
C S 5 6 1 - S P R I N G 2 0 1 2
W P I , M O H A M E D E LTA B A K H

OBJECT-ORIENTED & OBJECT-
RELATIONAL DATABASES

1

HISTORY OF DATABASES
History of Databases

Back to the Beginning!

file

systems

(1950s)

store data after process created it has ceased to
exist

!

hierarchical/

network

(1960s)

concurrency !

recovery !

fast access !

complex structures !

relational

(1970-80s)

more reliability !

less redundancy !

more flexibility !

multiple views !

ODBMS

(1990s)

better simulation !

more (and complex) data types !

more relationships (e.g. aggregation,
specialisation)

!

single language for database AND
programming

!

better versioning !

no 'reconstruction' of objects !

other OO advantages (reuse, inheritance etc.) !

How do ODBMS Work?
Relational Model!

Object Model!

Back to the Beginning!

Example:

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (5 of 14) [10/13/2002 11:48:18 AM]

2

STONEBRAKER’S APPLICATION MATRIX

3
Introduction to Database Systems 26

Stonebraker’s Application Matrix

No Query Query

Complex Data

Simple Data File System

OODBMS

RDBMS

ORDBMS

Thesis: Most applications will move to
 the upper right.

MOTIVATION

•  Relational model (70’s):
•  Clean and simple.
•  Great for administrative and transactional data.
•  Not as good for other kinds of complex data (e.g.,

multimedia, networks, CAD).

•  Object-Oriented models (80’s):
•  Complicated, but some influential ideas from Object

Oriented
•  Complex data types.

•  Idea: Build DBMS based on OO model.

Programming languages have evolved from Procedural to
Object Oriented. So why not DBMSs ???

4

RELATIONAL MODEL

•  Relations are the key concept, everything else is around
relations

•  Primitive data types, e.g., strings, integer, date, etc.

•  Great normalization, query optimization, and theory

•  What is missing??
•  Handling of complex objects
•  Handling of complex data types
•  Code is not coupled with data
•  No inherence, encapsulation, etc.

5

RELATIONAL MODEL OF A ‘CAT’

What is an Object Oriented Database?

Back to the Beginning!

Object Oriented Databases (ODBMS) store data together with the appropriate methods for
accessing it i.e. encapsulation.

Relational databases " hammer the world flat" by normalisation.

Relational database of a cat:

Object-oriented database of a cat:

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (2 of 14) [10/13/2002 11:48:18 AM]

At query time, try to put
things together as you

want !!!!

6

OBJECT ORIENTED MODEL OF A ‘CAT’

What is an Object Oriented Database?

Back to the Beginning!

Object Oriented Databases (ODBMS) store data together with the appropriate methods for
accessing it i.e. encapsulation.

Relational databases " hammer the world flat" by normalisation.

Relational database of a cat:

Object-oriented database of a cat:

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (2 of 14) [10/13/2002 11:48:18 AM]

This enables:
complex data types to be stored (e.g. CAD applications)!

a wide range of data types in the same database (e.g. multimedia applications)!

easier to follow objects through time (e.g. "evolutionary applications")!

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (3 of 14) [10/13/2002 11:48:18 AM]

Applications

Back to the Beginning!

The first areas where ODBMS were widely used were:
CASE!

CAD!

CAM!

Increasingly now used in:
telecommunications!

healthcare!

finance!

multimedia!

text/document/quality management!

These are the 'next-generation applications" where traditional IT methods have often not impacted. For
example, it has been estimated that up to 90% of the data held in businesses is still paper-based, because a
large amount of data is not 'record oriented'.

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (4 of 14) [10/13/2002 11:48:18 AM]

: Computer aided manufacture

: Computer aided design

: Computer aided software engineering

7

TWO APPROACHES

•  Object-Oriented Model (OODBMS)
•  Pure OO concepts

•  Object-Relational Model (ORDBMS)
•  Extended relational model with OO concepts

8

DATABASE DESIGN PROCESS

9

Application Domain
or Universe of Discourse

Data Modelling

Conceptual Model

Logical Database Design

Logical Model

Physical Database Design

Physical Model

using ER model or UML

using Data Model of the
target DBMS

DBMS specific
resource-based

optimization

LOGICAL & PHYSICAL LAYERS

10

UML class
diagram

Object-Relational
database design

Object-Oriented
database schema

in ODL

Relational
database design

Mapping onto
Relations

(no operations)

Mapping onto
Relations and Object

types

Mapping directly
onto ODL classes

Normalization &
Physical design

SQL
table definitions

Normalization &
Physical design

Extended-SQL
table definitions

OODBMS

ORDBMS

RDBMS

Optimization

ER diagram

EXAMPLE OF UML CLASSES

11

name: {Norman, William, Preston}
address: Stockport
birthDate: 11-JUN-70

Person

name: {firstName: string,
 middleName: string,
 lastName: string}
address: string
birthDate: date

age(): Integer
changeAddress(newAdd: string)

Class Name

Attributes

Operations

p:Person A Person object

FIRST APPROACH: OBJECT-ORIENTED
MODEL

•  Relations are not the central concept, classes and objects are
the main concept

•  Object-Oriented DBMS(OODBMS) are DBMS based on an Object-
Oriented Data Model inspired by OO programming languages

•  Main Features:
•  Powerful type system
•  Classes
•  Object Identity
•  Inheritance

•  OODBMS are capable of storing complex objects, I.e., objects
that are composed of other objects, and/or multi-valued
attributes.

12

FEATURE 1: POWERFUL TYPE SYSTEM

•  Primitive types
•  Integer, string, date, Boolean, float, etc.

•  Structure type
•  Attribute can be a record with a schema

•  Collection type
•  Attribute can be a Set, Bag, List, Array of other types

•  Reference type
•  Attribute can be a Pointer to another object

13

Struct {integer x, string y}

FEATURE 2: CLASSES

•  A ‘class’ is in replacement of ‘relation’

•  Same concept as in OO programming languages
•  All objects belonging to a same class share the same

properties and behavior

•  An ‘object’ can be thought of as ‘tuple’ (but richer
content)

•  Classes encapsulate data + methods + relationships
•  Unlike relations that contain data only

•  In OODBMSs objects are persistency (unlike OO
programming languages)

14

FEATURE 3: OBJECT IDENTITY

•  OID is a unique identity of each object regardless of
its content
•  Even if all attributes are the same, still objects have different

OIDs

•  Easier for references

•  An object is made of two things:
•  State: attributes (name, address, birthDate of a person)
•  Behaviour: operations (age of a person is computed from

birthDate and current date)

15

FEATURE 4: INHERITANCE

•  A class can be defined in terms of
another one.

•  Person is super-class and Student
is sub-class.

•  Student class inherits attributes
and operations of Person.

16

Person

name: {firstName: string,
 middleName: string,
 lastName: string}
address: string
birthDate: date
age(): Integer
changeAddress(newAdd: string)

Student

regNum: string {PK}

register(C: Course): boolean
major: string

STANDARDS FOR OBJECT-ORIENTED
MODEL

•  ODMG: Object Data Management Group (1991)
•  provide a standard where previously there was none
•  support portability between products
•  standardize model, querying and programming issues

•  Language of specifying the structure of object
database
•  ODL: Object Definition Language
•  OQL: Object Query Language

•  ODL is somehow similar to DDL (Data Definition
Language) in SQL

17

Overview of ODL & OQL

18

ODL: CLASSES & ATTRIBUTES

19

CHAPTER 4. OTHER DATA IVODELS 4.2. INTRODUCTION TO ODL 137

that suggested by Fig. 4.1. Objects have fields or slots in which values are Example 4.2: In Fig. 4.2 is an ODL declaration of the class of movies. I t
placed. These values may be of common types such as integers, strings, is not a complete declaration; we shall add more to it later. Line (1) declarw
or arrays, or they may be references to other objects. Movie to be a class. Following line (1) are the declarations of four attributes

that all Movie objects will have.
When specifying the design of ODL classes, we describe properties of three

1) c l a s s Movie {
1. Attributes, which are values associated with the object. We discuss the 2) a t t r i b u t e s t r i n g t i t l e ;

legal types of ODL attributes in Section 4.2.8. 3) a t t r i b u t e in teger year;
4) a t t r i b u t e in teger length;

2. Relationships, which are connections between the object at hand and an- 5) a t t r i b u t e enum Film Ccolor,blackAndMite) filmType;
other object or objects.

3. Methods, which are functions that may be applied to objects of the class.
Figure 4.2: An ODL declaration of the class Movie

Attributes, relationships, and methods are collectively referred to as properties.
The first attribute, on line (2), is named t i t l e . Its type is string-a

4.2.2 Class Declarations character string of unknown length. U'e expect the value of the t i t l e attribute
in any Movie object to be the name of the movie. The next two attributes, year

A declaration of a class in ODL, in its simplest form, consists of: and length declared on lines (3) and (4), have integer type and represent the
year in which the movie was made and its length in minutes, respectively. On

1. The keyword class, line (5) is another attribute f ilmType, which tells whether the movie was filmed
in color or black-and-white. Its type is an enumeration, and the name of the

2. The name of the class, and enumeration is Film. Values of enumeration attributes are chosen from a list
3. A bracketed list of properties of the class. These properties can be at- of le'terals, color and blackAndWhite in this example.

tributes, relationships, or methods, mixed in any order. An object in the class Movie as we have defined it so far can be thought of
as a record or tuple with four components, one for each of the four attributes.

That is, the simple form of a class declaration is

c l a s s <name> { ("Gone With the Wind", 1939, 231, color)
<list of properties, is a Movie object. 0

Example 4.3 : In Example 4.2, all the attributes have atomic types. Here is
4.2.3 Attributes in ODL an example with a nonatomic type. We can define the class S ta r by

The simplest kind of property is the attribute. These properties describe some 1) c las s S t a r C
aspect of an object by associating a value of a fixed type with that object. 2) a t t r i b u t e s t r i n g name;
For example, person objects might each have an attribute name whose type is 3) a t t r i b u t e St ruct Addr
string and whose value is the name of that person. Person objects might also {s t r ing s t r e e t , s t r i n g c i ty) address;
have an attribute b i r thdate that is a triple of integers (i.e., a record structure)
representing the year, month, and day of their birth.

In ODL, unlike the E/R model, attributes need not be of simple types, such Line (2) specifies an attribute name (of the star) that is a string. Line (3)
as integers and strings. l i e just mentioned bi r thdate as an example of an specifies another attribute address. This attribute has a type that is a record
attribute with a structured type. For another example, an attribute such as structure. The name of this structure is Addr, and the type consists of two
phones might have a set of strings as its type, and even more complex types fields: s t r e e t and c i ty . Both fields are strings. In general, one can define
are possible. \Ire summarize the type system of ODL in Section 4.2.8. record structure types in ODL by the keyword St ruct and curly braces around

CHAPTER 4. OTHER DATA IVODELS 4.2. INTRODUCTION TO ODL 137

that suggested by Fig. 4.1. Objects have fields or slots in which values are Example 4.2: In Fig. 4.2 is an ODL declaration of the class of movies. I t
placed. These values may be of common types such as integers, strings, is not a complete declaration; we shall add more to it later. Line (1) declarw
or arrays, or they may be references to other objects. Movie to be a class. Following line (1) are the declarations of four attributes

that all Movie objects will have.
When specifying the design of ODL classes, we describe properties of three

1) c l a s s Movie {
1. Attributes, which are values associated with the object. We discuss the 2) a t t r i b u t e s t r i n g t i t l e ;

legal types of ODL attributes in Section 4.2.8. 3) a t t r i b u t e in teger year;
4) a t t r i b u t e in teger length;

2. Relationships, which are connections between the object at hand and an- 5) a t t r i b u t e enum Film Ccolor,blackAndMite) filmType;
other object or objects.

3. Methods, which are functions that may be applied to objects of the class.
Figure 4.2: An ODL declaration of the class Movie

Attributes, relationships, and methods are collectively referred to as properties.
The first attribute, on line (2), is named t i t l e . Its type is string-a

4.2.2 Class Declarations character string of unknown length. U'e expect the value of the t i t l e attribute
in any Movie object to be the name of the movie. The next two attributes, year

A declaration of a class in ODL, in its simplest form, consists of: and length declared on lines (3) and (4), have integer type and represent the
year in which the movie was made and its length in minutes, respectively. On

1. The keyword class, line (5) is another attribute f ilmType, which tells whether the movie was filmed
in color or black-and-white. Its type is an enumeration, and the name of the

2. The name of the class, and enumeration is Film. Values of enumeration attributes are chosen from a list
3. A bracketed list of properties of the class. These properties can be at- of le'terals, color and blackAndWhite in this example.

tributes, relationships, or methods, mixed in any order. An object in the class Movie as we have defined it so far can be thought of
as a record or tuple with four components, one for each of the four attributes.

That is, the simple form of a class declaration is

c l a s s <name> { ("Gone With the Wind", 1939, 231, color)
<list of properties, is a Movie object. 0

Example 4.3 : In Example 4.2, all the attributes have atomic types. Here is
4.2.3 Attributes in ODL an example with a nonatomic type. We can define the class S ta r by

The simplest kind of property is the attribute. These properties describe some 1) c las s S t a r C
aspect of an object by associating a value of a fixed type with that object. 2) a t t r i b u t e s t r i n g name;
For example, person objects might each have an attribute name whose type is 3) a t t r i b u t e St ruct Addr
string and whose value is the name of that person. Person objects might also {s t r ing s t r e e t , s t r i n g c i ty) address;
have an attribute b i r thdate that is a triple of integers (i.e., a record structure)
representing the year, month, and day of their birth.

In ODL, unlike the E/R model, attributes need not be of simple types, such Line (2) specifies an attribute name (of the star) that is a string. Line (3)
as integers and strings. l i e just mentioned bi r thdate as an example of an specifies another attribute address. This attribute has a type that is a record
attribute with a structured type. For another example, an attribute such as structure. The name of this structure is Addr, and the type consists of two
phones might have a set of strings as its type, and even more complex types fields: s t r e e t and c i ty . Both fields are strings. In general, one can define
are possible. \Ire summarize the type system of ODL in Section 4.2.8. record structure types in ODL by the keyword St ruct and curly braces around

Two classes with their attributes

Attribute as a structure

Keyword attribute

ODL: RELATIONSHIPS

20

CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141

1. If we have a many-many relationship between classes C and D, then in
1) c l a s s Movie C class C the type of the relationship is Set<D>, and in class D the type is
2) attribute s t r in g t i t l e ;
3) attribute integer year;
4) attr ibute integer length; 2. If the relationship is many-one from C to D, then the type of the rela-
5) attribute enum F i l m {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>.
6) relationship Set<Star> s tar s

inverse Star::starredIn; 3. If the relationship is many-one from D to C, then the roles of C and D
7) relationship Studio ownedBy are reversed in (2) above.

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just
1; D, and in D it is just C.

8) c l a s s Star C Note, that as in the E/R model, we allow a many-one or one-one relationship
9) at tr ibute s t r i ng name; to include the case where for some objects the "one" is actually "none." For
10) attr ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null"

(s tr ing s t r e e t , s t r i ng c i ty) address; value of the relationship in some of the C objects. Of course, since a D object
11) relationship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set

inverse Movie::stars; to be empty for some D objects.
3 ; Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star,

12) c l a s s Studio i and Studio. The first two of these have already been introduced in Examples
13) attribute s t r i ng name; 4.2 and 4.3. ?Ve also discussed the relationship pair s tar s and starredIn.
14) attribute s tr ing address; Since each of their types uses Set , we see that this pair represent.^ a many-
15) re lat ionship Set<Movie> owns many relationship between Star and Movie.

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13)
1; and (14). Notice that the type of addresses here is a string, rather than a

structure as was used for the address attribute of class Star on line (10).
There is nothing wrong with using attributes of the same name but different

Figure 4.3: Some ODL classes and their relationships types in different classes.
In line (7) we see a relationship ownedBy from movies to studios. Since the

DIC
type of the relationship is Studio, and not Set<Studio>, we are declaring that
for each movie there is one studio that owns it. The inverse of this relationship
is found on line (15). There we see the relationship owns from studios to movies.
The type of this relationship is Set<Movie>, indicating that each studio o~vns a
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies.

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL
relationships that logically run from a class to itself, such as "child of" from
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object-

oriented languages, a method is a piece of executable code that may be applied
to the objects of the class.

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and
the input /output types of those methods. These declarations, called signatures,

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ , the Set could be replaced by another "collection type," such as list or bag,
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of
one-one. The type declarations for the pair of relationships tells us which. relationships, however.

Keyword relationship

CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141

1. If we have a many-many relationship between classes C and D, then in
1) c l a s s Movie C class C the type of the relationship is Set<D>, and in class D the type is
2) attribute s t r ing t i t l e ;
3) attribute integer year;
4) attr ibute integer length; 2. If the relationship is many-one from C to D, then the type of the rela-
5) attribute enum F i l m {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>.
6) relationship Set<Star> s t a r s

inverse Star::starredIn; 3. If the relationship is many-one from D to C, then the roles of C and D
7) relationship Studio ownedBy are reversed in (2) above.

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just
1; D, and in D it is just C.

8) c l a s s Star C Note, that as in the E/R model, we allow a many-one or one-one relationship
9) at tr ibute s t r ing name; to include the case where for some objects the "one" is actually "none." For
10) attr ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null"

(s tr ing s t r e e t , s t r i n g c i ty) address; value of the relationship in some of the C objects. Of course, since a D object
11) relationship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set

inverse Movie::stars; to be empty for some D objects.
3 ; Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star,

12) c l a s s Studio i and Studio. The first two of these have already been introduced in Examples
13) attribute s t r ing name; 4.2 and 4.3. ?Ve also discussed the relationship pair s t ar s and starredIn.
14) attribute s tr ing address; Since each of their types uses Set , we see that this pair represent.^ a many-
15) re lat ionship Set<Movie> owns many relationship between Star and Movie.

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13)
1; and (14). Notice that the type of addresses here is a string, rather than a

structure as was used for the address attribute of class Star on line (10).
There is nothing wrong with using attributes of the same name but different

Figure 4.3: Some ODL classes and their relationships types in different classes.
In line (7) we see a relationship ownedBy from movies to studios. Since the

DIC
type of the relationship is Studio, and not Set<Studio>, we are declaring that
for each movie there is one studio that owns it. The inverse of this relationship
is found on line (15). There we see the relationship owns from studios to movies.
The type of this relationship is Set<Movie>, indicating that each studio o~vns a
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies.

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL
relationships that logically run from a class to itself, such as "child of" from
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object-

oriented languages, a method is a piece of executable code that may be applied
to the objects of the class.

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and
the input /output types of those methods. These declarations, called signatures,

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ , the Set could be replaced by another "collection type," such as list or bag,
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of
one-one. The type declarations for the pair of relationships tells us which. relationships, however.

CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141

1. If we have a many-many relationship between classes C and D, then in
1) c l a s s Movie C class C the type of the relationship is Set<D>, and in class D the type is
2) attribute s t r ing t i t l e ;
3) attribute integer year;
4) attr ibute integer length; 2. If the relationship is many-one from C to D, then the type of the rela-
5) attribute enum F i l m {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>.
6) relationship Set<Star> s t a r s

inverse Star::starredIn; 3. If the relationship is many-one from D to C, then the roles of C and D
7) relationship Studio ownedBy are reversed in (2) above.

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just
1; D, and in D it is just C.

