OLAP & DATA MINING

CS561-SPRING 2012 WPI, MOHAMED ELTABAKH

Online Analytic Processing OLAP

OLAP

OLAP: Online Analytic Processing

OLAP queries are complex queries that

- Touch large amounts of data
- Discover patterns and trends in the data
- Typically expensive queries that take long time
- Also called decision-support queries

In contrast to OLAP:

- OLTP: Online Transaction Processing
- OLTP queries are simple queries, e.g., over banking or airline systems
- OLTP queries touch small amount of data for fast transactions

OLTP vs. OLAP

On-Line Transaction Processing (OLTP):

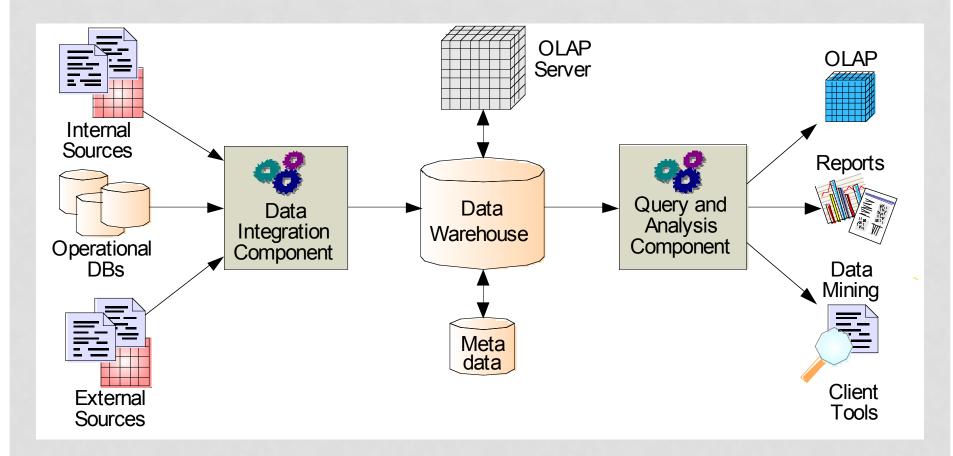
 technology used to perform updates on operational or transactional systems (e.g., point of sale systems)

On-Line Analytical Processing (OLAP):

 technology used to perform complex analysis of the data in a data warehouse

OLAP is a category of software technology that enables analysts, managers, and executives to gain insight into data through fast, consistent, interactive access to a wide variety of possible views of information that has been transformed from raw data to reflect the dimensionality of the enterprise as understood by the user. [source: OLAP Council: www.olapcouncil.org]

OLAP AND DATA WAREHOUSE



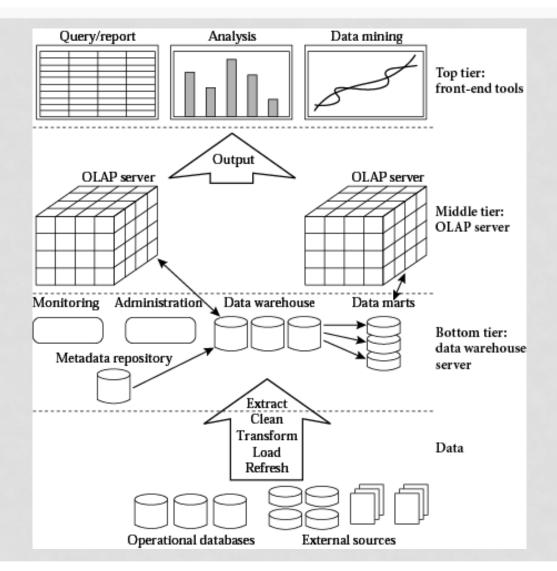
OLAP AND DATA WAREHOUSE

- Typically, OLAP queries are executed over a separate copy of the working data
 - Over data warehouse
- Data warehouse is periodically updated, e.g., overnight
 - OLAP queries tolerate such out-of-date gaps

• Why run OLAP queries over data warehouse??

