OBJECT-ORIENTED & OBJECT-
RELATIONAL DATABASES

CS561-SPRING 2012

WPI, MOHAMED ELTABAKH

HISTORY OF DATABASES

file
systems
(1950s)
hierarchical/

network

(1960s)

relational

(1970-80s)

ODBMS
(1990s)

store data after process created it has ceased to
exist

concurrency
recovery

fast access

complex structures

more reliability

less redundancy

more flexibility

multiple views

better simulation

more (and complex) data types

more relationships (e.g. aggregation,
specialisation)

single language for database AND
programming

e better versioning

e no 'reconstruction' of objects

e other OO advantages (reuse, inheritance etc.)

STONEBRAKER’S APPLICATION MATRIX

No Query Query
Complex Data | OODBMS ORDBMS
Simple Data File System RDBMS

Thesis: Most applications will move to
the upper right.

MOTIVATION

- Relational model (70’s):
« Clean and simple.
« Great for administrative and transactional data.

« Not as good for other kinds of complex data (e.g.,
multimedia, networks, CAD).

* Object-Oriented models (80’s):

« Complicated, but some influential ideas from Object
Oriented

« Complex data types.

- ldea: Build DBMS based on OO model.

Programming languages have evolved from Procedural to

Object Oriented. So why not DBMSs 2272

RELATIONAL MODEL

Relations are the key concept, everything else is around
relations

Primitive data types, e.g., strings, integer, date, etc.
Great normalization, query optimization, and theory

What is missing??

Handling of complex objects
Handling of complex data types
Code is not coupled with data

No inherence, encapsulation, etfc.

RELATIONAL MODEL OF A “CAT

Relational database of a cat:

» 4 At query time, try to pu
things fogether as you

Welalmill

OBJECT ORIENTED MODEL OF A ‘CAT’

Object-oriented database of a cat: The first areas where ODBMS were widely used were:

e CASE: Computer aided software engineering

e CAD : Computer aided design

o CAM : Computer aided manufacture
Increasingly now used in:

e telecommunications

healthcare

finance

°
°
e multimedia
°

text/document/quality management

TWO APPROACHES

» Object-Oriented Model (OODBMS)

* Pure OO concepts

- Object-Relational Model (ORDBMS)

« Extended relational model with OO concepts

DATABASE DESIGN PROCESS

Application Domain
or Universe of Discourse

.

€ using ER model or UML

Data Modelling

C Conceptual Model)

A

using Data Model of the
50 target DBMS

Logical Database Design

A,
C Logical Model)
DBMS specific
resource-based

A optimization

Physical Database Design |~

A

C Physical Model)

LOGICAL & PHYSICAL LAYERS

. W (Relational SQL
ERd Normahzatlon &
[oo J /@atabase design Physical design table definitions RDBMS

Mapping onto
Relations
(no operations)

UML class Mapping onto Object-Relational | Normalization& | Extended-SQL
{ diagram Relamntsyggsd ObJeCtﬁ@atabase design | Physical design | table definitions ORDBMS

Mapping directly
onto ODL classes

Object-Oriented
database schema ——Optimization OODBMS
in ODL

10

Person <

name: {firstName: string,

middleName: string, <
lastName: string}

address: string

bithDate: date

age(): Integer
changeAddress(newAdd: stnng)

EXAMPLE OF UML CLASSES

Class Name

Attributes

Operations

p:Person <

name: {Norman, William, Preston}
address: Stockport
bithDate: 11-JUN-70

A Person object

11

FIRST APPROACH: OBJECT-ORIENTED
MODEL

Relations are not the central concept, classes and objects are
the main concept

Object-Oriented DBMS(OODBMS) are DBMS based on an Object-
Oriented Data Model inspired by OO programming languages

Main Features:

« Powerful type system
» Classes

* Object Identity

* Inheritance

OODBMS are capable of storing complex objects, l.e., objects
that are composed of other objects, and/or multi-valued

atfributes.
12

FEATURE 1: POWERFUL TYPE SYSTEM

* Primitive types
 Integer, string, date, Boolean, float, etc.