8) c l a s s Star C Note, that as in the E/R model, we allow a many-one or one-one relationship
9) at tr ibute s t r ing name; to include the case where for some objects the "one" is actually "none." For
10) attr ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null"

(s tr ing s t r e e t , s t r ing c i ty) address; value of the relationship in some of the C objects. Of course, since a D object
11) relationship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set

inverse Movie::stars; to be empty for some D objects.
3 ; Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star,

12) c l a s s Studio i and Studio. The first two of these have already been introduced in Examples
13) attribute s t r i n g name; 4.2 and 4.3. ?Ve also discussed the relationship pair s tar s and starredIn.
14) attribute s tr ing address; Since each of their types uses Set , we see that this pair represent.^ a many-
15) re lat ionship Set<Movie> owns many relationship between Star and Movie.

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13)
1; and (14). Notice that the type of addresses here is a string, rather than a

structure as was used for the address attribute of class Star on line (10).
There is nothing wrong with using attributes of the same name but different

Figure 4.3: Some ODL classes and their relationships types in different classes.
In line (7) we see a relationship ownedBy from movies to studios. Since the

DIC
type of the relationship is Studio, and not Set<Studio>, we are declaring that
for each movie there is one studio that owns it. The inverse of this relationship
is found on line (15). There we see the relationship owns from studios to movies.
The type of this relationship is Set<Movie>, indicating that each studio o~vns a
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies.

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL
relationships that logically run from a class to itself, such as "child of" from
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object-

oriented languages, a method is a piece of executable code that may be applied
to the objects of the class.

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and
the input /output types of those methods. These declarations, called signatures,

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ , the Set could be replaced by another "collection type," such as list or bag,
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of
one-one. The type declarations for the pair of relationships tells us which. relationships, however.

CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141

1. If we have a many-many relationship between classes C and D, then in
1) c l a s s Movie C class C the type of the relationship is Set<D>, and in class D the type is
2) attribute s t r ing t i t l e ;
3) attribute integer year;
4) attr ibute integer length; 2. If the relationship is many-one from C to D, then the type of the rela-
5) attribute enum F i l m {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>.
6) relationship Set<Star> s t ar s

inverse Star::starredIn; 3. If the relationship is many-one from D to C, then the roles of C and D
7) relationship Studio ownedBy are reversed in (2) above.

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just
1; D, and in D it is just C.

8) c l a s s Star C Note, that as in the E/R model, we allow a many-one or one-one relationship
9) at tr ibute s t r ing name; to include the case where for some objects the "one" is actually "none." For
10) attr ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null"

(s tr ing s t r e e t , s t r i n g c i ty) address; value of the relationship in some of the C objects. Of course, since a D object
11) relationship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set

inverse Movie::stars; to be empty for some D objects.
3 ; Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star,

12) c l a s s Studio i and Studio. The first two of these have already been introduced in Examples
13) attribute s t r ing name; 4.2 and 4.3. ?Ve also discussed the relationship pair s t a r s and starredIn.
14) attribute s tr ing address; Since each of their types uses Set , we see that this pair represent.^ a many-
15) re lat ionship Set<Movie> owns many relationship between Star and Movie.

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13)
1; and (14). Notice that the type of addresses here is a string, rather than a

structure as was used for the address attribute of class Star on line (10).
There is nothing wrong with using attributes of the same name but different

Figure 4.3: Some ODL classes and their relationships types in different classes.
In line (7) we see a relationship ownedBy from movies to studios. Since the

DIC
type of the relationship is Studio, and not Set<Studio>, we are declaring that
for each movie there is one studio that owns it. The inverse of this relationship
is found on line (15). There we see the relationship owns from studios to movies.
The type of this relationship is Set<Movie>, indicating that each studio o~vns a
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies.

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL
relationships that logically run from a class to itself, such as "child of" from
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object-

oriented languages, a method is a piece of executable code that may be applied
to the objects of the class.

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and
the input /output types of those methods. These declarations, called signatures,

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ , the Set could be replaced by another "collection type," such as list or bag,
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of
one-one. The type declarations for the pair of relationships tells us which. relationships, however.

Keyword set

Set: set of unsorted unique
objects

Bag: set of unsorted objects
with possible duplication

List: set of sorted list

Array: set of sorted list
referenced by index

ODL: RELATIONSHIPS & INVERSE
RELATIONSHIPS

21

CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141

1. If we have a many-many relationship between classes C and D, then in
1) c l a s s Movie C class C the type of the relationship is Set<D>, and in class D the type is
2) attribute s t r in g t i t l e ;
3) attribute integer year;
4) attr ibute integer length; 2. If the relationship is many-one from C to D, then the type of the rela-
5) attribute enum F i l m {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>.
6) relationship Set<Star> s tar s

inverse Star::starredIn; 3. If the relationship is many-one from D to C, then the roles of C and D
7) relationship Studio ownedBy are reversed in (2) above.

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just
1; D, and in D it is just C.

8) c l a s s Star C Note, that as in the E/R model, we allow a many-one or one-one relationship
9) at tr ibute s t r i ng name; to include the case where for some objects the "one" is actually "none." For
10) attr ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null"

(s tr ing s t r e e t , s t r i ng c i ty) address; value of the relationship in some of the C objects. Of course, since a D object
11) relationship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set

inverse Movie::stars; to be empty for some D objects.
3 ; Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star,

12) c l a s s Studio i and Studio. The first two of these have already been introduced in Examples
13) attribute s t r i ng name; 4.2 and 4.3. ?Ve also discussed the relationship pair s tar s and starredIn.
14) attribute s tr ing address; Since each of their types uses Set , we see that this pair represent.^ a many-
15) re lat ionship Set<Movie> owns many relationship between Star and Movie.

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13)
1; and (14). Notice that the type of addresses here is a string, rather than a

structure as was used for the address attribute of class Star on line (10).
There is nothing wrong with using attributes of the same name but different

Figure 4.3: Some ODL classes and their relationships types in different classes.
In line (7) we see a relationship ownedBy from movies to studios. Since the

DIC
type of the relationship is Studio, and not Set<Studio>, we are declaring that
for each movie there is one studio that owns it. The inverse of this relationship
is found on line (15). There we see the relationship owns from studios to movies.
The type of this relationship is Set<Movie>, indicating that each studio o~vns a
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies.

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL
relationships that logically run from a class to itself, such as "child of" from
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object-

oriented languages, a method is a piece of executable code that may be applied
to the objects of the class.

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and
the input /output types of those methods. These declarations, called signatures,

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ , the Set could be replaced by another "collection type," such as list or bag,
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of
one-one. The type declarations for the pair of relationships tells us which. relationships, however.

Keyword inverse

Inverse of
each other

ODL: MULTIPLICITY OF RELATIONSHIPS

22

CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141

1. If we have a many-many relationship between classes C and D, then in
1) c l a s s Movie C class C the type of the relationship is Set<D>, and in class D the type is
2) attribute s t r in g t i t l e ;
3) attribute integer year;
4) attr ibute integer length; 2. If the relationship is many-one from C to D, then the type of the rela-
5) attribute enum F i l m {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>.
6) relationship Set<Star> s tar s

inverse Star::starredIn; 3. If the relationship is many-one from D to C, then the roles of C and D
7) relationship Studio ownedBy are reversed in (2) above.

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just
1; D, and in D it is just C.

8) c l a s s Star C Note, that as in the E/R model, we allow a many-one or one-one relationship
9) at tr ibute s t r i ng name; to include the case where for some objects the "one" is actually "none." For
10) attr ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null"

(s tr ing s t r e e t , s t r i ng c i ty) address; value of the relationship in some of the C objects. Of course, since a D object
11) relationship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set

inverse Movie::stars; to be empty for some D objects.
3 ; Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star,

12) c l a s s Studio i and Studio. The first two of these have already been introduced in Examples
13) attribute s t r i ng name; 4.2 and 4.3. ?Ve also discussed the relationship pair s tar s and starredIn.
14) attribute s tr ing address; Since each of their types uses Set , we see that this pair represent.^ a many-
15) re lat ionship Set<Movie> owns many relationship between Star and Movie.

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13)
1; and (14). Notice that the type of addresses here is a string, rather than a

structure as was used for the address attribute of class Star on line (10).
There is nothing wrong with using attributes of the same name but different

Figure 4.3: Some ODL classes and their relationships types in different classes.
In line (7) we see a relationship ownedBy from movies to studios. Since the

DIC
type of the relationship is Studio, and not Set<Studio>, we are declaring that
for each movie there is one studio that owns it. The inverse of this relationship
is found on line (15). There we see the relationship owns from studios to movies.
The type of this relationship is Set<Movie>, indicating that each studio o~vns a
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies.

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL
relationships that logically run from a class to itself, such as "child of" from
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object-

oriented languages, a method is a piece of executable code that may be applied
to the objects of the class.

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and
the input /output types of those methods. These declarations, called signatures,

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ , the Set could be replaced by another "collection type," such as list or bag,
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of
one-one. The type declarations for the pair of relationships tells us which. relationships, however.

Based on the use of collection
types (set, bag, etc.)

Many-to-Many relationship

One-to-Many relationship

What about multiway
relationships???

--Not supported
--Need to convert a multiway to
multiple binary relationships

ODL: METHODS

23

Why Signatures?

The value of providing signatures is that when we implement the schema
in a real programming language, we can check automatically that the
implementation matches the design as was expressed in the schema. We
cannot check that the implementation correctly implements the "meaning"
of the operations, but we can at least check that the input and output
parameters are of the correct number and of the correct type.

142 CHAPTER 4. OTHER DATA MODELS 2. lXTRODUCTIOAr TO ODL 143

Line (8) declares a method 1engthInHours. We might imagine that it pro-
uces as a return value the length of the movie object to which it is applied, but

erted from minutes (as in the attribute length) to a floating-point number
is the equivalent in hours. Note that this method takes no parameters.
Movie object to which the method is applied is the "hidden" argument,
it is from this object that a possible implementation of 1engthInHours

ould obtain the length of the movie in minute^.^
thod 1engthInHours may raise an exception called noLengthFound, Pre-
ly this exception would be raised if the length attribute of the object

ue that could not represent a valid length (e.g., a negative number).
are like function declarations in C or C++ (as opposed to function definitions,
which are the code to implement the function). The code for a method would 1) c l a s s Movie {
be written in the host language; this code is not part of ODL. 2) a t t r i b u t e s t r i n g t i t l e ;

Declarations of methods appear along with the attributes and relationships 3) a t t r i b u t e integer year;
in a class declaration. As is normal for object-oriented languages, each method . 4) a t t r i b u t e in teger length;
is associated with a class, and methods are invoked on an object of that class. 5) a t t r i b u t e enumeration(color,blackAndWhite) filmType;
Thus, the object is a "hidden" argument of the method. This style allows the 6) re la t ionship Set<Star> stars
same method name to be used for several different classes, because the object inverse Star : : s tar redIn;
upon which the operation is performed determines the particular method meant. 7) re la t ionship Studio ownedBy
Such a method name is said to be overloaded. inverse Studio::oms;

The syntax of method declarations is similar to that of function declarations 8) f l o a t lengthInHours() raises(noLengthF0und);
in C, with two important additions: 9) void starNames(out Set<String>);

LO) void otherMovies(in S ta r , out Set<Movie>) 1. Method parameters are specified to be in, out, or inout, meaning that raises(noSuchStar); they are used as input parameters, output parameters, or both, respec-
tively. The last two types of parameters can be modified by the method;
i n parameters cannot be modified. In effect, out and inout parameters
are passed by reference, while i n parameters may be passed by value. Figure 4.4: Adding method signatures to the Movie class
Note that a method may also have a return value, which is a way that a
result can be produced by a method other than by assigning a value to In line (9) we see another method signature, for a method called starNames.
an out or inout parameter. This method has no return value but has an output parameter whose type is a

set of strings. We presume that the value of the output paramet,er is computed 2. Methods may raise ezceptions, which are special responses that are out- by starNames to be the set of strings that are the values of the attribute name side the normal parameter-passing and return-value mechanisms by which for the stars of the movie to which the method is applied. However, as always methods communicate. An exception usually indicates an abnormal or there is no guarantee that t,he method definition behaves in this particular way. unexpected condition that will be "handled" by some method that called Finally, at line (10) is a third method, otherMovies. This method has an it (perhaps indirectly through a sequence of calls). Division by zero is an input parameter of type Star. A possible implementation of this method is as example of a condition that might be treated as an exception. In ODL: a follows. We may suppose that otherMovies expects this star to be one of the method declaration can be follo~ved by the keyword ra ises , followed by stars of the movie; if it is not, then the exception nosuchstar is raised. If it is a parenthesized list of one or more exceptions that the method can raise. one of the stars of the movie to which the method is applied, then the output
parameter, whose type is a set of movies, is given as its value the set of all the

Example 4.7: In Fig. 4.4 we see an evolution of the definition for class Movie, the actual definition of the method 1engthInHours a special term such as self would
last seen in Fig. 4.3. The methods included with the class declaration are as be used to refer to the object to which the method is appUed. This matter is of no concern
follows. as far as declarations of method signatures is concerned.

Three methods declarations

Parameters are either
IN, OUT, or INOUT

Definition (implementation) is
not part of the class

ODL: INHERITANCE

24

148 CHAPTER 4. OTHER DATA MODELS . ADDITIONAL ODL CONCEPTS

3. Keys, which are optional in ODL. m each of these to Contract. For instance, the inverse of theMovie might
named contractsfor. Itre would then replace line (3) of Fig. 4.6 by

4. Extents, the set of objects of a given class that exist in a database. These
are the ODL equivalent of entity sets or relations, and must not be con- 3) relat ionship Movie theMovie
fused with the class itself, which is a schema. inverse Movie::contractsFor;

4.3.1 Multiway Relationships in ODL nd add to the declaration of Movie the statement:

ODL supports only binary relationships. There is a trick, which we introduced relat ionship Set<Contract> contractsFor
in Section 2.1.7, to replace a multiway relationship by several binary, many-one inverse C0ntract::theMovie;
relationships. Suppose we have a multiway relationship R among classes or tice that in Movie, the relationship contractsFor gives us a set of contracts,
entity sets Cl, C2, . . . , C,. We may replace R by a class C and n many-one ce there may be several contracts associated with one movie. Each contract binary relationships from C to each of the Ci5s. Each object of class C may be the set is essentially a triple consisting of that movie, a star, and a studio,
thought of as a tuple t in the relationship set for R. Object t is related, by the us the salary that is paid to the star by the studio for acting in that movie. n many-one relationships, t o the objects of the classes Ci that participate in
the relationship-set tuple t.

Example 4.9: Let us consider how we would represent in ODL the 3-way 3.2 Subclasses in ODL
relationship Contracts, whose E/R diag~am was given in Fig. 2.7. We may
start wid1 the class defiriliions for Novie, Star, and Studio, the three classes Let us recall the discussion of subclasses in the E/R model from Section 2.1.11.

There is a similar capability in ODL to declare one class C to be a subclass that are related by Contracts, that we saw in Fig. 4.3. of another class D. We follow the name C in its declaration with the keyword We must create a class Contract that corresponds to the 3-way relationship extends and the name D. Contracts. The three many-one relationships from Contract to the other three
classes we shall call thenovie, t hes t a r , and thestudio. Figure 4.6 shows the Example 4.10: Recall Example 2.10, where we declared cartoons to be a
definition of the class Saritract. subclass of movies, with the additional property of a relationship from a cartoon

t: a set of stars that are its "voices." I r e can create a subclass Cartoon for
1) c l a s s Contract i hlovie with the ODL declaration:
2) a t t r i b u t e in teger sa lary;
3) r e l a t ionsh ip Movie theMovie c l a s s Cartoon extends Movie i

re la t ionship Set<Star> voices; inverse ... ;
4) r e l a t ionsh ip S t a r thes t a r

inverse ... ; ITe have not indicated the name of the inverse of relationship voices, although
5) r e l a t ionsh ip Studio thestudio technically we must do so.

inverse . . . ; A subclass inherits all the properties of its superclass. Thus, each cartoon
1; object has attributes t i t l e , year, length, and f ilmType inherited from ~ o v i e

(recall Fig. 4.3), and it inherits relationships s t a r s and ownedBy from Movie,
Figure 4.6: A class Contract to represent the 3-way relationship Contracts in addition to its own relationship voices.

Also in that esample. we defined a class of murder mysteries with additional
attribute weapon. There is one attribute of the class Contract, the salary, since that quantity is

associated with the contract itself, not with any of the three part,icipants. Recall c l a s s MurderMystery extends Movie
that in Fig. 2.7 we made an analogous decision to place the attribute salary on a t t r i b u t e s t r ing weapon;
the relationship Contracts, rather than on one of the participating entity sets.
The other properties of Contract objects are the three relationships mentioned.

Note that we have not named the inverses of these relationships. need is a suitable declaration of this subclass. Again, all t,he properties of movies are
to modify the declarations of Movie, Star, and Studio to include relationships inherited by MurderMystery.

\
\

148 CHAPTER 4. OTHER DATA MODELS . ADDITIONAL ODL CONCEPTS

3. Keys, which are optional in ODL. m each of these to Contract. For instance, the inverse of theMovie might
named contractsfor. Itre would then replace line (3) of Fig. 4.6 by

4. Extents, the set of objects of a given class that exist in a database. These
are the ODL equivalent of entity sets or relations, and must not be con- 3) relat ionship Movie theMovie
fused with the class itself, which is a schema. inverse Movie::contractsFor;

4.3.1 Multiway Relationships in ODL nd add to the declaration of Movie the statement:

ODL supports only binary relationships. There is a trick, which we introduced relat ionship Set<Contract> contractsFor
in Section 2.1.7, to replace a multiway relationship by several binary, many-one inverse C0ntract::theMovie;
relationships. Suppose we have a multiway relationship R among classes or tice that in Movie, the relationship contractsFor gives us a set of contracts,
entity sets Cl, C2, . . . , C,. We may replace R by a class C and n many-one ce there may be several contracts associated with one movie. Each contract binary relationships from C to each of the Ci5s. Each object of class C may be the set is essentially a triple consisting of that movie, a star, and a studio,
thought of as a tuple t in the relationship set for R. Object t is related, by the us the salary that is paid to the star by the studio for acting in that movie. n many-one relationships, t o the objects of the classes Ci that participate in
the relationship-set tuple t.

Example 4.9: Let us consider how we would represent in ODL the 3-way 3.2 Subclasses in ODL
relationship Contracts, whose E/R diag~am was given in Fig. 2.7. We may
start wid1 the class defiriliions for Novie, Star, and Studio, the three classes Let us recall the discussion of subclasses in the E/R model from Section 2.1.11.

There is a similar capability in ODL to declare one class C to be a subclass that are related by Contracts, that we saw in Fig. 4.3. of another class D. We follow the name C in its declaration with the keyword We must create a class Contract that corresponds to the 3-way relationship extends and the name D. Contracts. The three many-one relationships from Contract to the other three
classes we shall call thenovie, t hes t a r , and thestudio. Figure 4.6 shows the Example 4.10: Recall Example 2.10, where we declared cartoons to be a
definition of the class Saritract. subclass of movies, with the additional property of a relationship from a cartoon

t: a set of stars that are its "voices." I r e can create a subclass Cartoon for
1) c l a s s Contract i hlovie with the ODL declaration:
2) a t t r i b u t e in teger sa lary;
3) r e l a t ionsh ip Movie theMovie c l a s s Cartoon extends Movie i

re la t ionship Set<Star> voices; inverse ... ;
4) r e l a t ionsh ip S t a r thes t a r

inverse ... ; ITe have not indicated the name of the inverse of relationship voices, although
5) r e l a t ionsh ip Studio thestudio technically we must do so.

inverse . . . ; A subclass inherits all the properties of its superclass. Thus, each cartoon
1; object has attributes t i t l e , year, length, and f ilmType inherited from ~ o v i e

(recall Fig. 4.3), and it inherits relationships s t a r s and ownedBy from Movie,
Figure 4.6: A class Contract to represent the 3-way relationship Contracts in addition to its own relationship voices.