- Warehouse collects and combines data from multiple sources
- Warehouse may organize the data in certain formats to support OLAP queries
- OLAP queries are complex and touch large amounts of data
 - They may lock the database for long periods of time
 - Negatively affects all other OLTP transactions

OLAP ARCHITECTURE



EXAMPLE OLAP APPLICATIONS

Market Analysis

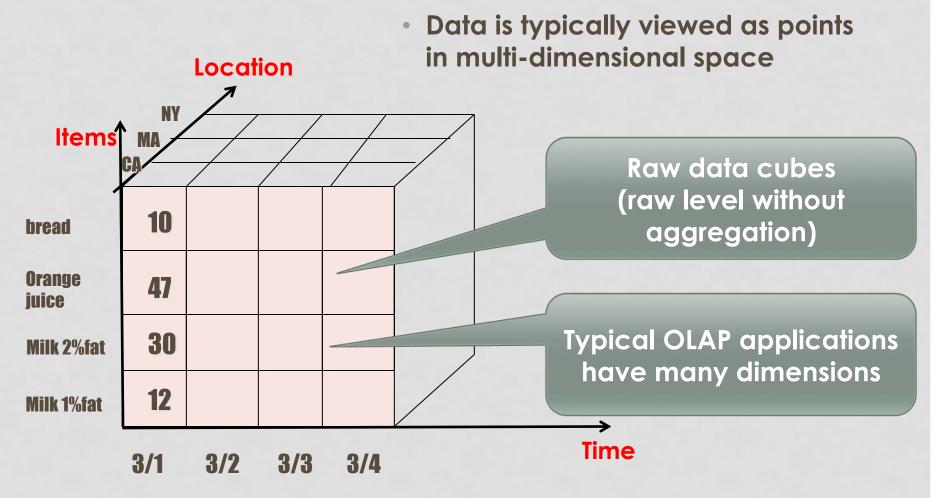
• Find which items are frequently sold over the summer but not over winter?

Credit Card Companies

- Given a new applicant, does (s)he a credit-worthy?
- Need to check other similar applicants (age, gender, income, etc...) and observe how they perform, then do prediction for new applicant

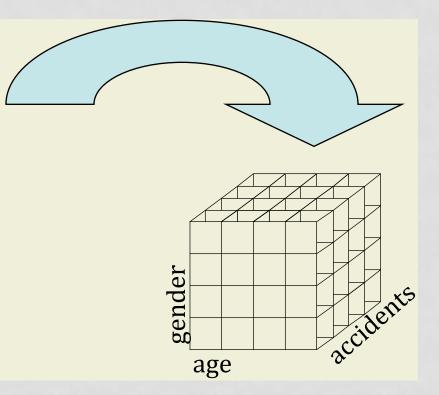
OLAP queries are also called "decisionsupport" queries

MULTI-DIMENSIONAL VIEW



ANOTHER EXAMPLE

gender	age	accident
Male	27	3
Male	37	1
Male	37	0
Male	37	1
Male	49	2
Male	39	4
Male	43	0
Male	41	2
Male	49	1
Male	44	2
Male	43	З
Male	53	4
Male	60	0
Female	26	0
Female	39	0
Female	45	2
Female	41	2
Female	39	1
Female	37	0
Female	43	1

