploying router interferes with the connection
establishment by mimicking the packet’s destination: it does
not forward the original handshake packet to the destination
and instead sends a reply packet with both the SYN and the
ACK flags set. The router then awaits a reply to the packet on
the interface the SYN originally arrived on. If a reply returns
within a timeout, and the acknowledgment number correctly
corresponds to the sequence number the router previously sent,
the router issues a RST packet to the source and records a
blank tag as valid for the prefix on the given interface. A TCP
connection would then attempt to retry the connection. In [32],
the authors find resets in 15-25% of the TCP connections.
Since host probing is designed to be a rare event, our technique
is unlikely to significantly impact this rate.

Deploying routers probabilistically decide which destination
address to target for host probing. This is to avoid learning
incorrect prefixes from packets generated by a determined
attacker. Finally, the host probing technique relies upon a
protocol handshake to succeed. While it is possible that a
network will never send traffic with handshakes, this scenario
is unlikely given the current ubiquity of connection-oriented
protocols. If no handshaking protocols exist, echo requests,
such as those using ICMP, would be sufficient to verify a host.
However, if such approaches failed, manual configuration of
valid prefixes would be required.

Finally, when performing a host probe, a router must store
a small amount of connection information for a short period.

This information includes the source IP address and the
sequence number the router placed in its SYN+ACK packet.
This 8 byte value would be stored for a few round-trip times
from the initiating host before being expired. Even if several
thousand host probes are being conducted simultaneously, the
memory required to store the relevant information is only of
the order of a few tens of KBytes. Further, to completely avoid
saving state, the SYN cookie approach could be used [33].

While the neighbors of a deductively tagging router would
often be able to use the BGP communities and recursive router
challenges to verify the deductively tagging router, thereare
cases where this could fail and the neighboring routers would
need to resort to using the host probing approach. Specifically,
if a legacy AS is multi-homed, a recursive router challenge
may be unable to elicit a response that returns using the
secondary route. In this case, challenging router must instead
resort to a host-probe on packets arriving using the secondary
route.

We note that the host probing technique is a last resort; it is
used only used with legacy domains and only when BGP does
not provide sufficient information about the available prefixes.
Further, the host probe only needs to be issued once per prefix
to confirm availability. Because host probing will be infrequent
and because it exploits connection establishment, we believe
it would be low overhead and would not pose a significant
burden for end-hosts.

IV. EVALUATION

We evaluated the proposed approaches for 1) their effec-
tiveness in preventing spoofing, 2) the extent of tag theft
possible and the extent to which stolen tags can be used
for spoofing, and 3) the overheads incurred by deploying
routers in learning tags of other deploying routers. The key
results from our analysis are: 1) deductive and definitive
packet tagging approaches effectively prevent legacy networks
from spoofing deploying networks even at low deployment, 2)
even if networks steal tags (and share them), only a small
percentage is actually able to misuse stolen tags, and 3) the
overheads for learning tags are proportionate to the numberof
prefixes to which routers send traffic.

A. Simulation Configuration

We conducted our simulations on transit-stub GT-ITM [25]
graphs of sizes10, 500, 21, 000, and 31, 500 routers; and
Internet topology maps of size70, 000 routers, obtained from
the ARIN site of the Skitter project [26]. The GT-ITM tool
grouped the routers into domains, which we used to make au-
tonomous systems (ASes). For the Skitter graphs, we grouped
the routers into ASes by their respective /24 prefixes. For each
topology, we varied the percentage of the compliant ASes to
simulate different levels of partial deployment in the Internet.
We used an AS-level granularity because adoption is likely
to occur at this granularity. All routers within a deploying
AS were assumed to be deploying. All routers used a basic
shortest-path first algorithm to construct their routing tables.



Fig. 2. Percentage of networks that are able
to spoof no one, only legacy networks, andall
networks under definitive packet tagging (10,500
node GT-ITM topology).

Fig. 3. Percentage of networks that are able
to spoof no one, only legacy networks, andall
networks under definitive packet tagging (70,000
node Skitter topology).

Fig. 4. Percentage of networks that are able to
spoofno one, only neighboring legacynetworks,
other legacynetworks, andall networks under
deductive packet tagging (10,500 node GT-ITM
topology).