Also in that esample. we defined a class of murder mysteries with additional
attribute weapon. There is one attribute of the class Contract, the salary, since that quantity is

associated with the contract itself, not with any of the three part,icipants. Recall c l a s s MurderMystery extends Movie
that in Fig. 2.7 we made an analogous decision to place the attribute salary on a t t r i b u t e s t r ing weapon;
the relationship Contracts, rather than on one of the participating entity sets.
The other properties of Contract objects are the three relationships mentioned.

Note that we have not named the inverses of these relationships. need is a suitable declaration of this subclass. Again, all t,he properties of movies are
to modify the declarations of Movie, Star, and Studio to include relationships inherited by MurderMystery.

\
\

150 CHAPTER 4. OTHER DATA MODELS 3. ADDITIONAL ODL CONCEPTS . 151

4.3.3 Multiple Inheritance in ODL
sometimes, as in the case of a movie like "Roger Rabbit," we need a class that
is a subclass of two or more other classes at the same time. In the E/R model,
n,e were able to imagine that "Roger Rabbit" was represented by components in
all three of the Movies, Cartoons, and fdurder-Mysren'es entity sets, which were
connected in an isa-hierarchy. However, a principle of object-oriented systems e ODL standard does not dictate how such conflicts are to be resolved.
is that objects belong to one and only one class. Thus, to represent movies ome possible approaches to handling conflicts that arise from multiple inheri-
that are both cartoons and murder mysteries, we need a fourth class for these
movies.

The class CartoonMurderMystery must inherit properties from both Car- . Disallow multiple inheritance altogether. This approach is generally re-
toon and MurderMystery, as suggested by Fig. 4.7. That is, a ~artoonMurder- garded as too limiting.
Mystery object has all the properties of a Movie object, plus the relationship
voices and the attribute weapon. . Indicate which of the candidate definitions of the property applies to the

subclass. For instance, in Example 4.11 we may decide that in a courtroom
Movie romance we are more interested in whether the movie has a happy or sad

ending than we are in the verdict of the courtroom trial. In this case, we
would specify that class Courtroom-Romance inherits attribute ending

Cartoon MurderMystery from superclass Romance, and not from superclass Courtroom.

3. Give a new name in the subclass for one of the identically named proper-
ties in the superclasses. For instance, in Example 4.11, if C ~ u r t ~ o ~ ~ - ~ ~ ~ -

CartoonMurderMyster~ ance inherits attrihute ending from superclass Romance, then we may
specify that class Courtroom-Romance has an additional attribute called

Figure 4.7: Diagram showing multiple inheritance verdict , which is a renaming of the attribute ending inherited from class Courtroom.

In ODL, we may follow the keyword extends by several classes, separated
by colons.3 Thus, we may declare the fourth class by: 4.3.4 Extents

c las s CartoonMurderMystery When an ODL class is part of the database being defined, we need to distinguish
extends MurderMystery : Cartoon; the class definition itself from the set of objects of that class that exist at a

given time. The distinction is the same as that between a relation scllema
When a class C inherits from several classes, there is t,he potential for con- and a relation instance, even though both can be referred to by the name

fiiets among property names. Two or more of the superclasses of C may have a
property of the same name, and the types of these properties may differ. Class
CmoonMurderMystery did not present such a problem, since the only prop-
erties in common between Cartoon and ~ u r d e r ~ y s t e r y ' are the ropert ties of In ODL, the distinction is made explicit by giving the class and its eztent,
Movie, which are the same property in both superclasses of CartoonMurder- or set of existing objects, different names. Thus, the class name is a schema
Mystery. Here is an example where we are not so lucky. for t,he class, while the extent is the name of the currellt set of objects of that

class. We provide a name for the extent of a class by follo-~ing the class name
Example 4.11: Suppose we have subclasses of Movie called Romance and by a parenthesized expression consisting of the keyword extent and the name
Courtroom. Further suppose that each of these subclasses has an attribute chosen for the extent.
called ending. h class Romance, attribute ending draws its'values from the

3Technically, the second and subsequent names must be "interfaces," rather than classes.
Example 4.12 : In general, we find it a useful convention to name classes by a

Roughly, an interface in ODL is a class definition without an associated set of objects, or singular noun and name the corresponding extent by the same noun in plural.
' 'e~tent.~ We discuss the distinction further in Section 4.3.4. Following this convention, we could call the extent for class Movie by the name

•  Same Idea as in OO programming (C++ or Java)
•  Subclass inherits all attributes, relationships, and methods

•  Plus adding additional fields

Cartoon movie is a movie
with voices of characters

Murder movie is a movie
with the weapons used

Inherits from two other
classes

Keyword extends

ODL: INSTANCES & KEYS

•  Instance of a class are all objects currently exist of that class
•  In ODL that is called extent (and is given a name)

•  Keys are not as important for referencing objects
•  Because each object already has a unique OID

•  Defining keys in ODL is optional
•  ODL allows defining multiple keys (Comma separated)

25

CHAPTER 4. OTHER DATA MODELS DDITIONAL ODL. CONCEPTS 153

tributes forming keys. If there is more than one attribute in a key, the
Interfaces of attributes must be surrounded by parentheses. The key declaration itself

ears, along with the extent declaration, inside parentheses that may follow
ODL provides for the definition of interfaces, which are essentially class name of the class itself in the first line of its declaration.
definitions with no associated extent (and therefore, with no associated
objects). We first mentioned interfaces in Section 4.3.3, where we pointed mple 4.13 : To declare that the set of two attributes t i t l e and year form
out that they could support inheritance by one class from several classes. y for class Movie, we could begin its declaration:
Interfaces also are useful if we have several classes that have different
extents, but the same properties; the situation is analogous to several c l a s s Movie
relations that have the same schema but different sets of tuples. (extent Movies key (t i t l e , year))

If we define an interface I, we can then define several classes that
inherit their properties from I. Each of those classes has a distinct extent, a t t r i b u t e s t r i n g t i t l e ;
so we can maintain in our database several sets of objects that have the . . .
same type, yet belong to distinct classes. could have used keys in place of key, even though only one key is declared.

Similarly, if name is a key for class Star, then we could begin its declaration:

c l a s s S t a r
Movies. To declare this name for the extent, we would begin the declaration of (extent S ta r s key name)
class Movie by:

a t t r i b u t e s t r i n g name;
c l a s s Movie (extent Movies) 1 . . .

a t t r i b u t e s t r i n g t i t l e ;
. . .

As we sliall see when we study the query language OQL that is designed for It is possible that several sets of attributes are keys. If so, then following
querying ODL data, we refer to the extent Movies, not to the class Movie, when the word key(s) we may place several keys separated by commas. As usual, a
we want to examine the movies currently stored in our database. Remember key that consists of more than one attribute must have parentheses around the
that the choice of a name for the extent of a class is entirely arbitrary, although list of its attributes, so we can disambiguate a key of several attributes from
we shall follow the "make it plural" convention in this book. 0 several keys of one attribute each.

Example 4.14 : As an example of a situation where it is appropriate to have
more than one key, consider a class Employee, whose complete set of attributes

4.3.5 Declaring Keys in ODL and relationships we shall not describe here. However, suppose that two of its
attributes are empID, the employee ID, and ssNo, the Social Security number.

ODL differs from the other models studied so far in that the declaration and Then we can declare each of these attributes to be a key by itself with
use of keys is optional. That is, in the E/R model, entity sets need keys to
distinguish members of the entity set from one another. In the relational model, c l a s s Employee
where relations are sets, all attributes together form a key unless some proper (extent Employees key empID, ssNo)
subset of the attributes for a given relat.ion can serve as a key. Either way, there . . .
must be a t least one key for a relation.

However, objects have a unique object identity, as we discussed in Sec-
Because there are no parentheses around the list of attributes, ODL interprets

tion 4.1.3. Consequently, in ODL, the declaration of a key or keys is optional.
the above as saying that each of the two attributes is a key by itself. If we put

It is entirely appropriate for there to be several objects of a class that are in-
parentheses around the list (empID, ssNo) , then ODL would interpret the two

distinguishable by any properties i e can observe; the system still keeps them
attributes together as forming one key. That is, the implication of writing

distinct by their internal object identity. class Employee
In ODL we may declare one or more attributes to be a key for a class by using (extent Employees key (empID, ssNo))

the keyword key or keys (it doesn't matter which) followed by the attribute . . .

Keywords extent & key

The key is the pair of (title, year)

CHAPTER 4. OTHER DATA MODELS DDITIONAL ODL. CONCEPTS 153

tributes forming keys. If there is more than one attribute in a key, the
Interfaces of attributes must be surrounded by parentheses. The key declaration itself

ears, along with the extent declaration, inside parentheses that may follow
ODL provides for the definition of interfaces, which are essentially class name of the class itself in the first line of its declaration.
definitions with no associated extent (and therefore, with no associated
objects). We first mentioned interfaces in Section 4.3.3, where we pointed mple 4.13 : To declare that the set of two attributes t i t l e and year form
out that they could support inheritance by one class from several classes. y for class Movie, we could begin its declaration:
Interfaces also are useful if we have several classes that have different
extents, but the same properties; the situation is analogous to several c l a s s Movie
relations that have the same schema but different sets of tuples. (extent Movies key (t i t l e , year))

If we define an interface I, we can then define several classes that
inherit their properties from I. Each of those classes has a distinct extent, a t t r i b u t e s t r i n g t i t l e ;
so we can maintain in our database several sets of objects that have the . . .
same type, yet belong to distinct classes. could have used keys in place of key, even though only one key is declared.

Similarly, if name is a key for class Star, then we could begin its declaration:

c l a s s S t a r
Movies. To declare this name for the extent, we would begin the declaration of (extent S ta r s key name)
class Movie by:

a t t r i b u t e s t r i n g name;
c l a s s Movie (extent Movies) 1 . . .

a t t r i b u t e s t r i n g t i t l e ;
. . .

As we sliall see when we study the query language OQL that is designed for It is possible that several sets of attributes are keys. If so, then following
querying ODL data, we refer to the extent Movies, not to the class Movie, when the word key(s) we may place several keys separated by commas. As usual, a
we want to examine the movies currently stored in our database. Remember key that consists of more than one attribute must have parentheses around the
that the choice of a name for the extent of a class is entirely arbitrary, although list of its attributes, so we can disambiguate a key of several attributes from
we shall follow the "make it plural" convention in this book. 0 several keys of one attribute each.

Example 4.14 : As an example of a situation where it is appropriate to have
more than one key, consider a class Employee, whose complete set of attributes

4.3.5 Declaring Keys in ODL and relationships we shall not describe here. However, suppose that two of its
attributes are empID, the employee ID, and ssNo, the Social Security number.

ODL differs from the other models studied so far in that the declaration and Then we can declare each of these attributes to be a key by itself with
use of keys is optional. That is, in the E/R model, entity sets need keys to
distinguish members of the entity set from one another. In the relational model, c l a s s Employee
where relations are sets, all attributes together form a key unless some proper (extent Employees key empID, ssNo)
subset of the attributes for a given relat.ion can serve as a key. Either way, there . . .
must be a t least one key for a relation.

However, objects have a unique object identity, as we discussed in Sec-
Because there are no parentheses around the list of attributes, ODL interprets

tion 4.1.3. Consequently, in ODL, the declaration of a key or keys is optional.
the above as saying that each of the two attributes is a key by itself. If we put

It is entirely appropriate for there to be several objects of a class that are in-
parentheses around the list (empID, ssNo) , then ODL would interpret the two

distinguishable by any properties i e can observe; the system still keeps them
attributes together as forming one key. That is, the implication of writing

distinct by their internal object identity. class Employee
In ODL we may declare one or more attributes to be a key for a class by using (extent Employees key (empID, ssNo))

the keyword key or keys (it doesn't matter which) followed by the attribute . . . The key is the pair of (empID, SSN)

CHAPTER 4. OTHER DATA MODELS DDITIONAL ODL. CONCEPTS 153

tributes forming keys. If there is more than one attribute in a key, the
Interfaces of attributes must be surrounded by parentheses. The key declaration itself

ears, along with the extent declaration, inside parentheses that may follow
ODL provides for the definition of interfaces, which are essentially class name of the class itself in the first line of its declaration.
definitions with no associated extent (and therefore, with no associated
objects). We first mentioned interfaces in Section 4.3.3, where we pointed mple 4.13 : To declare that the set of two attributes t i t l e and year form
out that they could support inheritance by one class from several classes. y for class Movie, we could begin its declaration:
Interfaces also are useful if we have several classes that have different
extents, but the same properties; the situation is analogous to several c l a s s Movie
relations that have the same schema but different sets of tuples. (extent Movies key (t i t l e , year))

If we define an interface I, we can then define several classes that
inherit their properties from I. Each of those classes has a distinct extent, a t t r i b u t e s t r i n g t i t l e ;
so we can maintain in our database several sets of objects that have the . . .
same type, yet belong to distinct classes. could have used keys in place of key, even though only one key is declared.

Similarly, if name is a key for class Star, then we could begin its declaration:

c l a s s S t a r
Movies. To declare this name for the extent, we would begin the declaration of (extent S ta r s key name)
class Movie by:

a t t r i b u t e s t r i n g name;
c l a s s Movie (extent Movies) 1 . . .

a t t r i b u t e s t r i n g t i t l e ;
. . .

As we sliall see when we study the query language OQL that is designed for It is possible that several sets of attributes are keys. If so, then following
querying ODL data, we refer to the extent Movies, not to the class Movie, when the word key(s) we may place several keys separated by commas. As usual, a
we want to examine the movies currently stored in our database. Remember key that consists of more than one attribute must have parentheses around the
that the choice of a name for the extent of a class is entirely arbitrary, although list of its attributes, so we can disambiguate a key of several attributes from
we shall follow the "make it plural" convention in this book. 0 several keys of one attribute each.

Example 4.14 : As an example of a situation where it is appropriate to have
more than one key, consider a class Employee, whose complete set of attributes

4.3.5 Declaring Keys in ODL and relationships we shall not describe here. However, suppose that two of its
attributes are empID, the employee ID, and ssNo, the Social Security number.

ODL differs from the other models studied so far in that the declaration and Then we can declare each of these attributes to be a key by itself with
use of keys is optional. That is, in the E/R model, entity sets need keys to
distinguish members of the entity set from one another. In the relational model, c l a s s Employee
where relations are sets, all attributes together form a key unless some proper (extent Employees key empID, ssNo)
subset of the attributes for a given relat.ion can serve as a key. Either way, there . . .
must be a t least one key for a relation.

However, objects have a unique object identity, as we discussed in Sec-
Because there are no parentheses around the list of attributes, ODL interprets

tion 4.1.3. Consequently, in ODL, the declaration of a key or keys is optional.
the above as saying that each of the two attributes is a key by itself. If we put

It is entirely appropriate for there to be several objects of a class that are in-
parentheses around the list (empID, ssNo) , then ODL would interpret the two

distinguishable by any properties i e can observe; the system still keeps them
attributes together as forming one key. That is, the implication of writing

distinct by their internal object identity. class Employee
In ODL we may declare one or more attributes to be a key for a class by using (extent Employees key (empID, ssNo))

the keyword key or keys (it doesn't matter which) followed by the attribute . . .

Two keys empID and SSN

WHAT’S NEXT

•  First Approach: Object-Oriented Model
•  Concepts from OO programming languages
•  ODL: Object Definition Language
•  What about querying OO databases???

•  OQL: Object Oriented Query Language

26

OQL: OBJECT-ORIENTED QUERY
LANGUAGE

•  OQL is a query language designed to operate on
databases described in ODL.

•  Tries to bring some concepts from the relational model to
the ODBMs
•  E.g., the SELECT statement, joins, aggregation, etc.

•  Reference of class properties (attributes, relationships,
and methods) using:
•  Dot notation (p.a), or
•  Arrow notation (p->a)

•  In OQL both notations are equivalent

27

OQL: EXAMPLE QUERIES I

28

426 CHAPTER 9. OBJECT-ORIENTflTION IN QUERY LANGUAGES

object-oriented host language, such as C++, Smalltalk, or Java. Objects will
be manipulated both by OQL queries and by the conventional statements of the
host language. The ability to mix host-language statements and OQL queries
without explicitly transferring values between the two languages is a n advance
over the way SQL is embedded into a host language, as was discussed in Sec-
tion 8.1.

9.1.1 An Object-Oriented Movie Example
In order t o illustrate the dictions of OQL, we need a running example. It
will involve the familiar classes Movie, S t a r , and Studio. We shall use the
definitions of Movie, S t a r , and S tud io from Fig. 4.3, augmenting them with
key and extent declarations. Only Movie has methods, gathered from Fig. 4.4.
The complete example schema is in Fig. 9.1.

9.1.2 Path Expressions
IVe access components of objects and structures using a dot notation that is
similar t o the dot used in C and also related to the dot used in SQL. The
general rule is as follows. If a denotes a n object belonging to class C. and p
is some property of the class - either a n attribute, relationship, or method of
the class - then a.p denotes the result of "applying" p to a. That is:

1. If p is an attribute, then a.p is the value of that attribute in object a.

2. If p is a relationship, then a.p is the object or collection of objects related
to a by relationship p.

3. If p is a method (perhaps with parameters), then a.p(. .) is the result of
applying p t o a.

Example 9.1 : Let myMovie denote an object of type Movie. Then:

The value of myMovie . l eng th is the length of the movie, that is, the value
of the l eng th attribute for the Movie object denoted by myMovie.

The value of myMovie. lengthInHours0 is a real number, the length of
the movie in hours, computed by applying the method 1engthInHours to

, object mynovie.

The value of myMovie.stars is the set of S t a r objects related to the
movie myMovie by the relationship stars.

Expression myMovie . starNames(myStars) returns no value (LC., in C++
the type of this expression is void). As a side effect, however, i t sets the
value of the output variable mystars of the method starNames to be a
set of strings; those strings are the names of the stars of the mol-ic.

INTRODUCTION TO OQL

c l a s s Movie
(ex ten t Movies key (t i t l e , year))

C
a t t r i b u t e s t r i n g t i t l e ;
a t t r i b u t e i n t e g e r y e a r ;
a t t r i b u t e i n t e g e r l e n g t h ;
a t t r i b u t e enum Film (color,blackAndWhite> filmType;
r e l a t i o n s h i p Se t<Star> s t a r s

i n v e r s e S t a r : : s t a r r e d I n ;
r e l a t i o n s h i p S tud io ownedBy

i n v e r s e Studio::owns;
f l o a t lengthInHours() ra i ses (no~engthF0und) ;
void starNames(out S e t < S t r i n g >) ;
void otherMovies(in S t a r , ou t Set<Movie>)

ra i ses (noSuchStar) ;
I ;

c l a s s S t a r
(ex ten t S t a r s key name)

<
a t t r i b u t e s t r i n g name;
a t t r i b u t e S t r u c t Addr

{ s t r i n g s t r e e t , s t r i n g c i t y) address ;
r e l a t i o n s h i p Set<Movie> s t a r r e d I n

i n v e r s e Movie : : s ta r s ;
1;

c l a s s S tud io
(ex ten t S tud ios key name)

C
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g a d d r e s s ;
r e l a t i o n s h i p Set<Movie> owns

i n v e r s e Movie::ownedBy;
I ;

Figure 9.1: Part of a n object-oriented inovie database

428 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

Arrows and Dots

OQL allows the arrow -> as a synonym for the dot. This convention is
partly in the spirit of C, where the dot and arrow both obtain compo-
nents of a structure. However, in C, the arrow and dot operators have
slightly different meanings; in OQL they are the same. 111 C, expression
a.f expects a to be a structure, while p->f expects p to be a pointer to a
structure. Both produce the value of the field f of that structure.