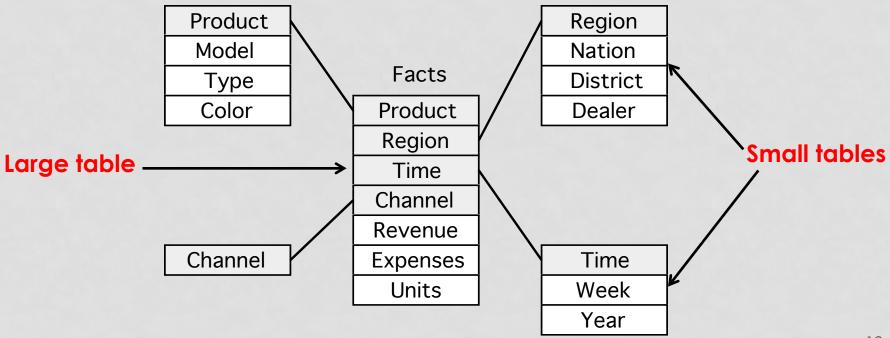


APPROACHES FOR OLAP

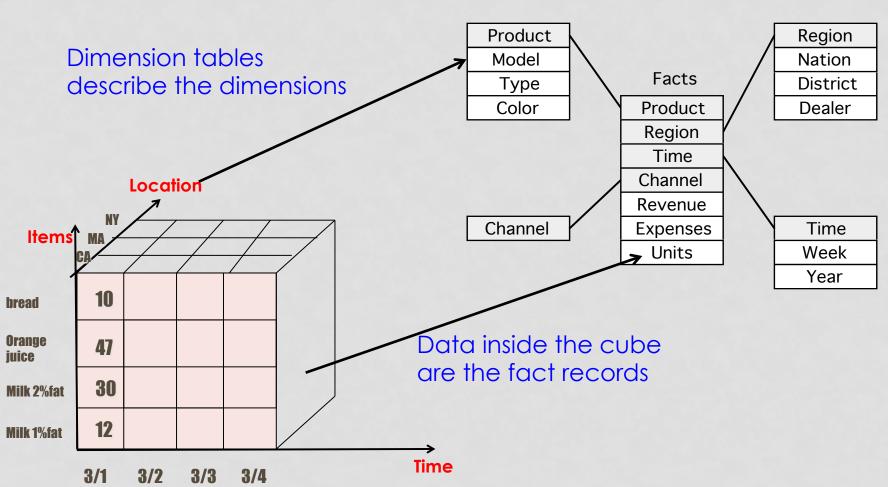
- Relational OLAP (ROLAP)
- Multi-dimensional OLAP (MOLAP)
- Hybrid OLAP (HOLAP) = ROLAP + MOLAP

RELATIONAL OLAP: ROLAP

- Data are stored in relational model (tables)
- Special schema called Star Schema
- One relation is the **fact table**, all the others are **dimension tables**



CUBE vs. STAR SCHEMA



ROLAP: EXTENSIONS TO DBMS

- Schema design
- Specialized scan, indexing and join techniques
- Handling of aggregate views (querying and materialization)
- Supporting query language extensions beyond SQL
- Complex query processing and optimization
- Data partitioning and parallelism

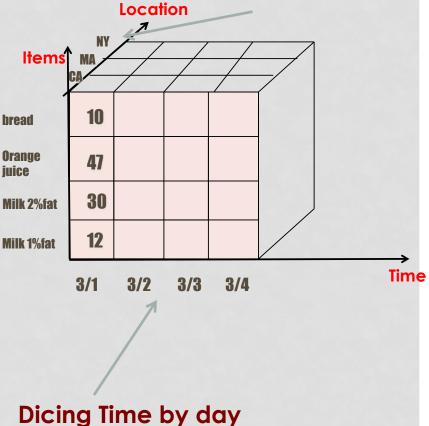
SLICING & DICING

Dicing

- how each dimension in the cube is divided
- Different granularities
- When building the data cube

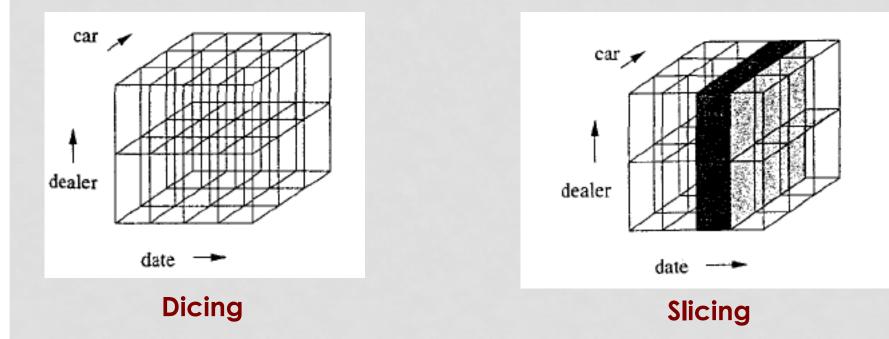
Slicing

- Selecting slices of the data cube to answer the OLAP query
- When answering a query