Since the functionality of core and edge routers differs at
times (e.g., edge routers do not store the deployment status
beyond their FIB entries, implying that they re-tag all packets
when using their default routes), we labeled some routers as
core in our simulations. The rest were assumed to be edge
routers. The core was defined dynamically based on a percent-
age of the path length from the source to the destination. We
varied the core percentage. The non-core routers on the path
were equally divided as source and destination edge routers.
In particular, we assumed that the first set of routers on the
path to destination were source edge routers, the next set was
core routers, and the final set was destination edge routers.

B. Effectiveness in Preventing Spoofing

We examined the effectiveness of both the definitive and
deductive packet tagging approaches for both the GT-ITM
and Skitter topologies. We classified networks into three
categories: those that can spoofno one, those that can spoof
legacynetworks (but not deploying networks), and those that
can spoof both legacy and deploying networks (all).

Figure 2 shows the effectiveness of the definitive packet
tagging approach for a10, 500 node GT-ITM topology when
the core is estimated at60% of the network. The results are
based on3, 200 random samplings of source and destination
pairs. The 95% confidence intervals for the mean values
presented in Figure 2 varied between±0.00% and±1.03% of
the mean. In particular,at 10% deployment, about44% of the
networks are prevented from spoofing deploying networks. Of
these44% of networks,10% (the topmost region in Figure 2),
can spoofno one because they deploy. This is the same
percentage as would be prevented from spoofing in the case
of ingress filtering, a simple scheme that filters packets with
forged source IP addresses near the packet’s source. The rest
of the 34% of the networks (the middle region in Figure 2)
can only spooflegacynetworks, not the networks that deploy
definitive packet marking. Even with such limited deployment,
deploying networks attain significant protection from reflector
attacks. Comparatively, ingress filtering would only prohibit
implementing domains from launching such attacks.

The results improve at higher deployment percentages. For
example, at30% deployment,85% of networks are unable

to spoof a deploying network and at50% deployment,97%

of networks cannot spoof a deploying network. Higher than
that, almost no networks can spoof deploying networks. The
results were similar for other GT-ITM topologies and different
estimates of the core.

Next, we evaluate the effectiveness of definitive packet
tagging on Skitter topology data. The results of this simulation
on a graph with a60% core estimate are shown in Figure 3.
The graph was much larger in size, requiring us to limit our
sampling to1, 600 (source, destination) samples for each data
point5. The results on the Skitter topology were better than
those obtained for GT-ITM graphs:At a mere10% deployment,
about83% of the networks cannot spoof a deploying network.
This is obtained by summing the percentage of networks that
can spoofno one because they deploy and those that can
spoof just thelegacysystems. At30% deployment,99% of the
networks are unable to spoof deploying networks. At greater
levels of deployment, almost no networks are able to spoof
deploying networks. The reason definitive packet tagging is
more effective on the Skitter graphs than on the GT-ITM
graphs has to do with the number of ASes in the topologies.
The mask we applied to the Skitter graphs resulted in an
average of2.4 routers per AS, causing more ASes to be picked
on an average for each deployment percentage than the GT-
ITM graphs. The GT-ITM graphs on the other hand had about
10 routers per transit AS and about4 routers per stub AS.

We also evaluate the effectiveness of the deductive tagging
approach, when it is applied in conjunction with the definitive
tagging. Figure 4 shows its effectiveness in spoofing preven-
tion in a 10, 500 node GT-ITM graph with a core estimated
at 60% of the network. These results are based on3, 200

random samplings. At10% deployment,44% of the networks
are prevented from spoofing deploying networks. This result
is the same as that for definitive packet marking with a subtle
difference. Of the44% of networks,10% (the topmost region
in Figure 4), can spoofno onebecause they deploy. Another
15% (the second from the top region in Figure 4) of the

5While our analysis was limited to fewer runs than in the GT-ITM graph,
the results were largely unchanged when increasing from 240to 1,600 sample
points. Accordingly, we believe that future trials are unlikely to significantly
impact the results.



legacy networks can only spoofneighboring legacynetworks.
These are the legacy networks whose traffic is aggregated
before reaching a router that tags packets deductively. Further,
another19% can spoof allother legacynetworks. These are
the legacy networks that either do not encounter a deploying
router, or encounter one that does not tag deductively. This
is an improvement over definitive packet tagging approach
where34% of the legacy networks could spoof other legacy
networks. The results improve for higher deployments: At30%

deployment, about30% of the networks can spoofno one, 25%

can spoof onlyneighboring legacyrouters, and30% can spoof
all other legacynetworks. The corresponding numbers for50%

deployment were50%, 35%, and10% respectively. The trends
were similar for the Skitter topology and the corresponding
graphs are omitted due to space constraints.