If it makes sense, we can form expressions with several dots. For example,
if myMovie denotes a movie object, then myMovie. ownedBy denotes the Studio
object that owns the movie, and mynovie. ownedBy .name denotes the string
that is the name of that studio.

9.1.3 Select-From-Where Expressions in OQL
OQL permits us to write expressions using a select-from-where syntas similar

. to SQL's familiar query form. Here is an example asking for the year of the
movie Gone IVzth the Wind.

SELECT m. year
FROM Movies m
WHERE m.title = "Gone With the Wind"

Xotice that, escept for the double-quotes around the string constant, this query
could be SQL rather than OQL.

In general, the OQL select-from-where expression consists of:

1. The keylvord SELECT follolved by a list of expressions.

2. The keyrvord FROM followed by a list of one or more variable declarations.
d variable is declared by giving

(a) .An expression whose value has a collection type, e.g. a set or bag.
(b) The optional keyn-ord AS, and
(c) The name of the variable.

Typically. the expression of (a) is the extent of some class, such as the
extent Movies for class Movie in the example above. An extent is the
analog of a relation in an SQL FROM clause. However, it is possible to
use in a variable declaration any collection-producing expression, such as
another select-from-where expression.

9.1. INTRODUCTION T O OQL 429

3. The keyword WHERE and a boolean-valued expression. This expression, like
the expression following the SELECT, may only use as operands constants
and those variables declared in the FROM clause. The comparison operators
are like SQL's, except that ! =, rather than <>, is used for "not equal to."
The logical operators are AND, OR, and NOT, like SQL's.

The query produces a bag of objects. We compute this bag by considering
all possible values of the variables in the FROM clause, in nested loops. If any
combination of values for these variables satisfies the condition of the WHERE
clause, then the object described by the SELECT clause is added to the bag that
is the result of the select-from-where statement.

Example 9.2 : Here is a more complex OQL query:

SELECT s.name
FROM Movies m, m.stars s
WHERE m . t i t l e = "Casablanca"

This query asks for the names of the stars of Casablanca. Notice the sequence
of terms in the FROM clause. First we define m to be an arbitrary object in the
class Movie, by saying m is in the extent of that class, which is Movies. Then,
for each value of m we let s be a S t a r object in the set m.stars of stars of
movie m. That is, n-e consider in two nested loops all pairs (m, s) such that m is
a movie and s a star of that movie. The evaluation can be sketched as:

FOR each m i n Movies DO
FOR each s i n m.stars DO

IF m . t i t l e = "Casablanca" THEN
add s.name t o t h e output bag

The WHERE clause restricts our consideration to those pairs that have m equal
to the Movie object whose title is Casablanca. Then, the SELECT clause produces
the bag (~ h i c h should be a set in this case) of all the name attributes of star
objects s in the (my s) pairs that satisfy the WHERE clause. These names are
the names of the stars in the set m,. s t a r s , where m, is the Casablanca movie
object. 0

9.1.4 Modifying the Type of the Result
.A query like Example 9.2 produces a hag of strings as a result. That is, OQL
follows the SQL default of not eliminating duplicates in its answer unless &-
rected to do so. However, we can force the result to be a set or a list if we
wish.

To make the result a set, use the keyword DISTINCT after SELECT, as in
SQL.

Reference the extent (instance of class)

Select the year of movie ‘Gone with the wind’

428 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

Arrows and Dots

OQL allows the arrow -> as a synonym for the dot. This convention is
partly in the spirit of C, where the dot and arrow both obtain compo-
nents of a structure. However, in C, the arrow and dot operators have
slightly different meanings; in OQL they are the same. 111 C, expression
a.f expects a to be a structure, while p->f expects p to be a pointer to a
structure. Both produce the value of the field f of that structure.

If it makes sense, we can form expressions with several dots. For example,
if myMovie denotes a movie object, then myMovie. ownedBy denotes the Studio
object that owns the movie, and mynovie. ownedBy .name denotes the string
that is the name of that studio.

9.1.3 Select-From-Where Expressions in OQL
OQL permits us to write expressions using a select-from-where syntas similar

. to SQL's familiar query form. Here is an example asking for the year of the
movie Gone IVzth the Wind.

SELECT m. year
FROM Movies m
WHERE m.title = "Gone With the Wind"

Xotice that, escept for the double-quotes around the string constant, this query
could be SQL rather than OQL.

In general, the OQL select-from-where expression consists of:

1. The keylvord SELECT follolved by a list of expressions.

2. The keyrvord FROM followed by a list of one or more variable declarations.
d variable is declared by giving

(a) .An expression whose value has a collection type, e.g. a set or bag.
(b) The optional keyn-ord AS, and
(c) The name of the variable.

Typically. the expression of (a) is the extent of some class, such as the
extent Movies for class Movie in the example above. An extent is the
analog of a relation in an SQL FROM clause. However, it is possible to
use in a variable declaration any collection-producing expression, such as
another select-from-where expression.

9.1. INTRODUCTION T O OQL 429

3. The keyword WHERE and a boolean-valued expression. This expression, like
the expression following the SELECT, may only use as operands constants
and those variables declared in the FROM clause. The comparison operators
are like SQL's, except that ! =, rather than <>, is used for "not equal to."
The logical operators are AND, OR, and NOT, like SQL's.

The query produces a bag of objects. We compute this bag by considering
all possible values of the variables in the FROM clause, in nested loops. If any
combination of values for these variables satisfies the condition of the WHERE
clause, then the object described by the SELECT clause is added to the bag that
is the result of the select-from-where statement.

Example 9.2 : Here is a more complex OQL query:

SELECT s.name
FROM Movies m, m.stars s
WHERE m . t i t l e = "Casablanca"

This query asks for the names of the stars of Casablanca. Notice the sequence
of terms in the FROM clause. First we define m to be an arbitrary object in the
class Movie, by saying m is in the extent of that class, which is Movies. Then,
for each value of m we let s be a S t a r object in the set m.stars of stars of
movie m. That is, n-e consider in two nested loops all pairs (m, s) such that m is
a movie and s a star of that movie. The evaluation can be sketched as:

FOR each m i n Movies DO
FOR each s i n m.stars DO

IF m . t i t l e = "Casablanca" THEN
add s.name t o t h e output bag

The WHERE clause restricts our consideration to those pairs that have m equal
to the Movie object whose title is Casablanca. Then, the SELECT clause produces
the bag (~ h i c h should be a set in this case) of all the name attributes of star
objects s in the (my s) pairs that satisfy the WHERE clause. These names are
the names of the stars in the set m,. s t a r s , where m, is the Casablanca movie
object. 0

9.1.4 Modifying the Type of the Result
.A query like Example 9.2 produces a hag of strings as a result. That is, OQL
follows the SQL default of not eliminating duplicates in its answer unless &-
rected to do so. However, we can force the result to be a set or a list if we
wish.

To make the result a set, use the keyword DISTINCT after SELECT, as in
SQL.

Select star names from movie ‘Casablanca’

For each movie m, s is the set of stars in
that movie (follow a relationship)

428 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

Arrows and Dots

OQL allows the arrow -> as a synonym for the dot. This convention is
partly in the spirit of C, where the dot and arrow both obtain compo-
nents of a structure. However, in C, the arrow and dot operators have
slightly different meanings; in OQL they are the same. 111 C, expression
a.f expects a to be a structure, while p->f expects p to be a pointer to a
structure. Both produce the value of the field f of that structure.

If it makes sense, we can form expressions with several dots. For example,
if myMovie denotes a movie object, then myMovie. ownedBy denotes the Studio
object that owns the movie, and mynovie. ownedBy .name denotes the string
that is the name of that studio.

9.1.3 Select-From-Where Expressions in OQL
OQL permits us to write expressions using a select-from-where syntas similar

. to SQL's familiar query form. Here is an example asking for the year of the
movie Gone IVzth the Wind.

SELECT m. year
FROM Movies m
WHERE m.title = "Gone With the Wind"

Xotice that, escept for the double-quotes around the string constant, this query
could be SQL rather than OQL.

In general, the OQL select-from-where expression consists of:

1. The keylvord SELECT follolved by a list of expressions.

2. The keyrvord FROM followed by a list of one or more variable declarations.
d variable is declared by giving

(a) .An expression whose value has a collection type, e.g. a set or bag.
(b) The optional keyn-ord AS, and
(c) The name of the variable.

Typically. the expression of (a) is the extent of some class, such as the
extent Movies for class Movie in the example above. An extent is the
analog of a relation in an SQL FROM clause. However, it is possible to
use in a variable declaration any collection-producing expression, such as
another select-from-where expression.

9.1. INTRODUCTION T O OQL 429

3. The keyword WHERE and a boolean-valued expression. This expression, like
the expression following the SELECT, may only use as operands constants
and those variables declared in the FROM clause. The comparison operators
are like SQL's, except that ! =, rather than <>, is used for "not equal to."
The logical operators are AND, OR, and NOT, like SQL's.

The query produces a bag of objects. We compute this bag by considering
all possible values of the variables in the FROM clause, in nested loops. If any
combination of values for these variables satisfies the condition of the WHERE
clause, then the object described by the SELECT clause is added to the bag that
is the result of the select-from-where statement.

Example 9.2 : Here is a more complex OQL query:

SELECT s.name
FROM Movies m, m.stars s
WHERE m . t i t l e = "Casablanca"

This query asks for the names of the stars of Casablanca. Notice the sequence
of terms in the FROM clause. First we define m to be an arbitrary object in the
class Movie, by saying m is in the extent of that class, which is Movies. Then,
for each value of m we let s be a S t a r object in the set m.stars of stars of
movie m. That is, n-e consider in two nested loops all pairs (m, s) such that m is
a movie and s a star of that movie. The evaluation can be sketched as:

FOR each m i n Movies DO
FOR each s i n m.stars DO

IF m . t i t l e = "Casablanca" THEN
add s.name t o t h e output bag

The WHERE clause restricts our consideration to those pairs that have m equal
to the Movie object whose title is Casablanca. Then, the SELECT clause produces
the bag (~ h i c h should be a set in this case) of all the name attributes of star
objects s in the (my s) pairs that satisfy the WHERE clause. These names are
the names of the stars in the set m,. s t a r s , where m, is the Casablanca movie
object. 0

9.1.4 Modifying the Type of the Result
.A query like Example 9.2 produces a hag of strings as a result. That is, OQL
follows the SQL default of not eliminating duplicates in its answer unless &-
rected to do so. However, we can force the result to be a set or a list if we
wish.

To make the result a set, use the keyword DISTINCT after SELECT, as in
SQL.

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

Another notation

OQL: EXAMPLE QUERIES II

29

426 CHAPTER 9. OBJECT-ORIENTflTION IN QUERY LANGUAGES

object-oriented host language, such as C++, Smalltalk, or Java. Objects will
be manipulated both by OQL queries and by the conventional statements of the
host language. The ability to mix host-language statements and OQL queries
without explicitly transferring values between the two languages is a n advance
over the way SQL is embedded into a host language, as was discussed in Sec-
tion 8.1.

9.1.1 An Object-Oriented Movie Example
In order t o illustrate the dictions of OQL, we need a running example. It
will involve the familiar classes Movie, S t a r , and Studio. We shall use the
definitions of Movie, S t a r , and S tud io from Fig. 4.3, augmenting them with
key and extent declarations. Only Movie has methods, gathered from Fig. 4.4.
The complete example schema is in Fig. 9.1.

9.1.2 Path Expressions
IVe access components of objects and structures using a dot notation that is
similar t o the dot used in C and also related to the dot used in SQL. The
general rule is as follows. If a denotes a n object belonging to class C. and p
is some property of the class - either a n attribute, relationship, or method of
the class - then a.p denotes the result of "applying" p to a. That is:

1. If p is an attribute, then a.p is the value of that attribute in object a.

2. If p is a relationship, then a.p is the object or collection of objects related
to a by relationship p.

3. If p is a method (perhaps with parameters), then a.p(. .) is the result of
applying p t o a.

Example 9.1 : Let myMovie denote an object of type Movie. Then:

The value of myMovie . l eng th is the length of the movie, that is, the value
of the l eng th attribute for the Movie object denoted by myMovie.

The value of myMovie. lengthInHours0 is a real number, the length of
the movie in hours, computed by applying the method 1engthInHours to

, object mynovie.

The value of myMovie.stars is the set of S t a r objects related to the
movie myMovie by the relationship stars.

Expression myMovie . starNames(myStars) returns no value (LC., in C++
the type of this expression is void). As a side effect, however, i t sets the
value of the output variable mystars of the method starNames to be a
set of strings; those strings are the names of the stars of the mol-ic.

INTRODUCTION TO OQL

c l a s s Movie
(ex ten t Movies key (t i t l e , year))

C
a t t r i b u t e s t r i n g t i t l e ;
a t t r i b u t e i n t e g e r y e a r ;
a t t r i b u t e i n t e g e r l e n g t h ;
a t t r i b u t e enum Film (color,blackAndWhite> filmType;
r e l a t i o n s h i p Se t<Star> s t a r s

i n v e r s e S t a r : : s t a r r e d I n ;
r e l a t i o n s h i p S tud io ownedBy

i n v e r s e Studio::owns;
f l o a t lengthInHours() ra i ses (no~engthF0und) ;
void starNames(out S e t < S t r i n g >) ;
void otherMovies(in S t a r , ou t Set<Movie>)

ra i ses (noSuchStar) ;
I ;

c l a s s S t a r
(ex ten t S t a r s key name)

<
a t t r i b u t e s t r i n g name;
a t t r i b u t e S t r u c t Addr

{ s t r i n g s t r e e t , s t r i n g c i t y) address ;
r e l a t i o n s h i p Set<Movie> s t a r r e d I n

i n v e r s e Movie : : s ta r s ;
1;

c l a s s S tud io
(ex ten t S tud ios key name)

C
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g a d d r e s s ;
r e l a t i o n s h i p Set<Movie> owns

i n v e r s e Movie::ownedBy;
I ;

Figure 9.1: Part of a n object-oriented inovie database

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

Select distinct star names in movies owned by ‘Disney’

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

order movies owned by ‘Disney’ based on length and title

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

Report pairs of stats who have the same address

Join two classes

Report set of structures

432 CHAPTER 9. OBJECT- ORIENTATION IN QUERY LANGUAGES

SELECT Lists of Length One Are Special

Notice that when a SELECT list has only a single expression, the type of
the result is a collection of values of the type of that expression. However:
if we have more than one expression in the SELECT list, there is an implicit
stucture formed with components for each expression. Thus, even had we
started the query of Example 9.5 with

SELECT DISTINCT starl: sl, star2: s2

the type of the result would be

Set<Struct{starl: Star, star2: star)>

Honrever, in Example 9.3, the type of the result is Set<String>, not
Set<Struct{name: string)>.

In the FROM clause, we may use a subquery to form a collection. We then
allow a variable representing a typical element of that collection to range over
each member of the collection.

Example 9.6 : Let us redo the query of Example 9.3, which asked for the stars
of the movies made by Disney. First, the set of Disney movies could be obtained
by the query, as was used in Example 9.4.

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"

We can now use this query as a subquery to define the set over which a variable
d. representing the Disney movies; can range.

SELECT DISTINCT s.name
FROM (SELECT m

FROM Movies m
WHERE m.ownedBy.name = "Disney") d,
d. stars s

This expression of the query "Find the stars of Disney movies" is no Inore
succinct than that of Example 9.3. and perhaps less so. However, it does
illustrate a new form of building queries available in OQL. In the query above.
the FROM clause has two nested loops. In the first, the variable d ranges over
all Disney movies, the result of the subquery in the FROM clause. In the second
loop, nested within the first, the variable s ranges over all stars of the Disney

' lnovie d. Sotice that no WHERE clause is needed in the outer query.

9.1. INTRODUCTION TO OQL 433

9.1.7 Exercises for Section 9.1
Exercise 9.1.1: In Fig. 9.2 is an ODL description of our running products
exercise. \Ire have made each of the three types of products subclasses of the
main Product class. The reader should observe that a type of a product can
be obtained either from the attribute type or from the subclass to ~ h i c h it
belongs. This arrangement is not an excellent design, since it allows for the
possibility that, say, a PC object will haye its type attribute equal to "laptop"
or "printer". However, the arrangement gives you some interesting options
regarding how one expresses queries.

Because type is inherited by Printer from the superclass Product, we have
had to rename the type attribute of Printer to be printerType. The latter
attribute gives the process used by the printer (e.g., laser or inkjet), while type
of Product will have values such as PC, laptop, or printer.

Add to the ODL code of Fig. 9.2 method signatures (see Section 1.2.7)
appropriate for functions that do the following:

* a) Subtract x from the price of a product. Assume x is provided as an input
parameter of the function.

* b) Return the speed of a product if the product is a PC or laptop and raise
the exception notcomputer if not.

c) Set the screen size of a laptop to a specified input value x.

! d) Given an input product p, determine whether the product q to which the
method is applied has a higher speed and a lower price than p. Raise the
exception badInput if p is not a product with a speed (i.e., neither a PC
nor laptop) and the exception nospeed if q is not a product with a speed.

Exercise 9.1.2 : Using the ODL schema of Exercise 9.1.1 and Fig. 9.2, write
the follo~ving queries in OQL:

" a) Find the model numbers of all products that are PC's with a price under
$2000.

b) Find the model numbers of all the PC's with at least 128 megabytes of
R-411.

*! c) Find the manufacturers that makk at least two different models of laser
printer.

d) Find tlle set of pairs (r. h) such that some PC or laptop has r megabytes
of RAM and h gigabytes of hard disk.

e) Create a list of the PC's (objects, not model numbers) in ascending order
of processor speed.

! f) Create a list of the model numbers of tlle laptops n-ith a t least 64 xnega-
bytes of R.411: in descending order of screen size.

subquery

OQL OUTPUT

•  Unlike SQL which produces relations, OQL produces
collection (set, bag, list) of objects
•  The object can be of any type

30

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

Set of strings

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

Set of objects of type Movie

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

Set of structures

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m . l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types
The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the S t ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT S t ruc t (s t a r l : sl , s t a r 2 : s2)
FROM S t a r s s l , S t a r s s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, s l and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s t a r2 . The
type of each field is the class S tar . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

S t ruc t (s ta r1 : S t a r , s t a r 2 : star)

The type of the result of the query is a set of these structures, that is:

Se t<St ruc t{s ta r l : S t a r , s t a r 2 : S tar)>

9.1.6 Subqueries
Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

OQL: AGGREGATION

31

426 CHAPTER 9. OBJECT-ORIENTflTION IN QUERY LANGUAGES

object-oriented host language, such as C++, Smalltalk, or Java. Objects will
be manipulated both by OQL queries and by the conventional statements of the
host language. The ability to mix host-language statements and OQL queries
without explicitly transferring values between the two languages is a n advance
over the way SQL is embedded into a host language, as was discussed in Sec-
tion 8.1.

9.1.1 An Object-Oriented Movie Example
In order t o illustrate the dictions of OQL, we need a running example. It
will involve the familiar classes Movie, S t a r , and Studio. We shall use the
definitions of Movie, S t a r , and S tud io from Fig. 4.3, augmenting them with
key and extent declarations. Only Movie has methods, gathered from Fig. 4.4.
The complete example schema is in Fig. 9.1.

9.1.2 Path Expressions
IVe access components of objects and structures using a dot notation that is
similar t o the dot used in C and also related to the dot used in SQL. The
general rule is as follows. If a denotes a n object belonging to class C. and p
is some property of the class - either a n attribute, relationship, or method of
the class - then a.p denotes the result of "applying" p to a. That is:

1. If p is an attribute, then a.p is the value of that attribute in object a.

2. If p is a relationship, then a.p is the object or collection of objects related
to a by relationship p.

3. If p is a method (perhaps with parameters), then a.p(. .) is the result of
applying p t o a.

Example 9.1 : Let myMovie denote an object of type Movie. Then:

The value of myMovie . l eng th is the length of the movie, that is, the value
of the l eng th attribute for the Movie object denoted by myMovie.