Dicing Location by state

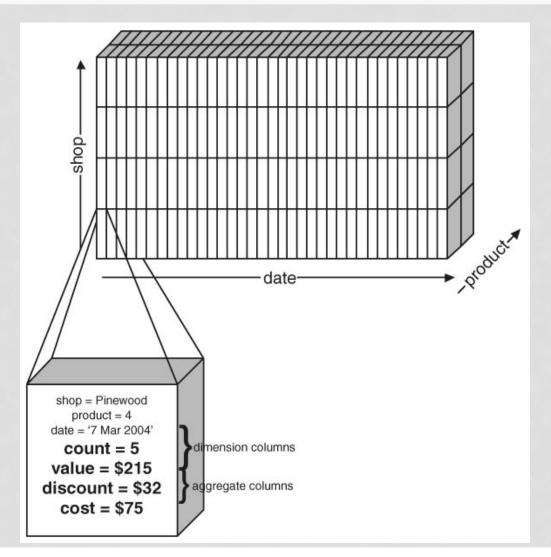
SLICING & DICING: EXAMPLE 1



Slicing operation in ROLAP is basically:

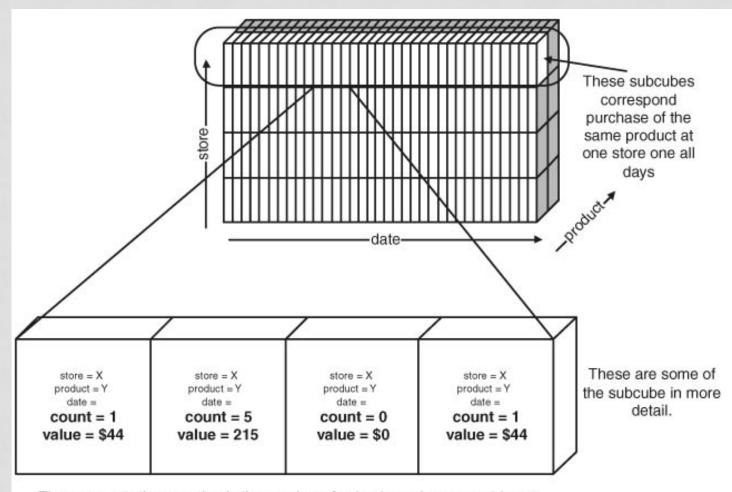
-- Selection conditions on some attributes (WHERE clause) + -- Group by and aggregation

SLICING & DICING: EXAMPLE 2



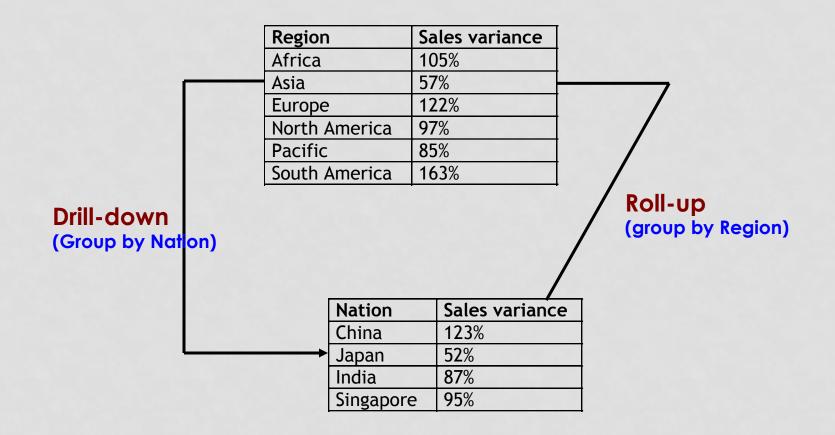
17

SLICING & DICING: EXAMPLE 3

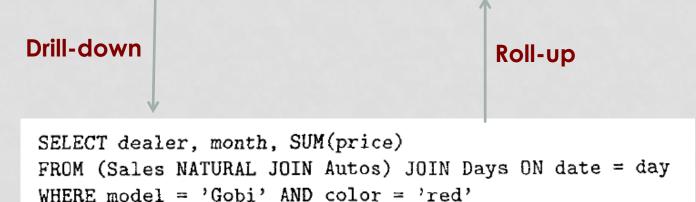


The answer to the question is the number of subcubes where **count** is not equal to **0**.