In Figure 5, we show the benefits on a10, 500 node GT-IM
topology when ingress filtering and our deductive approach
are applied cooperatively. In this graph, 70% of ASes are
randomly selected to deploy ingress filtering. Additionally,
we independently randomly select varying percentages of
deployment of our deductive approach. Where the two groups
overlap, we just consider them to be deploying our approach,
since ingress filtering is a component in our technique. These
results are based on32, 000 random samplings of source and
destination pairs. We note that a substantial ingress filtering
deployment simply results in a greater percentage of systems
unable to spoof at all. When combined with 70% ingress
filtering deployment, at 10% deployment more than 83% of
networks are unable to spoof a deploying system. At the same
deployment, this percentage was44% under just deductive
filtering. Further, at 30% deployment, more than 95% of
networks are unable to spoof a deploying system.

Fig. 5. Percentage of networks that are able to spoofno one, only legacy
networks, andall networks under deductive packet tagging with 70% of the
network deploying ingress filtering (10,500 node GT-ITM topology).

C. Extent of Tag Theft and Exploitation of Stolen Tags

Since edge routers do not maintain deployment status for
packets that travel on the default routes, end hosts can steal
tags. We now measure how often the end hosts will be
able to learn tags for deploying networks under definitive

packet tagging. To be realistic about how much deployment
information edge routers will be able to maintain, we assume
that if the path to the destination is less than four hops in
length, the destination is close enough that the source network
would not have to rely on its default route to reach it.

Figure 6 shows the results of the simulation on a10, 500

node GT-ITM graph for various percentages of core routers.
Each data point represents an average of3, 200 random sam-
plings. At 10% deployment,55% to 67% of the networks can
steal a tag.At 30% deployment,14% to 25% of the networks
can steal a given tag. At 50% deployment, only2% to 7.5%

of the networks can steal tags. At greater deployments, tag
theft is possible less than1.5% of the time.

Fig. 6. Percentage of networks that can steal a tag.

Not all stolen tags can be exploited. Even if a host suc-
cessfully steals a tag used by a given network, it must be
topologically situated so that its own packets (containing
the forged tags) would be aggregated with the legitimate
network’s traffic before encountering a deploying router. We
now examine the percentage of networks that can successfully
send forged packets with stolen tags. We do so by assuming
varying amount of collusion among networks that possess
stolen tags.

Fig. 7. Percentage of networks that can abuse a tag, assuming agiven
percentage know the tags.

Figure 7 shows the percentage of networks that can abuse
tags for10, 500 node GT-ITM graph. Assuming100% collu-
sion among tag stealers, at10% deployment,66% of networks



can abuse a given tag. This drops to26% at 30% deploy-
ment and under7% at 50% deployment. At70% or higher
deployment, less than 1% of prefixes can effectively abuse a
given tag. The abuse drops considerably under more realistic
abuse settings. For example,if 10% of the Internet colludes
to exchange information about stolen tags, the amount of
tag abuse that can occur is under7%, even at only10%

deployment. These results lead us to conclude that while tag
abuse will occasionally be possible, it does not pose a risk of
undermining our solution.

D. Overhead Analysis

We now analyze the overheads associated with learning tags
under definitive packet marking, assuming that the routers
learn deployment status only via BGP announcements. We
assume the following inputs:

• percent asymmetry (A) present in the network,
• degree of asymmetry (DEG) - the average number of hops

that are asymmetric when asymmetry occurs,
• average path length (L) between a given router and a

destination host,
• and percent deployment (DEP).

Assuming no route suppression, the percentage of time
that BGP announcements fail to distribute the tags due to
asymmetry can therefore be expressed asA ×

DEG

L
× DEP .

This failure is less than2% for each level of deployment. Each
time router announcements fail, a recursive router challenge
must be attempted. This must happen for each core router
and for each network prefix. Again, this can be modeled
analytically given the following additional inputs:

• number of prefixes (P) - the number of prefixes to which
a router can send traffic,

• and number of routers (R) - the total number of BGP
routers present in the Internet.