The value of myMovie. lengthInHours0 is a real number, the length of
the movie in hours, computed by applying the method 1engthInHours to

, object mynovie.

The value of myMovie.stars is the set of S t a r objects related to the
movie myMovie by the relationship stars.

Expression myMovie . starNames(myStars) returns no value (LC., in C++
the type of this expression is void). As a side effect, however, i t sets the
value of the output variable mystars of the method starNames to be a
set of strings; those strings are the names of the stars of the mol-ic.

INTRODUCTION TO OQL

c l a s s Movie
(ex ten t Movies key (t i t l e , year))

C
a t t r i b u t e s t r i n g t i t l e ;
a t t r i b u t e i n t e g e r y e a r ;
a t t r i b u t e i n t e g e r l e n g t h ;
a t t r i b u t e enum Film (color,blackAndWhite> filmType;
r e l a t i o n s h i p Se t<Star> s t a r s

i n v e r s e S t a r : : s t a r r e d I n ;
r e l a t i o n s h i p S tud io ownedBy

i n v e r s e Studio::owns;
f l o a t lengthInHours() ra i ses (no~engthF0und) ;
void starNames(out S e t < S t r i n g >) ;
void otherMovies(in S t a r , ou t Set<Movie>)

ra i ses (noSuchStar) ;
I ;

c l a s s S t a r
(ex ten t S t a r s key name)

<
a t t r i b u t e s t r i n g name;
a t t r i b u t e S t r u c t Addr

{ s t r i n g s t r e e t , s t r i n g c i t y) address ;
r e l a t i o n s h i p Set<Movie> s t a r r e d I n

i n v e r s e Movie : : s ta r s ;
1;

c l a s s S tud io
(ex ten t S tud ios key name)

C
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g a d d r e s s ;
r e l a t i o n s h i p Set<Movie> owns

i n v e r s e Movie::ownedBy;
I ;

Figure 9.1: Part of a n object-oriented inovie database

Intermediate result

Struct{
 stdo: …,
 yr: …,
 partition: bag(struct {m: …})
 };

Grouping fields

Bag of structures with members
follow what’s in the FROM clause

Aggregate over the partition

440 CHAPTER 9. OBJECT-ORIENTATION I N QUERY LAXG UAGES

in our general discussion. In the GROUP BY clause are two fields s t d o and yr .
corresponding to the expressions m. ownedBy . name and m . year , respectively.

For instance, Pretty Woman is a movie made by Disney in 1990. [Vhen nl
is the object for this movie, the value of m . ownedBy. name is "Disney" and the
value of m. year is 1990. As a result, the intermediate collection has, as one
member, the structure:

S t r u c t (s tdo: "Disney", y r : 1990, p a r t i t i o n : P)

Here, P is a set of structures. It contains, for example,

S t r u c t (m: mpw)

where mPW is the Movie object for Pretty Woman. Also in P are one-component
structures with field name m for every other Disney movie of 1990.

Now, let us examine the SELECT clause. For each structure in the intermedi-
ate collection, we build one structure that is in the output collection. The first
component of each output structure is s tdo . That is, the field name is s t d o
and its value is the value of the s t d o field of the corresponding structure in the
intermediate collection. Similarly, the second component of the result has ficltl
name y r and a value equal to the y r con~ponent of the intermediate collection.

The third component of each structure in the output is

SUM(SELECT p.m.length FROM p a r t i t i o n p)

To understand this select-from expression we first realize that variable p rangcs
over the members of the p a r t i t i o n field of the structure in the GROUP BY
result. Each d u e of p, recall, is a structure of the form S t r u c t (m: o) , t+-here o
is a movie object. The expression p.m therefore refers to this object o. Thus.
p.m. l e n g t h refers to the length component of this Movie object

.is a result, the select-from query produces the bag of lengths of the movies
in a particular group. For instance, if s t d o has the value "Disney" and y r has
the value 1990, then the result of the select-from is the bag of the lengths of the
movies made by Disney in 1990. When we apply the SUM operator to this bag
we get the sum of the lengths of the movies in the group. Thus, one member
of the output collection might be

if 123-1 is the correct total length of all the Disney movies of 1990.

Grouping W h e n t h e FROM Clause h a s M u l t i p l e Collect ions

In the event that there is more than one variable in the FROM clause. a f e ~
changes to the interpretation of the query are necessary, but the principles
remain the same as in the one-variable case above. Suppose that the variables
appearing in the FROM clause are XI, 22, . . . : xk. Then:

9.2. ADDITIONAL FORMS OF OQL EXPRESSIONS

1. All variables xl , xz,. . . , xk may be used in the expressions el , e2, . . . ,en
of the GROUP BY clause.

2. Structures in the bag that is the value of the p a r t i t i o n field have fields
named x l , 22,. . . , xk.

3. Suppose i l , iz, . . . : ik are values for variables x i , x2,. . . ,xk, respectively,
that niake the WHERE clause true. Then there is a structure in the inter-
mediate collection of the form

and in bag P is the structure:

S t r u c t (xl : i l , x2 : iZ, . . . , xk : i k)

9.2.4 HAVING Clauses
A GROUP BY clause of OQL may be followed by a HAVING clause, with a meaning
like that of SQL's HAVING clause. That is, a clause of the form

HAVING <condition>

serves to eliminate some of the groups created by the GROUP BY. The condition
applies t o the value of the p a r t i t i o n field of each structure in the intermedi-
a te collection. If true, then this structure is processed as in Section 9.2.3, t o
form a structure of the output collection. If false, then this structure does not
contribute t o the output collection.

E x a m p l e 9.11 : Let us repeat Example 9.10, but ask for the sum of the lengths
of movies for only those studios and years such that the studio produced a t lewt
one movie of over 120 minutes. The query of Fig. 9.7 does the job. Notice that
in the HAVING clause we used the same query as in the SELECT clause to obtain
the bag of le~lgtlis of movies for a given studio and year. In the HAVING clause,
tve take the maximum of those lengths and compare it to 120.

SELECT s t d o , y r , sumlength: SUM(SELECT p.m.length
FROM p a r t i t i o n p)

FROM Movies m
GROUP BY s t d o : m.ownedBy.name, y r : m.year
HAVING MAX(SELECT p.m.length FROM p a r t i t i o n p) > 120

Figure 9.7: Restricting the groups considered

OQL: COLLECTION OPERATORS

•  Like in SQL, we have ANY, ALL,
EXISTS

•  OQL has similar operators

32

436 CHAPTER 9. OBJECT-ORIENT.4TION IN QUERY LA-WGUAGES

Exercise 9.1.3 : In Fig. 9.3 is an ODL description of our running "battleships"
database. Add the following method signatures:

a) Compute the firepower of a ship, that is, the number of guns times the
cube of the bore.

b) Find the sister ships of a ship. Raise the exception nosis ters if the ship
is the only one of its class.

c) Given a battle b as a parameter, and applying the method to a ship s,
find the ships sunk in the battle b, provided s participated in that battle.
Raise the exception didNotParticipate if ship s did not fight in battle
b.

d) Given a name and a year launched as parameters, add a ship of this name
and year to the class to which the method is applied.

! Exercise 9.1.4: Repeat each part of Exercise 9.1.2 using at least one subquery
in each of your queries.

Exercise 9.1.5: Using the ODL schema of Exercise 9.1.3 and Fig. 9.3, xvritc
. the follolving queries in OQL:

a) Find the names of the classes of ships with at least nine guns.

b) Find the ships (objects, not ship names) with at least nine guns.

c) Find the names of the ships with a displacement under 30,000 tons. Nake
the result a list, ordered by earliest launch year first, and if there are ties.
alphabetically by ship name.

d) Find the pairs of objects that are sister ships (i.e., ships of the same class).
3ote that the objects themselves are wanted, not the names of the ships.

! e) Find the names of the battles in which ships of at least two different
countries were sunk.

!! f) Find the names of the batt~les in which no ship was listed as damaged.

9.2 Additional Forms of QQL Expressions
In this section we shall see some of the other operators, besides select-from-
where, that OQL provides to help us build expressions. These operators in-
clude logical quantifiers - for-all and there-exists - aggregation operators,
'the goup-by operator, and set operators - union, intersection, and difference.

9.2. ADDITIONAL FORMS OF OQL EXPRESSIONS 437

9.2.1 Quantifier Expressions
l i e can test whether all members of a collection satisfy some condition, and we
can test whether a t least one member of a collection satisfies a condition. To
test whether all members x of a collection S satisfy condition C(x), we use the
OQL expression:

FOR ALL x IN S : C(x)

The result of this expression is TRUE if every x in S satisfies C(x) and is FALSE
otherwise. Similarly, the expression

EXISTS x I N S : C(x)

has value TRUE if there is at least one x in S such that C(X) is TRUE and it has
value FALSE otherwise.

Example 9.7 : Another way to express the query "find all the stars of Disney
movies" is shown in Fig. 9.4. Here, we focus on a star s and ask if they are
the star of some movie rn that is a Disney movie. Line (3) tells us to consider
all movies m in the set of movies s. starredIn, which is the set of movies in
which star s appeared. Line (1) then asks whether movie m is a Disney movie.
If we find even one such movie m, the value of the EXISTS expression in lines
(3) and (4) is TRUE; otherwise it is FALSE.

1) SELECT s
2) FROM Sta r s s
3) WHERE EXISTS m IN s . s t a r r ed In :
4) m. ownedBy .name = "Disney"

Figure 9.4: Using an existential subquery

Example 9.8 : Let us use the for-all operator to write a query asking for the
stars that have appeared only in Disney movies. Technically, that set includes
.'stars" who appear in no movies at all (as far as we can tell from our database).
It is possible to add another condition to our query, requiring that the star
appear in at least one rnovie. but TW lealr that improvement as ail exercise.
Figure 9.5 shows the query.

9.2.2 Aggregation Expressions
OQL uses the same five aggregation operators that SQL does: AVG, COUNT. SUM.
MIN. and MAX. However, while these operators in SQL may be thought of as

Select stars who participated in a
movie made by ‘Disney’

438 CHAPTER 9. OBJECT-ORIENTATlOiV IN QUERY LANGUAGES

SELECT s
FROM Sta r s s
WHERE FOR ALL m I N s . s tar redIn :

m. ownedBy . name = "Disney"

Figure 9.5: Using a subquery with universal quantification

applying to a designated column of a table, the same operators in OQL apply
to all collections whose members are of a suitable type. That is, COUNT can
apply to any collection; SUM and AVG can be applied to collections of arithmetic
types such as integers, and MIN and MAX can be applied to collections of any
type that can be compared, e.g., arithmetic values or strings.

Example 9.9: To compute the average length of all movies, we need to create
a bag of all movie lengths. Note that we don't want the set of movie lengths,
because then two movies t,hat had the same length would count as one. The
query is:

AVG(SELECT m.length FROM Movies m)

That is, we use a subquery to extract the length components from movies. Its
result is the bag of lengths of movies, and we apply the AVG operator to this
bag. giving the desired answer. 0

9.2.3 Group-By Expressions
The GROUP BY clause of SQL carries over to OQL, but with an interesting twist
in perspective. The form of a GROUP BY clause in OQL is:

1. The keywords GROUP BY.

2. .I comma-separated list of one or more partition attributes. Each of these
consists of

(a) A field name,
(b) A colon, and
(c) An expression.

That is. the form of a GROUP BY clalisc is:

GROUP BY fl:el, f2:e2,. . . . f,:e,,

Each GROUP BY clause follows a select-from-where query. The expressions
el. e?. . . . ,en may refer to variables mentioned in the FROM clause. To facilitate

' the explanation of how GROUP BY works, let us restrict ourselves to the common

9.2. ADDITIOAr24L FORMS OF OQL EXPRESSIOiVS 439

case where there is only one variable x in the FROM clause. The value of x ranges
over some collection, C. For each member of C, say i, that satisfies the condition
of the WHERE clause, we evaluate all the expressions that follow the GROUP BY,
to obtain values el (i), ea(i), . , . , en (i). This list of values is the group to which
value i belongs.

T h e Intermediate Collection

The actual value returned by the GROUP BY is a set of structures, which we shall
call the intermediate collection. The members of the intermediate collection
have the form

The first n fields indicate the group. That is, (vl, vz, . . . , v,) must be the list
of values (el(i), ez(i), . . . ,en(i)) for a t least one value of i in the collection C
that meets the condition of the WHERE clause.

The last field has the special name pa r t i t i on . Its value is, intuitively,
the values i that belong in this group. ,\Iore precisely. P is a bag consisting of
structures of the form S t ruc t (x: i), m-here x is the variable of the FROM clause.

T h e Output Collection

The SELECT clause of a select-from- here expression that has a GROUP BY clause
may refer only to the fields in the structures of the intermediate collection.
namely fl . f 2 , f n and pa r t i t i on . Through pa r t i t i on , we may refer to the
field x that is present in the structures that are members of the bag P that forms
the value of par t i t ion . Thus, we may refer to the variable x that appears in
the FROM clause, but we may only do so within an aggregation operator that
aggregates over all the menibers of a bag P. The result of the SELECT clause
will be referred to as the output collection.

Example 9.10: Let us build a table of the total length of movies for each
studio and for each pear. In OQL. what we actually construct is a bag of
structures. each xvith three componellts - a studio, a year: and the total length
of movies for that studio and year. The query is shown in Fig. 9.6.

SELECT s tdo, y r , sumlength: SUM(SELECT p.m.length
FROM p a r t i t i o n p)

FROM Movies m
GROUP BY stdo: m.ownedBy.name, yr: m.year

Figure 9.6: Grouping movies by studio and year

To understand this query, let us start at the FROM clause. There, we find
that variable m ranges over all Movie objects. Thus. m here plays the role of x

Select stars who participated only
in movies made by ‘Disney’

426 CHAPTER 9. OBJECT-ORIENTflTION IN QUERY LANGUAGES

object-oriented host language, such as C++, Smalltalk, or Java. Objects will
be manipulated both by OQL queries and by the conventional statements of the
host language. The ability to mix host-language statements and OQL queries
without explicitly transferring values between the two languages is a n advance
over the way SQL is embedded into a host language, as was discussed in Sec-
tion 8.1.

9.1.1 An Object-Oriented Movie Example
In order t o illustrate the dictions of OQL, we need a running example. It
will involve the familiar classes Movie, S t a r , and Studio. We shall use the
definitions of Movie, S t a r , and S tud io from Fig. 4.3, augmenting them with
key and extent declarations. Only Movie has methods, gathered from Fig. 4.4.
The complete example schema is in Fig. 9.1.

9.1.2 Path Expressions
IVe access components of objects and structures using a dot notation that is
similar t o the dot used in C and also related to the dot used in SQL. The
general rule is as follows. If a denotes a n object belonging to class C. and p
is some property of the class - either a n attribute, relationship, or method of
the class - then a.p denotes the result of "applying" p to a. That is:

1. If p is an attribute, then a.p is the value of that attribute in object a.

2. If p is a relationship, then a.p is the object or collection of objects related
to a by relationship p.

3. If p is a method (perhaps with parameters), then a.p(. .) is the result of
applying p t o a.

Example 9.1 : Let myMovie denote an object of type Movie. Then:

The value of myMovie . l eng th is the length of the movie, that is, the value
of the l eng th attribute for the Movie object denoted by myMovie.

The value of myMovie. lengthInHours0 is a real number, the length of
the movie in hours, computed by applying the method 1engthInHours to

, object mynovie.

The value of myMovie.stars is the set of S t a r objects related to the
movie myMovie by the relationship stars.

Expression myMovie . starNames(myStars) returns no value (LC., in C++
the type of this expression is void). As a side effect, however, i t sets the
value of the output variable mystars of the method starNames to be a
set of strings; those strings are the names of the stars of the mol-ic.

INTRODUCTION TO OQL

c l a s s Movie
(ex ten t Movies key (t i t l e , year))

C
a t t r i b u t e s t r i n g t i t l e ;
a t t r i b u t e i n t e g e r y e a r ;
a t t r i b u t e i n t e g e r l e n g t h ;
a t t r i b u t e enum Film (color,blackAndWhite> filmType;
r e l a t i o n s h i p Se t<Star> s t a r s

i n v e r s e S t a r : : s t a r r e d I n ;
r e l a t i o n s h i p S tud io ownedBy

i n v e r s e Studio::owns;
f l o a t lengthInHours() ra i ses (no~engthF0und) ;
void starNames(out S e t < S t r i n g >) ;
void otherMovies(in S t a r , ou t Set<Movie>)

ra i ses (noSuchStar) ;
I ;

c l a s s S t a r
(ex ten t S t a r s key name)

<
a t t r i b u t e s t r i n g name;
a t t r i b u t e S t r u c t Addr

{ s t r i n g s t r e e t , s t r i n g c i t y) address ;
r e l a t i o n s h i p Set<Movie> s t a r r e d I n

i n v e r s e Movie : : s ta r s ;
1;

c l a s s S tud io
(ex ten t S tud ios key name)

C
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g a d d r e s s ;
r e l a t i o n s h i p Set<Movie> owns

i n v e r s e Movie::ownedBy;
I ;

Figure 9.1: Part of a n object-oriented inovie database

INTEGRATING OQL & EXTERNAL
LANGUAGES

•  OQL fits naturally in OO host languages
•  Returned objects are assigned in variables in the

host program

33

44.1 CHAPTER 9. OBJECT- 0RIENT;LTION I N QUERY LANGUAGES

9.3.1 Assigning Values to Host-Language Variables
Unlike SQL, which needs to move data between components of tuples and host-
language variables, OQL fits naturally into its host language. That is: the
expressions of OQL that we have learned, such as select-from-where, produce
objects as values. It is possible to assign to any host-language variable of the
proper type a value that is the result of one of these OQL expressions.

Example 9.13 : The OQL expression

SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920

produces the set of all those movies made before 1920. Its type is Set<Movie>.
If oldMovies is a host-language variable of the same type, then we may write
(in C++ extended with OQL):

oldMovies = SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920;

and the value of oldMovies will become the set of these Movie objects.

9.3.2 Extracting Elements of Collections
Since the select-from-where and group-by expressions each produce collections
- either sets, bags, or lists - we must do something extra if we want a single
element of that collection. This statement is true even if we have a collection
that n-e are sure contains only one element. OQL provides the operator ELEMENT
to turn a singleton collection into its lone member. This operator can be applied.
for instance, to the result of a query that is known to return a singleton.

Example 9.14 : Suppose we would like to assign to the variable gwtw. of type
Movie (i.e., the Movie class is its type) the object representing the movie Gone
l l l th the Wind. The result of the query

SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

is the bag containing just this one object. 11-e cannot assign this bag to variable
gv tv directly, because we n-ould get a type error. However. if x e apply the
ELEMENT operator first,

gwtw = ELEMENT(SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

1;

9.3. OBJECT ASSIGAr1IENT -4ND CREATION IX OQL 445

then the type of the variable and the expression match, and the assignment is
legal.

9.3.3 Obtaining Each Member of a Collection
Obtaining each member of a set or bag is more complex, but still simpler than
the cursor-based algorithms we needed in SQL. First, we need to turn our set
or bag into a list. \Ye do so with a select-from-where expression that uses
ORDER BY. Recall from Section 9.1.4 that the result of such an expression is a
list of the selected objects or values.

Example 9.15: Suppose we want a list of all the movie objects in the class
Movie. We can use the title and (to break ties) the year of the movie, since
(title, year) is a key for Movie. The statement

movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

assigns to host-language variable movieList a list of all the Movie objects,
sorted by title and year.