DRILL-DOWN & ROLL-UP



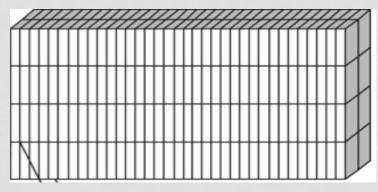
ROLAP: DRILL-DOWN & ROLL-UP



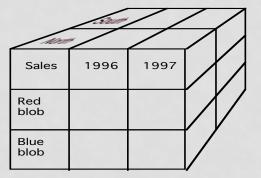
```
GROUP BY month, dealer;
```

MOLAP

- Unlike ROLAP, in MOLAP data are stored in special structures called "Data Cubes" (Array-bases storage)
- Data cubes pre-compute and aggregate the data
 - Possibly several data cubes with different granularities
 - Data cubes are aggregated materialized views over the data
- As long as the data does not change frequently, the overhead of data cubes is manageable

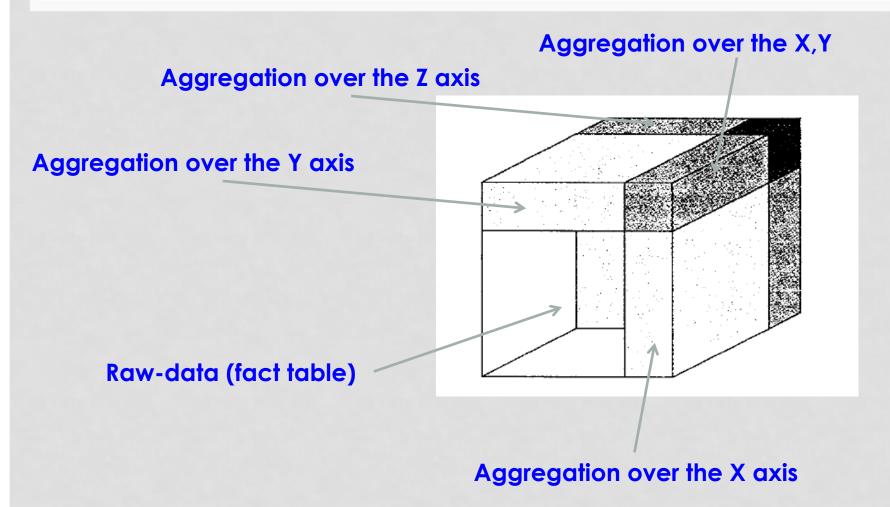


Every day, every item, every city



Every week, every item category, every city

MOLAP: CUBE OPERATOR



MOLAP & ROLAP

- Commercial offerings of both types are available
- In general, MOLAP is good for smaller warehouses and is optimized for canned queries
- In general, ROLAP is more flexible and leverages relational technology
- **ROLAP** May pay a performance penalty to realize flexibility

OLTP vs. OLAP

	OLTP	OLAP
User Function	Clerk, IT ProfessionalDay to day operations	Knowledge workerDecision support
DB Design	 Application-oriented (E-R based) 	 Subject-oriented (Star, snowflake)
Data	Current, Isolated	Historical, Consolidated
View	 Detailed, Flat relational 	Summarized, Multidimensional
Usage	Structured, Repetitive	Ad hoc
Unit of work	Short, Simple transaction	Complex query
Access	Read/write	Read Mostly
Operations	 Index/hash on prim. Key 	Lots of Scans
# Records accessed	• Tens	Millions
#Users	Thousands	Hundreds
Db size	• 100 MB-GB	• 100GB-TB
Metric	Trans. throughput	 Query throughput, response

Query throughput, response

Source: Datta, GT

OLAP: SUMMARY

- OLAP stands for Online Analytic Processing and used in decision support systems
 - Usually runs on data warehouse
- In contrast to OLTP, OLAP queries are complex, touch large amounts of data, try to discover patterns or trends in the data