The recursive router challenges comprise the main over-
heads since the tags learned through BGP route announce-
ments are essentially free. Using the above inputs, the over-
heads of the recursive router challenges can be expressed as
A ×

DEG

L
× DEP × P × R. Table I shows the Internet-

wide estimated number of recursive router challenges (RRCs)
under varying degrees of deployment using this equation. We
choose14% and 30% as estimates of asymmetry, based on
prior work analyzing asymmetry [31], [34]. We consider a
weighted average of the degree of asymmetry in the Internet
from [34] for our DEG input. Further, we used an estimate on
the number of FIB prefixes indicated in [35] to estimate the
number of network prefixes. While the overheads for learning
tags at higher deployment may seem high, the average number
of challenges per router are is relatively small (about 2,858
challenges at 90% deployment) and can be distributed over a
period of time to prevent bursty traffic.

Another concern about recursive router challenges is the
amount of time that will be required while waiting for a
response. Assuming they are processed quickly by the routers,
the amount of time required to perform a challenge is related

A DEG L DEP P R # RRCs
14% 1.89 10% 31,752,000
14% 1.89 30% 95,256,000
14% 1.89 50% 158,760,000
14% 1.89 15 70% 180,000 100,000 222,264,000
14% 1.89 90% 285,768,000
30% 1.89 10% 68,040,000
14% 2.50 10% 42,000,000

TABLE I

NUMBER OF RECURSIVE ROUTER CHALLENGES FROM VARIOUS INPUTS.

to the number of links they must traverse. The number of hops
a challenge must travel is characterized byDEG

DEP
. For example,

with a degree of asymmetry of1.89 and 30% deployment, a
challenge would have to traverse 6.31 links before reachinga
router past the point of asymmetry. Since a router challenge
will be successful typically before a round-trip time between
end-hosts, connectivity will be restored to legitimate prefixes
before a time-out occurs in any connection-oriented protocols
at the end-host. Therefore, the lost connectivity could simply
be interpreted as temporary congestion by the end-hosts. This
reduces the impact of the recursive router challenge approach.

V. DEPLOYMENT AND OTHER PRACTICAL

CONSIDERATIONS

A. Changes to Router Functionality

Our approaches require several changes to the functionality
of deploying routers. Exchanging deployment status and tags
using BGP requires the introduction of new BGP COM-
MUNITY values. Learning tags and deployment status using
the recursive router challenges and host probing techniques
requires maintenance of new data structures. Each of these
changes are in the control plane, which is not directly involved
in packet forwarding. Thus, they are unlikely to require any
changes in router hardware.

While our scheme requires changes to BGP, the alterations
are minimal. Further, only deploying systems have to make
any of those changes. The rest of the Internet can continue
to function as it does today. Several other research projects
have proposed changes to BGP as well, with many being
much more invasive than our own [27], [36], [37], [38], [39],
[40]. Additionally, the BGP COMMUNITY and Extended
COMMUNITY values were added to BGP for communicating
optional information through the protocol, so it is reasonable
to leverage them for this purpose.

The routers must also incorporate changes in the data plane
in order to incorporate the required per-packet processing.
In our scheme, routers determine the deployment status of
a destination prefix by checking an extra bit in their FIB.
If set, the router must write the tag associated with the
outgoing interface into the packet. Since this informationis
small, this can be accomplished using fast, dedicated memory.
Finally, router lookup functionality needs to be enhanced as
well. In particular, the source IP address of each incoming
packet is tested for spoofing, using a tag table, before making
a forwarding decision. This feature is similar to the other
currently proposed techniques that filter spoofed IP addresses



near their origin [18], [19], [20], [21]. Each of these changes
will likely require changes in router hardware.

Some core routers may simply be unable to bear the costs
associated with a tag table lookup. These routers could instead
be only partial participants: they would not verify the tags
in packets or re-tag packets. Instead, they would simply strip
existing tags from packets in which the associated deployment
status bit is not set. This would help in reducing tag theft while
posing only a minimal burden.

B. Threat Model and Router Compromise

When we consider the threat of IP spoofing, we focus on an
attacker attempting to overwhelm a given target. This behavior
is consistent with the goal of DoS attacks. The proliferation
of worms and botnets makes collusion among end-hosts in-
creasingly likely. Accordingly, in Section IV, we modeled the
extent that end-hosts can steal tags from routers that leak this
information due to incorrect deployment assumptions. Further,
we showed the extent in which malicious hosts can exploit
this information, with varying degrees of collusion. We note
that even if all the router tags are completely public, at 30%
deployment, only 26% of hosts can abuse a tag.