Once x-e haye a list, sorted or not. we can access each element by number;
the ith element of the list L is obtained by L[i - 11. Note that lists and arrays
are assunled numbered starting at 0, as in C or C++.

Example 9.16 : Suppose we want to write a C++ function that prints the
title. year, and length of each movie. -1 sketch of the function is shown in
Fig. 9.9.

1) movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

2) number0fMovies = ~0UNT(Movies);
3) for(i=O; i<numberOfMovies; i++) (
4) movie = movieList [i] ;
5) cout << movie.title << " 'I << movie. year << I' "
6 << movie. length << "\nl' ;

1

Figure 9.9: Exanlining and printing each movie

Line (1) sorts the Movie class, placing the result into variable movielist,
~vhose type is List<Movie>. Line (2) computes the number of movies. using
the OQL operator COUNT. Lines (3) through (6) are a for-loop in which integer

Array of objects of type Movie

Variable in host
language (C++ or Java)

Iterate over the list in a natural way

44.1 CHAPTER 9. OBJECT- 0RIENT;LTION I N QUERY LANGUAGES

9.3.1 Assigning Values to Host-Language Variables
Unlike SQL, which needs to move data between components of tuples and host-
language variables, OQL fits naturally into its host language. That is: the
expressions of OQL that we have learned, such as select-from-where, produce
objects as values. It is possible to assign to any host-language variable of the
proper type a value that is the result of one of these OQL expressions.

Example 9.13 : The OQL expression

SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920

produces the set of all those movies made before 1920. Its type is Set<Movie>.
If oldMovies is a host-language variable of the same type, then we may write
(in C++ extended with OQL):

oldMovies = SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920;

and the value of oldMovies will become the set of these Movie objects.

9.3.2 Extracting Elements of Collections
Since the select-from-where and group-by expressions each produce collections
- either sets, bags, or lists - we must do something extra if we want a single
element of that collection. This statement is true even if we have a collection
that n-e are sure contains only one element. OQL provides the operator ELEMENT
to turn a singleton collection into its lone member. This operator can be applied.
for instance, to the result of a query that is known to return a singleton.

Example 9.14 : Suppose we would like to assign to the variable gwtw. of type
Movie (i.e., the Movie class is its type) the object representing the movie Gone
l l l th the Wind. The result of the query

SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

is the bag containing just this one object. 11-e cannot assign this bag to variable
gv tv directly, because we n-ould get a type error. However. if x e apply the
ELEMENT operator first,

gwtw = ELEMENT(SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

1;

9.3. OBJECT ASSIGAr1IENT -4ND CREATION IX OQL 445

then the type of the variable and the expression match, and the assignment is
legal.

9.3.3 Obtaining Each Member of a Collection
Obtaining each member of a set or bag is more complex, but still simpler than
the cursor-based algorithms we needed in SQL. First, we need to turn our set
or bag into a list. \Ye do so with a select-from-where expression that uses
ORDER BY. Recall from Section 9.1.4 that the result of such an expression is a
list of the selected objects or values.

Example 9.15: Suppose we want a list of all the movie objects in the class
Movie. We can use the title and (to break ties) the year of the movie, since
(title, year) is a key for Movie. The statement

movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

assigns to host-language variable movieList a list of all the Movie objects,
sorted by title and year.

Once x-e haye a list, sorted or not. we can access each element by number;
the ith element of the list L is obtained by L[i - 11. Note that lists and arrays
are assunled numbered starting at 0, as in C or C++.

Example 9.16 : Suppose we want to write a C++ function that prints the
title. year, and length of each movie. -1 sketch of the function is shown in
Fig. 9.9.

1) movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

2) number0fMovies = ~0UNT(Movies);
3) for(i=O; i<numberOfMovies; i++) (
4) movie = movieList [i] ;
5) cout << movie.title << " 'I << movie. year << I' "
6 << movie. length << "\nl' ;

1

Figure 9.9: Exanlining and printing each movie

Line (1) sorts the Movie class, placing the result into variable movielist,
~vhose type is List<Movie>. Line (2) computes the number of movies. using
the OQL operator COUNT. Lines (3) through (6) are a for-loop in which integer

44.1 CHAPTER 9. OBJECT- 0RIENT;LTION I N QUERY LANGUAGES

9.3.1 Assigning Values to Host-Language Variables
Unlike SQL, which needs to move data between components of tuples and host-
language variables, OQL fits naturally into its host language. That is: the
expressions of OQL that we have learned, such as select-from-where, produce
objects as values. It is possible to assign to any host-language variable of the
proper type a value that is the result of one of these OQL expressions.

Example 9.13 : The OQL expression

SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920

produces the set of all those movies made before 1920. Its type is Set<Movie>.
If oldMovies is a host-language variable of the same type, then we may write
(in C++ extended with OQL):

oldMovies = SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920;

and the value of oldMovies will become the set of these Movie objects.

9.3.2 Extracting Elements of Collections
Since the select-from-where and group-by expressions each produce collections
- either sets, bags, or lists - we must do something extra if we want a single
element of that collection. This statement is true even if we have a collection
that n-e are sure contains only one element. OQL provides the operator ELEMENT
to turn a singleton collection into its lone member. This operator can be applied.
for instance, to the result of a query that is known to return a singleton.

Example 9.14 : Suppose we would like to assign to the variable gwtw. of type
Movie (i.e., the Movie class is its type) the object representing the movie Gone
l l l th the Wind. The result of the query

SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

is the bag containing just this one object. 11-e cannot assign this bag to variable
gv tv directly, because we n-ould get a type error. However. if x e apply the
ELEMENT operator first,

gwtw = ELEMENT(SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

1;

9.3. OBJECT ASSIGAr1IENT -4ND CREATION IX OQL 445

then the type of the variable and the expression match, and the assignment is
legal.

9.3.3 Obtaining Each Member of a Collection
Obtaining each member of a set or bag is more complex, but still simpler than
the cursor-based algorithms we needed in SQL. First, we need to turn our set
or bag into a list. \Ye do so with a select-from-where expression that uses
ORDER BY. Recall from Section 9.1.4 that the result of such an expression is a
list of the selected objects or values.

Example 9.15: Suppose we want a list of all the movie objects in the class
Movie. We can use the title and (to break ties) the year of the movie, since
(title, year) is a key for Movie. The statement

movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

assigns to host-language variable movieList a list of all the Movie objects,
sorted by title and year.

Once x-e haye a list, sorted or not. we can access each element by number;
the ith element of the list L is obtained by L[i - 11. Note that lists and arrays
are assunled numbered starting at 0, as in C or C++.

Example 9.16 : Suppose we want to write a C++ function that prints the
title. year, and length of each movie. -1 sketch of the function is shown in
Fig. 9.9.

1) movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

2) number0fMovies = ~0UNT(Movies);
3) for(i=O; i<numberOfMovies; i++) (
4) movie = movieList [i] ;
5) cout << movie.title << " 'I << movie. year << I' "
6 << movie. length << "\nl' ;

1

Figure 9.9: Exanlining and printing each movie

Line (1) sorts the Movie class, placing the result into variable movielist,
~vhose type is List<Movie>. Line (2) computes the number of movies. using
the OQL operator COUNT. Lines (3) through (6) are a for-loop in which integer

WHAT’S NEXT

•  First Approach: Object-Oriented Model
•  Concepts from OO programming languages
•  ODL: Object Definition Language
•  What about querying OO databases???

•  OQL: Object Oriented Query Language

•  Second Approach: Object-Relational Model

34

SECOND APPROACH: OBJECT-
RELATIONAL MODEL

•  Object-oriented model tries to bring the main
concepts from relational model to the OO domain
•  The heart is OO concepts with some extensions

•  Object-relational model tries to bring the main
concepts from the OO domain to the relational
model
•  The heart is the relational model with some extensions
•  Extensions through user-defined types

35

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

•  Relation is still the fundamental structure

•  Relational model extended with the following features
•  Type system with primitive and structure types (UDT)

•  Including set, bag, array, list collection types
•  Including structures like records

•  Methods
•  Special operations can be defined over the user-defined types

(UDT)
•  Specialized operators for complex types, e.g., images, multimedia,

etc.
•  Identifiers for tuples

•  Unique identifiers even for identical tuples
•  References

•  Several ways for references and de-references

36

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

37

168 CHAPTER 4. OTHER DAT.4 MODELS

integers, reals, strings, and SO on had little to do with the issues discussed,
such as functional dependencies and normalization. We shall continue to avoid
this distinction, but when describing the schema of a nested relation, we must
indicate which attributes have relation schemas as types. To do so, we shall
treat these attributes as if they were the names of relations and follow them
by a parenthesized list of their attributes. Those attributes, in turn, may haye
associated lists of attributes, down for as many levels as we wish.

Example 4.23: Let us design a nested relation schema for stars that incor-
porates within the relation an attribute movies, which will be a relation rep-
resenting all the movies in which the star has appeared. The relation schema
for attribute movies will include the title, year, and length of the movie. The
re1atio:i schem? +r the relation Stars mill include the name, address, and birth-
date, as well a:, :e information found in movies. Additionally, the address
attribute will have a relation type with attributes street and city. We can
record in this relation several addresses for the star. The schema for Stars can
be written:

Stars(name, address(street, city), birthdate,
movies(title, y .>r , length))

An exampl(s F a possible relation for nested relation Stars is shown in
Fig. 4.17. We srv in this relation two tuples, one for Carrie Fisher and one
for Mark Warnill. The valucs of components are abbreviated to conserve space,
and the dashed lines separating tuples are only for convenience and have no
notational significance.

riame address birthdate rnovies
I I I

street city 9 / 9 / 9 9 1 Fisher 1
r:-%

1 rifle 1 year 1 ~ ~ r ~ ~ ~ j 1
Star Wars 1977 124

. - - - - - - - - - - - - - - - - - - mi
Star Wars 1977 124 - - - - - - - - - - - - - - -
Empire 1980 127 - - - - - - - - - - - - - - -
Return 1983 133

Figure 4.17: A nested relation for stars and their movies

. THE OBJECT-RELATIONAL MODEL 169

attributes, street and city, and there are two tuples, corresponding to her
two houses. Next comes the birthdate, another atomic value. Finally, there is a
component for the movies attribute; this attribute has a relation schema as its
type, with components for the title, year, and length of a movie. The relation
for the movies component of the Carrie Fisher tuple has tuples for her three
best-known movies.

The second tuple, for Mark Hamill, has the same components. His relation
for address has only one tuple, because in our imaginary data, he has only
one house. His relation for movies looks just like Carrie Fisher's because their
best-known movies happen, by coincidence, to be the same. Note that these
two relations are two different tuple-components. These components happen to
be identical, just like two components that happened to have the same integer
value, e.g., 124. 0

4.5.3 References
The fact that movies like Star Wars will appear in several relations that are
values of the movies attribute in the nested relation Stars is a cause of redun-
dancy. In effect, the schema of Example 4.23 has the nested-relation analog of
not being in BCNF. However, decomposing this Stars relation will not elimi-
nate the redundancy. Rather, we need to arrange that among all the tuples of
all the movies relations, a movie appears only once.

To cure the problem, object-relations need the ability for one tuple t to refer
to another tuple s: rather than incorporating s directly in t . lye thus add to
our model an additional inductive rule: the type of an attribute can also be a
reference to a tuple with a given schema.

If an attribute .I has a type that is a reference to a single tuple with a
relation schema named R, we show the attribute d in a schema as ,-l(*R).
Xotice that this situation is analogous to an ODL relationship .4 whose type is
R; i.e., it connects to a single object of type R. Similarly, if an attribute .4 has
a type that is a set of references to tuples of schema R. then .-I will be shown
in a schema as A({*R)). This situation resembles an ODL relationship .A that
has type Set<R>.

Example 4.24: An appropriate way to fix the redundancy- in Fig. 4.17 is
to use t~vo relations. one for stars and one For movies. The relation Movies
will be an ordinary relation ~vith the same schema as the attribute movies in
Example 4.23. The relation Stars xvill have a schema similar to the nested
relation Stars of that example. but the movies attribute will have a type that
is a set of references to Movies tuples. The schemas of the tn-o relations are
thus:

Movies (title, year, length)
\ In the Carrie Fisher tuple, we see her name. an atomic value, follo~ved Stars (name, address (street, city), birthdate,
3p a relation for the value of the address component. That relation has two movies(i*Movies3> 1 .

\

Star(name, address(street, city), birthdate,
 movies(title, year, length)) 170 CH-dPTER 4. OTHER DATA MODELS 4.5. THE OBJECT-RELATIONAL MODEL 171

interfaces, which are essentially class declarations without an extent (see the box
on "Interfaces" in Section 4.3.4). Then, ODL allows you to define any number
of classes that inherit this interface, while each class has a distinct extent. In
that manner, ODL offers the same opportunity the object-relational approach
when it comes to sharing the same declaration among several collections.

i r e did not discuss the use of methods as part of an object-relational schema.
However, in practice, the SQL-99 standard and all irnplementations of object-
relational ideas allow the same ability as ODL to declare and define methods
associated with any class.

Stars Movies Type Systems
Figure 4.18: Sets of references as the wlue of a,n attribute The type systems of the object-oriented and object-relational models are quite

similar. Each is based on atomic types and construction of new types by struct-
~h~ data of Fig. 4.17, converted to this new schema, is shown in Fig. 4.18. and collection-type-constructors. The selection of collection types may vary, but
Sotice that, because each movie has only one tuple, although it can have man!. all variants include at least sets and bags. AIoreover, the set (or bag) of structs
references, \ye have eliminated the redundancy inherent in the schema of Ex- type plays a special role in both models. It is the type of classes in ODL, and
ample 4.23. the type of relations in the object-relational model.

4.5.4 object-Oriented Versus Object-Relational References a n d Object-ID'S

~ 1 , ~ object-oriented data model, as typified by ODL, and the object-relational .A pure object-oriented model uses object-ID'S that are completely hidden from
model discussed here, are remarkably similar. Some of the salient points of the user, and thus cannot be seen or queried. The object-relational model allows

references to be part of a type, and thus it is possible under some circumstances comparison follow. for the user to see their values and even remember them for future use. You
may regard this situation as anything from a serious bug to a stroke of genius,

Objects and Tuples depending on your point of view, but in practice it appears to make little
An object's value is really a struct with components for its attributes alld re-
lationships. ~t is not specified in the ODL standard how relationships are to
be represented, but we may assume that an object is connected to related ob- Backwards Compatibility
jects by some collection of pointers. -1 tuple is likewise a struct, but in the
conventional relational model, it has colnponents for only the attributes. Re- With little difference in essential features of the two models, it is interesting to
lationsllips would be represented by tuples in another relation, as suggested in consider ~ r h y object-relational systems have dominated the pure ~ b j e c t - ~ r i ~ ~ t ~ d
Sectioll 3.2.2. Ho~vever the object-relational model, by allo\ving sets of refer- systems in the marketplace. The reason, we believe, is that there -? by the
cncfs to be a compollent of tuples, also allo\x-s relationships to be incorporated time object-oriented systems were seriously proposed, an enormous number
directly into the tuples that represent an "object" or entity. of installations running a relational database system. -4s relational DBlIS's

evolved into object-relational DBMS's, the vendors were careful to maint.ain

Extents and Relations
back~vards compatibility. That is. nen-er versions of the system would still run
the old code and accept the same schemas, should the user not care to adopt

ODL treats all objects in a class as living in an "extent" for that class. The any of the object-oriented features. On the other hand, miflation to a pure
object-relational model allorvs several different relations with identical schemas. object-oriented DBMS would require the installations to rewrite and reorganize
so it might appear that there is more opportunity in the object-relational model , extensively. Thus, whatever competitive advantage existed was not enough to
to distinguish members of the same class. However, ODL allows the definition of , convert many databases to a pure object-oriented DBXIS.

Star

Movie

•  Allow of nested relations

•  Repeating movies inside the stars
records is redundancy

•  To avoid redundancy, use pointers
(references)

SUPPORT FROM VENDORS

•  Several major software companies including IBM,
Informix, Microsoft, Oracle, and Sybase have all
released object-relational versions of their products

•  Extended SQL standards called SQL-99 or SQL3

38

SQL-99: QUERY LANGUAGE FOR OBJECT-
RELATIONAL MODEL

•  User-defied types (UDT) replace the concept of
classes

•  Create relations on top of the UDTs

•  Multiple relations can be created on top of the same UDT

39

Create Type <name> AS (attributes and method declarations)

CREATING UDT

40

450 CHAPTER 9. OBJECT-ORI%NTATION M QUERY LANGUAGES

1. The keywords CREATE TYPE,

2. A name for the type,

3. The keyword AS,

4. A parenthesized, comma-separated list of attributes and their types.

5. A comma-separated list of methods, including their argument ty pe(s) ,
and return type.

That is, the definition of a type T has the form

CREATE TYPE T AS <attribute and method declarations> ;

Example 9.20: ?Ve can create a type representing movie stars, analogous to
the class Star found in the OQL example of Fig. 9.1. However, we cannot
represent directly a set of movies as a field within Star tuples. Thus, we shall
start with only the name and address components of Star tuples.

To begin, note that the type of an address in Fig. 9.1 is itself a tuple,
with components street and city. Thus, we need two type definitions, one
for addresses and the other for stars. The necessary definitions are shown in
Fig. 9.10.

CREATE TYPE AddressType AS (
street CHAR(~O),
city CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType

) ;

Figure 9.10: Two type definitions

h tuple of type AddressType has two components, whose attributes are
street and city. The types of these components are character strings of length
50 and 20, respectively. A tuple of type StarType also has tn-o components.
The first is attribute name, whose type is a 30-character string, and the second is
address, whose type is itself a UDT AddressType. that is, a tuple with street
and city components. C]

9.4. USER-DEFZXED TYPES I N SQL 451

9.4.2 Methods in User-Defined Types
The declaration of a method resembles the way a function in PSM is introdnced;
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PShf are combined, a method needs both a declaration, within the
definition of its type, and a separate definition, in a CREATE METHOD statement.

X method declaration looks like a PSI1 function declaration, with the key-
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap-
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

Example 9.21: Let us extend the definition of the type AddressType of
Fig. 9.10 with a method houseNumber that extracts from the street com-
ponent the portion devoted to the house address. For instance, if the street
component \-ere '123 Maple St. ', then houseNumber should return '123'.
The revised type definition is thus:

CREATE TYPE AddressType AS (
street CHAR(501,
city CHAR(20)
1
METHOD houseNumber () RETURNS CHAR(^^) ;

We see the keyword METHOD, follon-ed by the name of the method and a parnithe-
sized list of its arguments and their types. In this case, there are no arguments,
but the parentheses are still needed. Had there bee11 arguments, they would
have appeared, follo~ved by their types. such as (a INT, b CHAR(^)). 0

Separately, we need to define the metliod. -1 simple form of method defini-
tion consists of:

1. The keywords CREATE METHOD.

2. The method name. arguments and their types, and the RETURNS clause,
as in the declaration of the method.

3. The keyword FOR and tlic name of the UDT in which the method is
declarcd.

4. The body of the method. \vhich is ~vrittcn in the same language as the
bodies of PSJI functions.

For instance, we could define the method houseNumber from Example 9.21 as:

CREATE METHOD houseNmber RETURNS CHAR (10)
FOR AddressType

Creating a type for the address of
stars

450 CHAPTER 9. OBJECT-ORI%NTATION M QUERY LANGUAGES

1. The keywords CREATE TYPE,

2. A name for the type,

3. The keyword AS,

4. A parenthesized, comma-separated list of attributes and their types.

5. A comma-separated list of methods, including their argument ty pe(s) ,
and return type.

That is, the definition of a type T has the form

CREATE TYPE T AS <attribute and method declarations> ;

Example 9.20: ?Ve can create a type representing movie stars, analogous to
the class Star found in the OQL example of Fig. 9.1. However, we cannot
represent directly a set of movies as a field within Star tuples. Thus, we shall
start with only the name and address components of Star tuples.