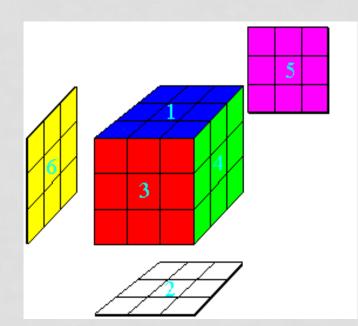
OLAP Models

- Relational (ROLAP): uses relational star schema
- Multidimensional (MOLAP): uses data cubes

Overview on Data Mining Techniques

DATA MINING vs. OLAP

- OLAP Online Analytical Processing
 - Provides you with a very good view of <u>what is</u>
 <u>happening</u>, but <u>can not</u>
 <u>predict what will happen</u>
 in the future or <u>why it is</u>
 <u>happening</u>



Data Mining is a combination of discovering techniques + prediction techniques

DATA MINING TECHNIQUES

- Clustering
- Classification
- Association Rules
- Frequent Itemsets
- Outlier Detection

FREQUENT ITEMSET MINING

Very common problem in Market-Basket applications

- Given a set of items I ={milk, bread, jelly, ...}
- Given a set of transactions where each transaction contains subset of items
 - t1 = {milk, bread, water}
 - t2 = {milk, nuts, butter, rice}

What are the itemsets frequently sold together ??

% of transactions in which the itemset appears >= α

EXAMPLE

Items	
Bread,Jelly,PeanutButter	
Bread,PeanutButter	
Bread,Milk,PeanutButter	
Beer,Bread	
Beer,Milk	

Assume $\alpha = 60\%$, what are the frequent itemsets

- {Bread} → 80% <
- {PeanutButter} → 60% <

called "Support"

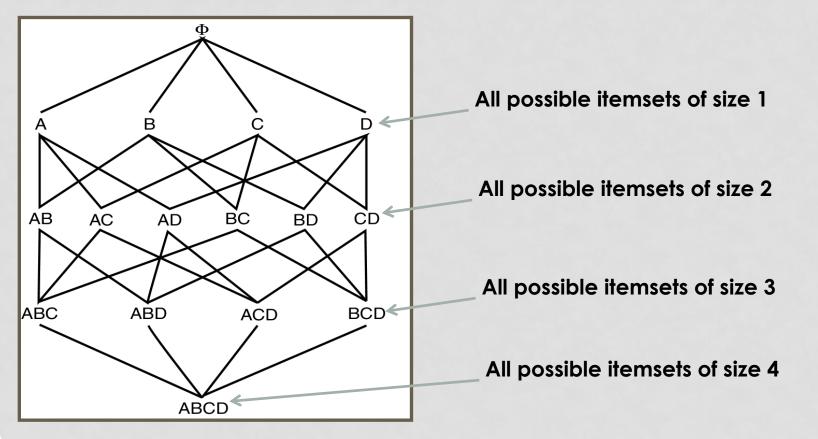
{Bread, PeanutButter} → 60%

All frequent itemsets given $\alpha = 60\%$

HOW TO FIND FREQUENT ITEMSETS

Naïve Approach

• Enumerate all possible itemsets and then count each one



CAN WE OPTIMIZE??

Items	
Bread, Jelly, PeanutButter	
Bread,PeanutButter	
Bread,Milk,PeanutButter	
Beer,Bread	
Beer,Milk	

Assume $\alpha = 60\%$, what are the frequent itemsets

- {Bread} → 80% ←
- {PeanutButter} → 60%

called "Support"

{Bread, PeanutButter} → 60% 4

Property

For itemset $S={X, Y, Z, ...}$ of size n to be frequent, all its subsets of size n-1 must be frequent as well

APRIORI ALGORITHM

Executes in scans, each scan has two phases

- Given a list of candidate itemsets of size n, count their appearance and find frequent ones
- From the frequent ones generate candidates of size n+1 (previous property must hold)
- Start the algorithm where n = 1, then repeat