We stated that our adversarial model assumes that hosts
could be compromised but routers, in general, are not com-
promised. If however, malicious routers are present, our ap-
proaches degrade gracefully. In particular, malicious routers
could divulge tags of their neighbors and/or add valid tags to
spoofed packets.

Exposing tags of the neighboring routers to malicious users
can only do limited damage because the tags only have local
significance due to hop-wise tagging. Therefore, if a router,
A, gives the tag router B uses when sending via interface X
to a group of malicious hosts, these malicious hosts would
have to produce packets that would traverse a legacy path up
to where they are aggregated with traffic leaving router B’s
interface X. Our simulation results show that this is a difficult
task, especially as deployment increases.

Tagging spoofed packets with legitimate tags also does not
permit arbitrary spoofing. This is because subsequent routers
toward the destination check the validity of any new [source
address prefix, tag] pairs and a malicious router could only
add valid tags for the legitimate prefixes it forwards.

C. Tag Format and Location

To avoid cryptographic overheads, we assume that a tag is a
pseudo-random bit pattern that each deploying router generates
in advance for each of its interfaces. This tag is used for each
packet sent through the interface. Though tags do not need
to be globally unique, they have to be large enough to avoid
being guessed by adversaries. As an example, a64 bit tag
would force an adversary to enumerate9.22 × 1018 tags, on
average, before correctly guessing the tag.

The most obvious place for tag placement is the the IP
options field in IPv4 and IPv6 headers. Router vendors have
been using ASICs extensively for speeding up router lookups
and it is now possible for them to incorporate faster processing

of specific IP options in the next design cycle. Another option
is to reuse unused IPv4 header fields. This has been done by
other researchers [12] but requires redefinition of fields bythe
IETF to be deployable.

D. Efficient Storage of Extra Information and Tag Theft
Ramifications

As mentioned in Section II, the 1-bit deployment status of
neighboring routers is maintained in the FIB. This scheme is
well suited to core routers since their FIBs already contain
entries for all Internet prefixes and the addition of 1-bit
deployment status would not alter the number or size of FIB
entries. However, the edge routers normally only contain a few
FIB entries to specific (nearby) network prefixes and rely on
one default routefor the rest of the prefixes. If they actively
seek deployment status corresponding to all Internet prefixes,
their FIB table size could grow prohibitively large, hurting
lookup speeds. An option to avoid this scenario is to have
the edge routers restrict storing the deployment information
to only the specific network prefixes contained in their FIB.
This choice implies that the edge routers sending traffic viaa
default route cannot be sure whether to tag/re-tag the packets.
If they do tag their packets, they cannot be guaranteed that
their packets will encounter a deploying router before reaching
the end-host. And if none is encountered, the end-hosts can
steal router tags. We find in our simulations that the possibility
of exploiting tags stolen in this manner is difficult, makingthe
savings worth the small amount of risk. The size of the tag
table depends on the prefixes that edge and core routers receive
traffic from.

E. Changing Tags

Routers should frequently change their tags for security
purposes. A simple approach would be to switch from the
old tag to the new tag. In time, adjacent routers would learn
the validity of the new tag for each prefix on the given
interface. Unfortunately, this means that for routers operating
in standard mode, all traffic with the new tag would be dropped
until the receiving routers successfully verified the packets.
A more compelling approach is for routers to use one-way
hash chains [41], [42] to facilitate more rapid tag changes.
Hash chains allow a deploying router to generate a practically
infinite chain of tags. The end of the hash chain is then used
as the first tag. Changing tags is easy under this scheme
because the sending router can simply switch to the next tag
in the chain, while the routers receiving traffic can still use
the previous element in the chain to verify the new value.

The hash chain technique raises the possibility of an attacker
guessing the next element in the hash chain, causing down-
stream routers to incorrectly believe a tag change has already
occurred, resulting in legitimate packets being dropped. A
simple heuristic could foil this attack: routers accept both the
old and new for a short period of time; if the vast majority of
the traffic using the chain would be dropped by the transition,
the router can continue to use the old tag. Further, as indicated
earlier, the chances of guessing the next tag are negligiblefor



a 64 bit tag (it would require9.22 × 1018 attempts). Smaller
tags would be more easily guessed; reusing unused fields in
IP options would allow for up to 40 bits for tags (requiring
5.49× 1011 attempts). While IP options processing in IPv4 is
more difficult to do in the fast path, IPv6 options have been
redesigned to allow faster processing.