To begin, note that the type of an address in Fig. 9.1 is itself a tuple,
with components street and city. Thus, we need two type definitions, one
for addresses and the other for stars. The necessary definitions are shown in
Fig. 9.10.

CREATE TYPE AddressType AS (
street CHAR(~O),
city CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType

) ;

Figure 9.10: Two type definitions

h tuple of type AddressType has two components, whose attributes are
street and city. The types of these components are character strings of length
50 and 20, respectively. A tuple of type StarType also has tn-o components.
The first is attribute name, whose type is a 30-character string, and the second is
address, whose type is itself a UDT AddressType. that is, a tuple with street
and city components. C]

9.4. USER-DEFZXED TYPES I N SQL 451

9.4.2 Methods in User-Defined Types
The declaration of a method resembles the way a function in PSM is introdnced;
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PShf are combined, a method needs both a declaration, within the
definition of its type, and a separate definition, in a CREATE METHOD statement.

X method declaration looks like a PSI1 function declaration, with the key-
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap-
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

Example 9.21: Let us extend the definition of the type AddressType of
Fig. 9.10 with a method houseNumber that extracts from the street com-
ponent the portion devoted to the house address. For instance, if the street
component \-ere '123 Maple St. ', then houseNumber should return '123'.
The revised type definition is thus:

CREATE TYPE AddressType AS (
street CHAR(501,
city CHAR(20)
1
METHOD houseNumber () RETURNS CHAR(^^) ;

We see the keyword METHOD, follon-ed by the name of the method and a parnithe-
sized list of its arguments and their types. In this case, there are no arguments,
but the parentheses are still needed. Had there bee11 arguments, they would
have appeared, follo~ved by their types. such as (a INT, b CHAR(^)). 0

Separately, we need to define the metliod. -1 simple form of method defini-
tion consists of:

1. The keywords CREATE METHOD.

2. The method name. arguments and their types, and the RETURNS clause,
as in the declaration of the method.

3. The keyword FOR and tlic name of the UDT in which the method is
declarcd.

4. The body of the method. \vhich is ~vrittcn in the same language as the
bodies of PSJI functions.

For instance, we could define the method houseNumber from Example 9.21 as:

CREATE METHOD houseNmber RETURNS CHAR (10)
FOR AddressType

A hierarchy of types
(inheritance)

450 CHAPTER 9. OBJECT-ORI%NTATION M QUERY LANGUAGES

1. The keywords CREATE TYPE,

2. A name for the type,

3. The keyword AS,

4. A parenthesized, comma-separated list of attributes and their types.

5. A comma-separated list of methods, including their argument ty pe(s) ,
and return type.

That is, the definition of a type T has the form

CREATE TYPE T AS <attribute and method declarations> ;

Example 9.20: ?Ve can create a type representing movie stars, analogous to
the class Star found in the OQL example of Fig. 9.1. However, we cannot
represent directly a set of movies as a field within Star tuples. Thus, we shall
start with only the name and address components of Star tuples.

To begin, note that the type of an address in Fig. 9.1 is itself a tuple,
with components street and city. Thus, we need two type definitions, one
for addresses and the other for stars. The necessary definitions are shown in
Fig. 9.10.

CREATE TYPE AddressType AS (
street CHAR(~O),
city CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType

) ;

Figure 9.10: Two type definitions

h tuple of type AddressType has two components, whose attributes are
street and city. The types of these components are character strings of length
50 and 20, respectively. A tuple of type StarType also has tn-o components.
The first is attribute name, whose type is a 30-character string, and the second is
address, whose type is itself a UDT AddressType. that is, a tuple with street
and city components. C]

9.4. USER-DEFZXED TYPES I N SQL 451

9.4.2 Methods in User-Defined Types
The declaration of a method resembles the way a function in PSM is introdnced;
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PShf are combined, a method needs both a declaration, within the
definition of its type, and a separate definition, in a CREATE METHOD statement.

X method declaration looks like a PSI1 function declaration, with the key-
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap-
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

Example 9.21: Let us extend the definition of the type AddressType of
Fig. 9.10 with a method houseNumber that extracts from the street com-
ponent the portion devoted to the house address. For instance, if the street
component \-ere '123 Maple St. ', then houseNumber should return '123'.
The revised type definition is thus:

CREATE TYPE AddressType AS (
street CHAR(501,
city CHAR(20)
1
METHOD houseNumber () RETURNS CHAR(^^) ;

We see the keyword METHOD, follon-ed by the name of the method and a parnithe-
sized list of its arguments and their types. In this case, there are no arguments,
but the parentheses are still needed. Had there bee11 arguments, they would
have appeared, follo~ved by their types. such as (a INT, b CHAR(^)). 0

Separately, we need to define the metliod. -1 simple form of method defini-
tion consists of:

1. The keywords CREATE METHOD.

2. The method name. arguments and their types, and the RETURNS clause,
as in the declaration of the method.

3. The keyword FOR and tlic name of the UDT in which the method is
declarcd.

4. The body of the method. \vhich is ~vrittcn in the same language as the
bodies of PSJI functions.

For instance, we could define the method houseNumber from Example 9.21 as:

CREATE METHOD houseNmber RETURNS CHAR (10)
FOR AddressType

Adding a method declaration
for a type (not definition)
(Encapsulation)

450 CHAPTER 9. OBJECT-ORI%NTATION M QUERY LANGUAGES

1. The keywords CREATE TYPE,

2. A name for the type,

3. The keyword AS,

4. A parenthesized, comma-separated list of attributes and their types.

5. A comma-separated list of methods, including their argument ty pe(s) ,
and return type.

That is, the definition of a type T has the form

CREATE TYPE T AS <attribute and method declarations> ;

Example 9.20: ?Ve can create a type representing movie stars, analogous to
the class Star found in the OQL example of Fig. 9.1. However, we cannot
represent directly a set of movies as a field within Star tuples. Thus, we shall
start with only the name and address components of Star tuples.

To begin, note that the type of an address in Fig. 9.1 is itself a tuple,
with components street and city. Thus, we need two type definitions, one
for addresses and the other for stars. The necessary definitions are shown in
Fig. 9.10.

CREATE TYPE AddressType AS (
street CHAR(~O),
city CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType

) ;

Figure 9.10: Two type definitions

h tuple of type AddressType has two components, whose attributes are
street and city. The types of these components are character strings of length
50 and 20, respectively. A tuple of type StarType also has tn-o components.
The first is attribute name, whose type is a 30-character string, and the second is
address, whose type is itself a UDT AddressType. that is, a tuple with street
and city components. C]

9.4. USER-DEFZXED TYPES I N SQL 451

9.4.2 Methods in User-Defined Types
The declaration of a method resembles the way a function in PSM is introdnced;
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PShf are combined, a method needs both a declaration, within the
definition of its type, and a separate definition, in a CREATE METHOD statement.

X method declaration looks like a PSI1 function declaration, with the key-
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap-
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

Example 9.21: Let us extend the definition of the type AddressType of
Fig. 9.10 with a method houseNumber that extracts from the street com-
ponent the portion devoted to the house address. For instance, if the street
component \-ere '123 Maple St. ', then houseNumber should return '123'.
The revised type definition is thus:

CREATE TYPE AddressType AS (
street CHAR(501,
city CHAR(20)
1
METHOD houseNumber () RETURNS CHAR(^^) ;

We see the keyword METHOD, follon-ed by the name of the method and a parnithe-
sized list of its arguments and their types. In this case, there are no arguments,
but the parentheses are still needed. Had there bee11 arguments, they would
have appeared, follo~ved by their types. such as (a INT, b CHAR(^)). 0

Separately, we need to define the metliod. -1 simple form of method defini-
tion consists of:

1. The keywords CREATE METHOD.

2. The method name. arguments and their types, and the RETURNS clause,
as in the declaration of the method.

3. The keyword FOR and tlic name of the UDT in which the method is
declarcd.

4. The body of the method. \vhich is ~vrittcn in the same language as the
bodies of PSJI functions.

For instance, we could define the method houseNumber from Example 9.21 as:

CREATE METHOD houseNmber RETURNS CHAR (10)
FOR AddressType

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

COLLECTIONS AND LARGE OBJECTS

•  Book Type contains collections
•  Arrays of authors à capture the order of authors
•  Set of keywords

•  Large object types
•  CLOB: Character large objects
 book-review CLOB(10KB)
•  BLOB: binary large objects

 image BLOB(10MB)
 movie BLOB(2GB)

41

create type Book as  
" (title varchar(20), 
" author-array varchar(20) array [10], 
" pub-date date, 
" publisher Publisher, 
" keyword-set setof(varchar(20)))"

Usually provide methods inside
the UDT to manipulate CLOB &

BLOB

CREATING RELATIONS

•  Once types are created, we can create relations

•  In general, we can create tables without types
•  But types provide encapsulation, inheritance, etc.

42

Create Table MovieStar OF StarType;

450 CHAPTER 9. OBJECT-ORI%NTATION M QUERY LANGUAGES

1. The keywords CREATE TYPE,

2. A name for the type,

3. The keyword AS,

4. A parenthesized, comma-separated list of attributes and their types.

5. A comma-separated list of methods, including their argument ty pe(s) ,
and return type.

That is, the definition of a type T has the form

CREATE TYPE T AS <attribute and method declarations> ;

Example 9.20: ?Ve can create a type representing movie stars, analogous to
the class Star found in the OQL example of Fig. 9.1. However, we cannot
represent directly a set of movies as a field within Star tuples. Thus, we shall
start with only the name and address components of Star tuples.

To begin, note that the type of an address in Fig. 9.1 is itself a tuple,
with components street and city. Thus, we need two type definitions, one
for addresses and the other for stars. The necessary definitions are shown in
Fig. 9.10.

CREATE TYPE AddressType AS (
street CHAR(~O),
city CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType

) ;

Figure 9.10: Two type definitions

h tuple of type AddressType has two components, whose attributes are
street and city. The types of these components are character strings of length
50 and 20, respectively. A tuple of type StarType also has tn-o components.
The first is attribute name, whose type is a 30-character string, and the second is
address, whose type is itself a UDT AddressType. that is, a tuple with street
and city components. C]

9.4. USER-DEFZXED TYPES I N SQL 451

9.4.2 Methods in User-Defined Types
The declaration of a method resembles the way a function in PSM is introdnced;
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PShf are combined, a method needs both a declaration, within the
definition of its type, and a separate definition, in a CREATE METHOD statement.

X method declaration looks like a PSI1 function declaration, with the key-
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap-
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

Example 9.21: Let us extend the definition of the type AddressType of
Fig. 9.10 with a method houseNumber that extracts from the street com-
ponent the portion devoted to the house address. For instance, if the street
component \-ere '123 Maple St. ', then houseNumber should return '123'.
The revised type definition is thus:

CREATE TYPE AddressType AS (
street CHAR(501,
city CHAR(20)
1
METHOD houseNumber () RETURNS CHAR(^^) ;

We see the keyword METHOD, follon-ed by the name of the method and a parnithe-
sized list of its arguments and their types. In this case, there are no arguments,
but the parentheses are still needed. Had there bee11 arguments, they would
have appeared, follo~ved by their types. such as (a INT, b CHAR(^)). 0

Separately, we need to define the metliod. -1 simple form of method defini-
tion consists of:

1. The keywords CREATE METHOD.

2. The method name. arguments and their types, and the RETURNS clause,
as in the declaration of the method.

3. The keyword FOR and tlic name of the UDT in which the method is
declarcd.

4. The body of the method. \vhich is ~vrittcn in the same language as the
bodies of PSJI functions.

For instance, we could define the method houseNumber from Example 9.21 as:

CREATE METHOD houseNmber RETURNS CHAR (10)
FOR AddressType

How to define keys and
relationships???

CREATING RELATIONS

•  A single primary key can be defined using Primary Key
keyword

•  To reference another relation R, R has to be referenceable
using REF keyword

43

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Create type for movies

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Create Movie table
Define primary key

Tuples can be referenced using attribute
movieID (system generated)

450 CHAPTER 9. OBJECT-ORI%NTATION M QUERY LANGUAGES

1. The keywords CREATE TYPE,

2. A name for the type,

3. The keyword AS,

4. A parenthesized, comma-separated list of attributes and their types.

5. A comma-separated list of methods, including their argument ty pe(s) ,
and return type.

That is, the definition of a type T has the form

CREATE TYPE T AS <attribute and method declarations> ;

Example 9.20: ?Ve can create a type representing movie stars, analogous to
the class Star found in the OQL example of Fig. 9.1. However, we cannot
represent directly a set of movies as a field within Star tuples. Thus, we shall
start with only the name and address components of Star tuples.

To begin, note that the type of an address in Fig. 9.1 is itself a tuple,
with components street and city. Thus, we need two type definitions, one
for addresses and the other for stars. The necessary definitions are shown in
Fig. 9.10.

CREATE TYPE AddressType AS (
street CHAR(~O),
city CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType

) ;

Figure 9.10: Two type definitions

h tuple of type AddressType has two components, whose attributes are
street and city. The types of these components are character strings of length
50 and 20, respectively. A tuple of type StarType also has tn-o components.
The first is attribute name, whose type is a 30-character string, and the second is
address, whose type is itself a UDT AddressType. that is, a tuple with street
and city components. C]

9.4. USER-DEFZXED TYPES I N SQL 451

9.4.2 Methods in User-Defined Types
The declaration of a method resembles the way a function in PSM is introdnced;
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PShf are combined, a method needs both a declaration, within the
definition of its type, and a separate definition, in a CREATE METHOD statement.

X method declaration looks like a PSI1 function declaration, with the key-
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap-
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

Example 9.21: Let us extend the definition of the type AddressType of
Fig. 9.10 with a method houseNumber that extracts from the street com-
ponent the portion devoted to the house address. For instance, if the street
component \-ere '123 Maple St. ', then houseNumber should return '123'.
The revised type definition is thus:

CREATE TYPE AddressType AS (
street CHAR(501,
city CHAR(20)
1
METHOD houseNumber () RETURNS CHAR(^^) ;

We see the keyword METHOD, follon-ed by the name of the method and a parnithe-
sized list of its arguments and their types. In this case, there are no arguments,
but the parentheses are still needed. Had there bee11 arguments, they would
have appeared, follo~ved by their types. such as (a INT, b CHAR(^)). 0

Separately, we need to define the metliod. -1 simple form of method defini-
tion consists of:

1. The keywords CREATE METHOD.

2. The method name. arguments and their types, and the RETURNS clause,
as in the declaration of the method.

3. The keyword FOR and tlic name of the UDT in which the method is
declarcd.

4. The body of the method. \vhich is ~vrittcn in the same language as the
bodies of PSJI functions.

For instance, we could define the method houseNumber from Example 9.21 as:

CREATE METHOD houseNmber RETURNS CHAR (10)
FOR AddressType

Create type for stars

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Create MovieStar table

Referenceable, but no
primary key

DEFINING RELATIONSHIPS

•  One-to-many Or one-to-one
•  Plug it inside the existing types

•  Many-to-many
•  Create a new type or new table referencing existing types

44

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

For each star, keep the
best movie (one-many)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Table for each star participated in
which movies (many-many)

SCOPE points to a ‘referenceable’ table

WHAT’S NEXT

•  First Approach: Object-Oriented Model
•  Concepts from OO programming languages
•  ODL: Object Definition Language
•  What about querying OO databases???

•  OQL: Object Oriented Query Language

•  Second Approach: Object-Relational Model
•  Conceptual view
•  Data Definition Language (Creating types, tables, and

relationships)
•  Querying object-relational database (SQL-99)

45

QUERYING OBJECT-RELATIONAL
DATABASE

•  Most relational operators work on the object-
relational tables
•  E.g., selection, projection, aggregation, set operations

•  Some new operators and new syntax for some
existing operators

•  SQL-99 (SQL3): Extended SQL to operate on object-
relational databases

46

EXAMPLES I

47

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q1: Find the year of movie ‘King Kong’

Select m.year
From Movie m
Where m.title = ‘King Kong’;

Variable m is important to reference the fields

Q2: Find the title of the best movie ’Jim Carry’

Select s.bestMovie->title
From MovieStar s
Where s.name = ‘Jim Carry’;

Follow a reference (pointer)
using à operator

EXAMPLES II: DE-REFERENCING

48

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q3: Find movies starred by ‘Jim Carry’

Select DEREF(movie)
From StarsIn
Where star->name = ‘Jim Carry’;

DEREF: Get the tuple pointed to by the given pointer

Q4: Find movies starred by ‘Jim Carry’ (Another way)

Select s.movie->title, s.movie->year, s.movie->inColor,
From StarsIn s
Where s.star->name = ‘Jim Carry’;

*** Using a variable for StartsIn (s in Q4) is not
necessary because the table is not based on type.

EXAMPLES III: COMPARISON

49

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

Select Distinct DEREF(movie)
From StarsIn
Where star->name = ‘Jim Carry’
Or star->name = ‘Mel Gibson’;

•  That is wrong because all objects of type
MovieType are unique even if they have the
same content

•  Need a mechanism to define how objects
compare to each other

 (needed for any comparison, e.g., ordering,
 duplicate elimination, grouping, etc.)

ORDERING RELATIONSHIPS

•  Need to define how to compare objects of a given
type T

50

Create Ordering For T

EQUALS

ORDERING FULL

ONLY BY STATE;

BY RELATIVE WITH F;

Equality or non-equality (=, ≠)

Full comparison (=, <, >, ≤, ≥, ≠)

Identical content

User-defined function F(O1, O2) and
returns 0, -ve, +ve

ORDERING FUNCTION

51

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

460 CHAPTER 9. OBJECT-ORIENT-4TION IN QUERY LANGUAGES

CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE;

Alternatively, we could define a conlplete ordering of AddressType objects.
One reasonable ordering is to order addresses first by cities, alphabetically, and
among addresses in the same city, by street address, alphabetically. To do so, I{-e
have to define a function, say AddrLEG, that takes two AddressType arguments
and returns a negative, zero, or positive value to indicate that the first is less
than, equal to, or greater than the second. We declare:

CREATE ORDERING FOR AddressType
ORDER FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 9.13. Notice that if we reach line (7),
it must be that the two city components are the same, so we compare the
street components. Likewise, if we reach line (9), the only remaining possi-
bility is that the cities are the same and the first street precedes the second
alphabetically. 13

1) CREATE FUNCTION AddrLEG (
2) x1 AddressType,
3) x2 AddressType
4)) RETURNS INTEGER

5) IF xl.city() < x2.cityO THEN RETURN(-1)
6) ELSEIF xl.city() > x2.cityO THEN RETURN(1)
7) ELSEIF xl. street () < x2. street () THEN RETURN(-1)
8) ELSEIF xl.street() = x2.streetO THEN RETURN(0)
9) ELSE RETURN(1)

END IF;

Figure 9.13: A comparison function for address objects

9.5.5 Exercises for Section 9.5
Exercise 9.5.1: Using the StarsIn relation of Example 9.25, and the Movie
and Moviestar relations accessihle through StarsIn, write the following quer-
ies:

* a) Find the names of the stars of Ishtar.

*! b) Find the titles and years of all movies in which at least one star lives in
lialibu.

c) Find all the movies (objects of type MovieType) that starred Melanie
Griffith.

9.6. SUMMARY OF CHAPTER 9 461

! d) Find the movies (title and year) with a t least five stars.

Exercise 9.5.2: Using your schema from Exercise 9.4.2, write the following
queries. Don't forget to use references whenever appropriate.

a) Find the manufacturers of PC's with a hard disk larger than 60 gigabytes.

b) Find the manufacturers of laser printers.