Use the property reduce the number of itemsets to check

APRIORI EXAMPLE

Transaction	Items	
t_1	Blouse	
t_2	Shoes,Skirt,TShirt	
t_3	Jeans, TShirt	
t_4	Jeans,Shoes,TShirt	
t_5	Jeans,Shorts	
t_6	Shoes,TShirt	
t_7	Jeans,Skirt	
t_8	Jeans,Shoes,Shorts,TShirt	
t_9	Jeans	
t_{10}	Jeans,Shoes,TShirt	
t_{11}	TShirt	
t_{12}	Blouse,Jeans,Shoes,Skirt,TShirt	
t_{13}	Jeans,Shoes,Shorts,TShirt	
t_{14}	Shoes,Skirt,TShirt	
t_{15}	Jeans, TShirt	
t_{16}	t ₁₆ Skirt,TShirt	
t_{17}	t ₁₇ Blouse,Jeans,Skirt	
t_{18}	Jeans,Shoes,Shorts,TShirt	
t_{19}	Jeans	
t_{20}	Jeans,Shoes,Shorts,TShirt	

APRIORI EXAMPLE (CONT'D)

Scan	Candidates	Large Itemsets
1	{Blouse},{Jeans},{Shoes},	Jeans},{Shoes},{Shorts}
	${\rm Shorts}, {\rm Skirt}, {\rm TShirt}$	${\rm Skirt},{\rm Tshirt}$
2	${Jeans, Shoes}, {Jeans, Shorts}, {Jeans, Skirt} \not\models$	${Jeans, Shoes}, {Jeans, Shorts},$
	${Jeans, TShirt}, {Shoes, Shorts}, {Shoes, Skirt},$	${Jeans, TShirt}, {Shoes, Shorts},$
	{Shoes,TShirt},{Shorts,Skirt},{Shorts,TShirt},	{Shoes,TShirt},{Shorts,TShirt},
	$\{$ Skirt,TShirt $\}$	${\rm Skirt, TShirt}$
3	${\rm [Jeans, Shoes, Shorts], [Jeans, Shoes, TShirt]}$	${Jeans, Shoes, Shorts},$
	${Jeans, Shorts, TShirt}, {Jeans, Skirt, TShirt},$	${Jeans, Shoes, TShirt},$
	${Shoes, Shorts, TShirt}, {Shoes, Skirt, TShirt},$	{Jeans,Shorts,TShirt},
	$\{Shorts, Skirt, TShirt\}$	{Shoes,Shorts,TShirt}
4	{Jeans,Shoes,Shorts,TShirt} 🖌	{Jeans,Shoes,Shorts,TShirt}
5	Ø	Ø
	·	·

DATA MINING TECHNIQUES

- Clustering
- Classification
- Association Rules
- Frequent Itemsets
- Outlier Detection

ASSOCIATION RULES MINING

 What is the probability when a customer buys bread in a transaction, (s)he also buys milk in the same transaction?

> Implies? Bread -----> milk

Frequent itemsets cannot answer this question....But Association rules can

General Form

Association rule: x1, x2, ..., xn → y1, y2, ...ym
Meaning: when the L.H.S appears (or occurs), the R.H.S also appears (or occurs) with certain probability
Two measures for a given rule:

1- Support(L.H.S U R.H.S) > α
2- Confidence C = Support(L.H.S U R.H.S)/ Support(L.H.S)

EXAMPLE

Transaction	Items	
t_1	Bread, Jelly, PeanutButter	
t_2	Bread,PeanutButter	
t_3	Bread,Milk,PeanutButter	
t_4	Beer,Bread	
t_5	Beer,Milk	

Usually we search for rules: Support > α Confidence > β

Rule: Bread \rightarrow PeanutButter

- Support of rule = support(Bread, PeanutButter) = 60%
- Confidence of rule = support(Bread, PeanutButter)/support(Bread) = 75%

Rule: Bread, Jelly \rightarrow PeanutButter

- Support of rule = support(Bread, Jelly, PeanutButter) = 20%
- Confidence of rule = support(Bread, Jelly, PeanutButter) /support(Bread, Jelly) = 100%