F. Prefix Granularity for Tags

When routers learn tags using BGP route announcements,
the question “At what granularity of network prefixes should
the tags be stored?” has an obvious answer: the router should
add a new entry in the tag table for each network prefix
with a BGP route announcement containing the EXTENDED
COMMUNITIES attribute. However, when using the recursive
router challenges (as described in Section II-B.2) or the
host probing (as described in Section III-A) techniques, it
is unclear what network prefixes should be used for storing
the tags corresponding to each interface. An option is to use
the same network prefixes as those appearing in core BGP
routing tables. This appears to be a good balance between
accuracy of information and the overheads of learning tags
and corresponding storage requirements. However, if higher
accuracy is desired, the tag table could be made to contain
tags at higher granularity, such as that of class C network
prefixes.

G. Impact of Routing Changes

Route changes may require deploying routers to learn the
validity of new tags arriving via the new routes. This is not an
issue for tags learned through BGP announcements because
the tag table can be updated along with the routing change.
However, for tags learned using the recursive router challenge
technique or the host probing technique, a routing change will
cause the deploying router to consider traffic containing the
new tags to be spoofed until the validity of the new route is
established. To minimize the number of valid packets dropped,
deploying routers can probabilistically attempt to verifytags
using recursive router challenges upon a packet drop.

H. DoS Considerations

The issue of DoS attacks on routers through exploitation
of recursive router challenge and host probing techniques
deserves a careful consideration. First, DoS attacks can be
launched without the use of IP spoofing. In particular, mis-
creants can simply send large numbers of unspoofed packets
in order to bring the routers down. Thus, mechanisms, such
as those prescribed in [43], [44], [45] need to be deployed
in the Internet in addition to those that prevent spoofing.
With IP spoofing curtailed, [44] and [45] can utilize source IP
addresses without fear of collateral damage due to spoofing.
Further, both recursive router challenge and host probing
techniques could be made a function of link utilization to avoid
DoS attacks.

I. Incentives for Adoption

Any IP spoofing prevention scheme comes at some cost to
the organizations deploying them. Accordingly, it is essential
that these schemes provide benefits to the deploying organi-
zations to incentivize adoption.

Our approach provides several incentives to deploying sys-
tems. The approach reduces the amount of malicious traffic
leaving the deploying network, reducing the amount of traffic
the network must carry. Ingress filtering provides only this
benefit, yet has enjoyed widespread adoption [1]. Additionally,
it becomes increasingly difficult for malicious hosts to spoof
addresses from deploying networks, reducing the threat of
reflector-based attacks. Next, packets from deploying networks
carry a tag indicating the legitimacy of the source address.
This can be used by destination networks for prioritizing
scarce resources. Finally, systems employing deductive packet
marking can also sell their marking as a service to the legacy
systems, providing the associated benefits to the covered
systems without requiring additional infrastructure.

When only one system deploys our scheme, it has the same
risks and benefits as the ingress filtering scheme. However, if
more organizations collaboratively deploy, our scheme offers
benefits to all those who deploy. There is precedent for such
collaborative deployment. DomainKeys [46], an approach to
combat spam by enabling better filtering, also hinges on
collaborative deployment.

VI. RELATED WORK

IP spoofing can be of two types: inter-domain spoofing and
intra-domain spoofing. Approaches to contain intra-domain
spoofing, in which attackers spoof only the addresses of
other machines in their respective domains, are available.For
example, work in [47], describes one such deployed solution
for spoofing prevention in an Ethernet network. Our paper
focuses on the problem of inter-domain spoofing, in which
attackers spoof addresses of machines outside their domain.

The approaches to curb IP spoofing can broadly be divided
into two categories:tracebacktechniques, that trace the path
spoofed packets took and spoofing prevention techniques. The
traceback solutions seek to discover the path taken by spoofed
packets and are a useful forensic tool. Extensive work has been
done in this area [6], [7], [8], [9], [10], [11], [12], resulting in
a variety of approaches for implementing traceback that trace
the path with fewer number of packets, increased accuracy,
and lower overheads. In the latest work in this category of
solutions [12], the deploying routers mark the offset field of
IP header to identify themselves. This, along with the TTL
(time to live) value contained in the packet determines the
position of the tagging routers even in the presence of non-
deploying routers. Destination hosts can use this information
to identify the actual path spoofed packets used.