! c) Produce a table giving for each model of laptop, the model of the lap-
top having the highest processor speed of any laptop made by the same
manufacturer.

Exercise 9.5.3: Using your schema from Exercise 9.4.4, write the following
queries. Don't forget to use references whenever appropriate and avoid joins
(i.e., subqueries or more than one tuple variable in the FROM clause).

* a) Find the ships with a displacement of more than 35,000 tons.

b) Find the battles in which at least one ship was sunk.

! c) Find the classes that had ships launched after 1930.

!! d) Find the battles in n-hich at least one US ship was damaged.

Exercise 9.5.4 : Assuming the function AddrLEG of Fig. 9.13 is available, write
a suitable function to compare objects of type StarType, and declare your
function to be the basis of the ordering of StarType objects.

*! Exercise 9.5.5 : Write a procedure to take a star name as argument and delete
from StarsIn and MovieStar all tuples involving that star.

9.6 Summary of Chapter 9
+ Select-From- Where Statements in OQL: OQL offers a select-from-where

expression that resembles SQL's. In the FROM clause, we can declare
variables that range over any collection, including both extents of classes
(analogous to relations) and collections that are the values of attributes
in objects.

+ Common OQL Operators: OQL offers for-all, there-exists, IN: union, in-
tersection, difference, and aggregation operators that are similar in spirit
to SQL's. Ho~ever, aggregation is al~vays over a collection, not a colunln
of a relation.

+ OQL Group-By: OQL also offers a GROUP BY clause in select-from-where
statements that is similar to SQL's. Howeyer, in OQL, the collection of
objects in each group is explicitly accessible through a field name called
partition.

460 CHAPTER 9. OBJECT-ORIENT-4TION IN QUERY LANGUAGES

CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE;

Alternatively, we could define a conlplete ordering of AddressType objects.
One reasonable ordering is to order addresses first by cities, alphabetically, and
among addresses in the same city, by street address, alphabetically. To do so, I{-e
have to define a function, say AddrLEG, that takes two AddressType arguments
and returns a negative, zero, or positive value to indicate that the first is less
than, equal to, or greater than the second. We declare:

CREATE ORDERING FOR AddressType
ORDER FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 9.13. Notice that if we reach line (7),
it must be that the two city components are the same, so we compare the
street components. Likewise, if we reach line (9), the only remaining possi-
bility is that the cities are the same and the first street precedes the second
alphabetically. 13

1) CREATE FUNCTION AddrLEG (
2) x1 AddressType,
3) x2 AddressType
4)) RETURNS INTEGER

5) IF xl.city() < x2.cityO THEN RETURN(-1)
6) ELSEIF xl.city() > x2.cityO THEN RETURN(1)
7) ELSEIF xl. street () < x2. street () THEN RETURN(-1)
8) ELSEIF xl.street() = x2.streetO THEN RETURN(0)
9) ELSE RETURN(1)

END IF;

Figure 9.13: A comparison function for address objects

9.5.5 Exercises for Section 9.5
Exercise 9.5.1: Using the StarsIn relation of Example 9.25, and the Movie
and Moviestar relations accessihle through StarsIn, write the following quer-
ies:

* a) Find the names of the stars of Ishtar.

*! b) Find the titles and years of all movies in which at least one star lives in
lialibu.

c) Find all the movies (objects of type MovieType) that starred Melanie
Griffith.

9.6. SUMMARY OF CHAPTER 9 461

! d) Find the movies (title and year) with a t least five stars.

Exercise 9.5.2: Using your schema from Exercise 9.4.2, write the following
queries. Don't forget to use references whenever appropriate.

a) Find the manufacturers of PC's with a hard disk larger than 60 gigabytes.

b) Find the manufacturers of laser printers.

! c) Produce a table giving for each model of laptop, the model of the lap-
top having the highest processor speed of any laptop made by the same
manufacturer.

Exercise 9.5.3: Using your schema from Exercise 9.4.4, write the following
queries. Don't forget to use references whenever appropriate and avoid joins
(i.e., subqueries or more than one tuple variable in the FROM clause).

* a) Find the ships with a displacement of more than 35,000 tons.

b) Find the battles in which at least one ship was sunk.

! c) Find the classes that had ships launched after 1930.

!! d) Find the battles in n-hich at least one US ship was damaged.

Exercise 9.5.4 : Assuming the function AddrLEG of Fig. 9.13 is available, write
a suitable function to compare objects of type StarType, and declare your
function to be the basis of the ordering of StarType objects.

*! Exercise 9.5.5 : Write a procedure to take a star name as argument and delete
from StarsIn and MovieStar all tuples involving that star.

9.6 Summary of Chapter 9
+ Select-From- Where Statements in OQL: OQL offers a select-from-where

expression that resembles SQL's. In the FROM clause, we can declare
variables that range over any collection, including both extents of classes
(analogous to relations) and collections that are the values of attributes
in objects.

+ Common OQL Operators: OQL offers for-all, there-exists, IN: union, in-
tersection, difference, and aggregation operators that are similar in spirit
to SQL's. Ho~ever, aggregation is al~vays over a collection, not a colunln
of a relation.

+ OQL Group-By: OQL also offers a GROUP BY clause in select-from-where
statements that is similar to SQL's. Howeyer, in OQL, the collection of
objects in each group is explicitly accessible through a field name called
partition.

EXAMPLES IV: COMPARISON

52

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

Select Distinct DEREF(movie)
From StarsIn
Where star->name = ‘Jim Carry’
Or star->name = ‘Mel Gibson’;

Create Ordering For MovieType Equals Only By State;

EXAMPLES V: GROUPING & NESTING

53

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q6: Find stars who participated in less than 10 movies

Select DEREF(star)
From StarsIn
Group by DEREF(star)
Having count(movie) < 10;

Create at least an equality ordering on StarType

Q7: Find movie titles in 2000 where ‘Jim Carry’ is not in

Select m
From Movie m
Where m.year = 2000
And m.title Not In (

Select movie->title
From StarsIn
Where star->name = ‘Jim Carry’
And movie->year = 2000);

QUERYING COLLECTIONS & ARRAYS

54

create type Book as  
" (title varchar(20), 
" author-array varchar(20) array [10], 
" pub-date date, 
" publisher Publisher, 
" keyword-set setof(varchar(20)))"

select title 
"from books 
"where ‘database’ in (unnest(keyword-set))"

select B.title, A 
" from books as B, unnest (B.author-array) as A"

find all books that have the word “database”
as one of their keywords

To get a relation containing pairs of the form
“title, author-name” for each book and each
author of the book"

Unnest returns a relation

select author-array[1], author-array[2]  
"from books 
"where title = `Database System Conceptsʼ"

Get 1st and 2nd authors of certain book

GENERATORS AND MUTATORS

•  How to insert new new data into tables

•  Generators
•  Like the constructors in OO programming
•  Create new objects

•  Mutators
•  Modify the value of an existing object

•  For each attribute x in UDT T, the system automatically
creates:
•  Generator T() that returns an empty object of T
•  Mutator x(v) that sets the value of attribute x to value v

55

EXAMPLE

56

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

458 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

1) CREATE PROCEDURE Inse r t s t a r (
I N s CHAR(5O),

2, 3) I N c CHAR(10).
4) I N n CHAR(30)

1
5) DECLARE newAddr AddressType;
6) DECLARE newstar StarType;

BEGIN
7) SET newAddr = AddressTypeO;
8) SET newstar = StarTypeO ;
9) newAddr.street(s);

10) newAddr. c i t y (c) ;
11) newstar .name(n) ;
12) newstar. address(newAddr1;
13) INSERT INTO Moviestar VALUES(newStar);

END ;

Figure 9.12: Creating and storing a StarType object

To insert a star into MovieStar, we can call procedure Inse r t s t a r .

CALL InsertStar('345 Spruce S t . ' , 'Glendale', 'Gwyneth Paltrow');

is an example.

It is much simpler to insert objects into a relation with a UDT if your
DBMS provides, or if you create, a generator function that takes values for
the attributes of the C'DT and returns a suitable object. For example, if we
have functions AddressType(s , c) and StarType(n, a) that return objects of
the indicated types, then we can make the insertion at the end of Example 9.28
with an INSERT statement of a familiar form:

INSERT INTO MovleStar VALUES (
StarType('Gwyneth Paltrow',

AddressType('345 Spruce S t . ' , 'Glendale '))) ;

9.5.4 Ordering Relationships on UDT's
Objects that are of some LDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are "equal' or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of

9.5. OPERATIONS ON OBJECT-RELATIONAL DAT.4 459

a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a "less than" test. For instance, we cannot eliminate
duplicates if we can't tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare any two elements.

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F ;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects xl and 2 2 compare,
we apply the function F to these objects. This function must be writ-
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2;
F(xl ,x2) = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .
If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that
XI # 12. Comparison by < is impossible in this case.

Example 9.29: Let us consider a possible ordering on the UDT StarType
from Example 9.20. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That state~nent says that t ~ - o objects of StarType are equal if and only if their
names are the same as character strings, and their addresses are the same as
objects of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. simple way to do So is to declare
that two AddressType objects are equal if and only if their streets and cities
are each the same. 11-e could do so by:

458 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

1) CREATE PROCEDURE Inse r t s t a r (
I N s CHAR(5O),

2, 3) I N c CHAR(10).
4) I N n CHAR(30)

1
5) DECLARE newAddr AddressType;
6) DECLARE newstar StarType;

BEGIN
7) SET newAddr = AddressTypeO;
8) SET newstar = StarTypeO ;
9) newAddr.street(s);

10) newAddr. c i t y (c) ;
11) newstar .name(n) ;
12) newstar. address(newAddr1;
13) INSERT INTO Moviestar VALUES(newStar);

END ;

Figure 9.12: Creating and storing a StarType object

To insert a star into MovieStar, we can call procedure Inse r t s t a r .

CALL InsertStar('345 Spruce S t . ' , 'Glendale', 'Gwyneth Paltrow');

is an example.

It is much simpler to insert objects into a relation with a UDT if your
DBMS provides, or if you create, a generator function that takes values for
the attributes of the C'DT and returns a suitable object. For example, if we
have functions AddressType(s , c) and StarType(n, a) that return objects of
the indicated types, then we can make the insertion at the end of Example 9.28
with an INSERT statement of a familiar form:

INSERT INTO MovleStar VALUES (
StarType('Gwyneth Paltrow',

AddressType('345 Spruce S t . ' , 'Glendale '))) ;

9.5.4 Ordering Relationships on UDT's
Objects that are of some LDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are "equal' or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of

9.5. OPERATIONS ON OBJECT-RELATIONAL DAT.4 459

a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a "less than" test. For instance, we cannot eliminate
duplicates if we can't tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare any two elements.

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F ;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects xl and 2 2 compare,
we apply the function F to these objects. This function must be writ-
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2;
F(xl ,x2) = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .
If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that
XI # 12. Comparison by < is impossible in this case.

Example 9.29: Let us consider a possible ordering on the UDT StarType
from Example 9.20. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That state~nent says that t ~ - o objects of StarType are equal if and only if their
names are the same as character strings, and their addresses are the same as
objects of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. simple way to do So is to declare
that two AddressType objects are equal if and only if their streets and cities
are each the same. 11-e could do so by:

458 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

1) CREATE PROCEDURE Inse r t s t a r (
I N s CHAR(5O),

2, 3) I N c CHAR(10).
4) I N n CHAR(30)

1
5) DECLARE newAddr AddressType;
6) DECLARE newstar StarType;

BEGIN
7) SET newAddr = AddressTypeO;
8) SET newstar = StarTypeO ;
9) newAddr.street(s);

10) newAddr. c i t y (c) ;
11) newstar .name(n) ;
12) newstar. address(newAddr1;
13) INSERT INTO Moviestar VALUES(newStar);

END ;

Figure 9.12: Creating and storing a StarType object

To insert a star into MovieStar, we can call procedure Inse r t s t a r .

CALL InsertStar('345 Spruce S t . ' , 'Glendale', 'Gwyneth Paltrow');

is an example.

It is much simpler to insert objects into a relation with a UDT if your
DBMS provides, or if you create, a generator function that takes values for
the attributes of the C'DT and returns a suitable object. For example, if we
have functions AddressType(s , c) and StarType(n, a) that return objects of
the indicated types, then we can make the insertion at the end of Example 9.28
with an INSERT statement of a familiar form:

INSERT INTO MovleStar VALUES (
StarType('Gwyneth Paltrow',

AddressType('345 Spruce S t . ' , 'Glendale '))) ;

9.5.4 Ordering Relationships on UDT's
Objects that are of some LDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are "equal' or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of

9.5. OPERATIONS ON OBJECT-RELATIONAL DAT.4 459

a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a "less than" test. For instance, we cannot eliminate
duplicates if we can't tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare any two elements.

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F ;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects xl and 2 2 compare,
we apply the function F to these objects. This function must be writ-
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2;
F(xl ,x2) = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .
If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that
XI # 12. Comparison by < is impossible in this case.

Example 9.29: Let us consider a possible ordering on the UDT StarType
from Example 9.20. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That state~nent says that t ~ - o objects of StarType are equal if and only if their
names are the same as character strings, and their addresses are the same as
objects of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. simple way to do So is to declare
that two AddressType objects are equal if and only if their streets and cities
are each the same. 11-e could do so by:

If DBMS allows creating generators with parameters

CREATING RECORDS OF COMPLEX
TYPES

•  Collection and array types

57

create type Book as  
" (title varchar(20), 
" author-array varchar(20) array [10], 
" pub-date date, 
" publisher Publisher, 
" keyword-set setof(varchar(20)))"

Array construction
 array [‘Silberschatz’,`Korth’,`Sudarshan’]

Set value attributes

 set(v1, v2, …, vn)

To insert the preceding tuple into the relation books

insert into books values
 (`Compilers’, array[`Smith’,`Jones’], null,
 Publisher(‘McGraw Hill’,`New York’),
 set(`parsing’,`analysis’))

WHAT WE COVERED

•  First Approach: Object-Oriented Model
•  Concepts from OO programming languages
•  ODL: Object Definition Language
•  What about querying OO databases???

•  OQL: Object Oriented Query Language

•  Second Approach: Object-Relational Model
•  Conceptual view
•  Data Definition Language (Creating types, tables, and

relationships)
•  Querying object-relational database (SQL-99)

58

Make use of the interesting features of Object-Oriented into
database systems è ODBMSs

WHEN TO CONSIDER
OODBMS OR ORDBMS

•  Complex Relationships
•  A lot of many-to-many relationships, tree structures or network (graph)

structures.

•  Complex Data
•  Multi-dimensional arrays, nested structures, or binary data, images,

multimedia, etc.

•  Distributed Databases
•  Need for free objects without the rigid table structure.

•  Repetitive use of Large Working Sets of Objects

•  To make use of inheritance and reusability

•  Expensive Mapping Layer
•  Expensive decomposition of objects (normalization) and re-

composition at query time

59

KEY BENEFITS OF ODBMS

•  Persistence & Versioning
•  Created objects are maintained across different database runs

(persistent)
•  Different evolving copies of the same object can be created over

time (versioning)

60

pointers must be persistent.

Implementation Issues
Persistence!

Sharing!

Paging!

Back to the Beginning!

Object-oriented databases give objects persistence, which enables objects to be stored between
database runs. (NOTE: in the context of ODBMS, PERSISTENCE = POST RUN TIME
PERSISTENCE), this facilitates versioning (i.e. a new, additional object is stored each time changes
are made).

1.

Object-oriented databases allow objects to be shared between processes in a distributed
environment.

1.

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (8 of 14) [10/13/2002 11:48:18 AM]

PersistentObject Superclass Approach

•  Superclass encapsulates any class for storage and retrieval

•  This superclass implements all functionalities of read/write
operations

KEY BENEFITS OF ODBMS (CONT’D)

•  Sharing in highly distributed environment
•  Easier to share and distribute objects than tables

61

Object-oriented databases can reduce the need for paging by enabling only the currently required
objects to be loaded into memory (relational databases load in tables containing both the equired
data AND other unnecessary data)

1.

ODBMS Relational DBMS

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (9 of 14) [10/13/2002 11:48:18 AM]

KEY BENEFITS OF ODBMS (CONT’D)

•  Better memory usage and less paging
•  Bringing only objects of interest

62

Object-oriented databases can reduce the need for paging by enabling only the currently required
objects to be loaded into memory (relational databases load in tables containing both the equired
data AND other unnecessary data)

1.

ODBMS Relational DBMS

Object Oriented Databases

http://www.dis.port.ac.uk/~chandler/OOLectures/database/database.htm (9 of 14) [10/13/2002 11:48:18 AM]

OBJECT-ORIENTED VS. OBJECT-
RELATIONAL

•  Object-oriented DBMSs
•  Did not achieve much success (until now) in the market

place
•  No query support (Indexing, optimization)
•  No security layer

•  Object-relational DBMSs
•  Better support from big vendors
•  Tries to make use of all advances in RDBMSs

•  Indexes, views, triggers, query optimizations, security layer, etc.
•  Work in progress --- Long way to go

63

MODIFICATIONS TO RDBMS

•  Parsing
•  Type-checking for methods pretty complex

•  Query Rewriting
•  New rewriting rules including complex types and collections

•  Optimization
•  New algebra operators needed for complex types.
•  Must know how to integrate them into optimization.
•  WHERE clause exprs can be expensive!

•  Selection pushdown may be a bad idea.

64

MODIFICATIONS TO RDBMS (CONT’D)

•  Execution
•  New algebra operators for complex types.
•  OID generation & reference handling.
•  Dynamic linking and overriding.
•  Support objects bigger than 1 page.
•  Caching of expensive methods.

•  Access Methods
•  Indexes on methods, not just columns.
•  Indexes over collection hierarchies.
•  Need indexes for new WHERE clause exprs (not just <, >, =)

•  Data Layout
•  Clustering of nested objects.
•  Chunking of arrays.

65

COMPARISON

66

Object Database vs. Object-Relational Databases

integrity is inherently maintained by the ODBMS. The object model used by the Object Database
Management Group in its ODMG-93 standard is derived from the OMG Common Object Model, and the
model has been supplemented with bindings for C++, Smalltalk, and Java as well as Object Definition
Language (ODL, based on OMG's IDL), the aforementioned OQL, meta-object access, and object
interchange.

The SQL3 object model is its own definition, a compromise that adds some object support while
maintaining backward compatibility with SQL2. ORDBMSs have limited support for inheritance, with
no consistent definition between vendors or with respect to SQL3 (e.g., constructed types). For all
vendors, base types are abstract types, supporting inheritance of properties and functions. There is no
such agreement for constructed types to be abstract types.

Table 2

A Comparison of Database Management Systems
Criteria RDBMS ORDBMS ODBMS
Defining standard SQL2 (ANSI X3H2) SQL3/4 (in process) ODMG-V2.0

Support for object-oriented
programming

Poor; programmers
spend 25% of coding
time mapping the
program object to the
database

Limited mostly to new
data types Direct and extensive

Simplicity of use
Table structures easy to
understand; many end-
user tools available

Same as RDBMS, with
some confusing
extensions

OK for programmers;
some SQL access for
end users

Simplicity of development

Provides independence
of data from application,
good for simple
relationships

Provides independence
of data from application,
good for simple
relationships

Objects are a natural
way to model; can
accommodate a wide
variety of types and
relationships

Extensibility and content None Limited mostly to new
data types

Can handle arbitrary
complexity; users can
write methods and on
any structure

Complex data relationships Difficult to model Difficult to model

Can handle arbitrary
complexity; users can
write methods and on
any structure

file:///E|/E_book/Database/Articles/Object%20Database%20vs_%20Object-Relational%20Databases.htm (12 of 21) [2/28/2004 5:44:39 PM]