Several of the spoofing prevention techniques attempt to
shield the destination from IP spoofing. They discard invalid
packets at the destination network. They go a step further in
spoofing prevention but fail to protect the routing fabric from
spoofing. In TCP intercept [13], routers near the destination



can be configured to mimic the destination in order to ensure
the packet is not spoofed. If a valid connection is established,
the router stitches both sides of the connection for the entire
duration of the connection. The work in [15] associates TTL
values in the incoming packets with their source. When an
attack begins, the TTL values of arriving packets are compared
to the values stored for that domain. Packets not matching
their stored TTL values are regarded as spoofed and could be
filtered. In [16], the authors propose a deterministic marking
approach in which each router adds a fingerprint to each packet
by marking the packet’s IP Identification based on the packet’s
TTL value. Victims can use this fingerprint to group packets
that took the same path, rather than relying on the source
IP addresses. This approach strengthens the victim’s packet
filtering ability. In [17], each pair of source and destination
networks share a secret that is included as a marking in
the IP header of all packets exchanged between them. The
source network inserts the marking and the destination net-
work verifies and removes the marking before delivering it
to the hosts, thus discarding packets with incorrect marks.
This prevents spoofing if both source and destination networks
deploy, but unlike our approach, it does not prevent non-
deploying domains from spoofing IP addresses of deploying
domains when sending traffic to other non-deploying domains.

Another category of spoofing prevention techniques, the
filtering techniques, have the ideal goal of either blocking
spoofed traffic from entering the Internet or filtering it as early
as possible. Among the very first techniques in this category
of solutions is ingress filtering [18]. This technique prevents
spoofing by checking the validity of the source IP address
near packet origination. The extent of deployment is critical to
the success of ingress filtering because it offers no protection
from spoofed packets that escape into the Internet through
legacy routers. Another filtering approach, reverse path for-
warding (RPF), uses BGP routing information to to determine
the possible interfaces from which un-spoofed prefixes can
originate. RPF is comprised of three techniques [19], [20],
[21]: strict RPF, loose RPF, and feasible RPF. Strict RPF
and loose RPF consult the forwarding information base (FIB)
to determine the legitimacy of arriving packets. Feasible RPF
instead consults a table containing all the accepted routes
before tie-breakers are applied to select the best route. This
extra information allows a feasible RPF router to overcome
some of the limitations of strict and loose RPF. However,
each of the RPF approaches will drop valid packets if a router
does not receive a routing advertisement for a given prefix,
but nonetheless receives traffic originating from that prefix.

The work in [14] uses full routing information to perform
filtering and provides valuable metrics for evaluating filtering
effectiveness, which we leverage in our work. However, it
only addresses intra-domain routing, while our work applies
to inter-domain routing. In [48], the authors present a work
that utilizes some approaches similar to our own. However,
this work requires the distribution of a hash chain to other
deploying routers. While they leverage BGP COMMUNITIES
in a method similar to our own, they do not properly account

for asymmetry in their distribution. Additionally, while they
make provisions for storing multiple entries for asymmetry,
they do not describe any automated approaches for detecting
asymmetry or adding these entries. Our work overcomes
these limitations with the introduction of our recursive router
challenge and host probing techniques.

Work in [22] proposes to prevent spoofing via a protocol
that allows routers to announce how they will send traffic.
This protocol is used to construct a table of valid source IP
addresses which can be used to filter invalid sources. Per the
authors, reaping the benefits of this protocol under partial
deployment is challenging. Finally, work in [23] prevents
spoofing by the use of hash-based message authentication
codes that indicate the AS path traversed by a router. Secret
keys are used as input to the hashes and must be communicated
using a Diffie-Hellman exchange, in turn relying upon a public
key infrastructure for validation of the exchange. Our approach
has the same goal as this proposal but does not require hashing
on a per-packet basis and requires less data storage in the
packet header, yielding better performance. We also avoid
relying on a public key infrastructure and expensive public
key operations.

VII. C ONCLUSION

In this paper, we presented a practical hop-wise packet
tagging solution to prevent IP spoofing in the Internet. Our
approaches, definitive and deductive packet tagging, allow
routers to drop spoofed packets close to their origination.The
design of the proposed approaches was guided by deployabil-
ity concerns, which led us to choose practical security over
provable security.

Beyond their use in IP spoofing prevention, the proposed
approaches offer an additional advantage: the tags contained
in un-spoofed packets can be used forprioritizing traffic
from legitimate deploying systems over best effort traffic
under attack conditions. The prioritization can be done by
configuring firewalls to drop all un-tagged traffic.
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