* Structure type
« Aftfribute can be arecord with a schema

Struct {integer x, string y}
» Collection type

« Aftribute can be a Set, Bag, List, Array of other types

- Reference type
« Aftribute can be a Pointer 1o another object

[i&

FEATURE 2: CLASSES

- A ‘class’ is in replacement of ‘relation’

« Same concept asin OO programming languages

« All objects belonging to a same class share the same
properties and behavior

* An ‘object’ can be thought of as ‘tuple’ (but richer
content)

» Classes encapsulate data + methods + relationships
 Unlike relations that contain data only

* In OODBMSs objects are persistency (unlike OO
programming languages)

14

FEATURE 3: OBJECT IDENTITY

- OID is a unigue identity of each object regardless of
Its content

« Even if all attributes are the same, still objects have different
OIDs

« Easier for references

- An object is made of two things:
- State: atfributes (hame, address, birthDate of a person)

« Behaviour: operations (age of a person is computed from
birthDate and current date)

15

FEATURE 4: INHERITANCE

A class can be defined in terms of
another one.

Person is super-class and Student
IS sub-class.

Student class inherits attributes
and operations of Person.

Person

name: {firstName: string,
middleName: string,
lastName: string}

address: string
birthDate: date

age(): Integer
changeAddress(newAdd: string)

Student

regNum: string {PK}
major: string

register(C: Course): boolean

16

STANDARDS FOR OBJECT-ORIENTED
MODEL

- ODMG: Object Data Management Group (1991)
* provide a standard where previously there was none
» support portability between products
« standardize model, querying and programming issues

- Language of specifying the structure of object
database
- ODL: Object Definition Language
 OQL: Object Query Language

« ODL is somehow similar to DDL (Data Definition
Language) in SQL

{7/

Overview of ODL & OQL

1)
2)

4)
5)

1)
2)
3)

ODL: CLASSES & ATTRIBUTES

Keyword attribute

class Movie {

attribute string title;

attribute integer year;

attribute integer length;

attribute enum Film {color,blackAndWhite} filmType:

Two classes with their attributes

class Star {
attribute string name;
attribute Struct Addr
{string street, string city} address; Attribute as a structure

};

19

1)
2)
3)
4)
5)
6)

8)
9)
10)

ODL: RELATIONSHIPS

class Movie {
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Film {color,blackAndWhite} filmType;

relationship Set<Star> stars < Keyword relationship

Keyword set

};
class Star { set of unsorted unique
attribute string name; ObjeCTS
attribute Struct Addr
{string street, string city} address; .
set of unsorted objects
Y with possible duplication

set of sorted list

set of sorted list
referenced by index

1)
2)
3)
4)
5)
6)

7)

8)
9)
10)

11)

12)
13)
14)
15)

ODL: RELATIONSHIPS & INVERSE
RELATIONSHIPS

class Movie {

attribute string title;

attribute integer year;

attribute integer length;

attribute enum Film {color,blackAndWhite} filmType;

relationship Set<Star> stars '
inverse Star::starredIn;

relationship Studio ownedBy
inverse Studio::owns;

¥

Keyword inverse

class Star { S xO
attribute string name; QUZSQ;
attribute Struct Addr
{string street, string city} address;
relationship Set<Movie> starredln
inverse Movie::stars;

};

class Studio { Inverse of
attribute string name; each other

attribute string address;
relationship Set<Movie> owns
inverse Movie::ownedBy;

};

21

1)
2)
3)
4)
5)
6)

7)

8)
9)
10)

11)

12)
13)
14)
15)

ODL: MULTIPLICITY OF RELATIONSHIPS

class Movie {

attribute string title; .
attribute integer year; Based on the use of collection

attribute integer length; fypes (sefl bgg, e’rc.)
attribute enum Film {color,blackAndWhite} filmType;
relationship Set<Star> stars '
inverse Star::starredln;<é_f
relationship Studio ownedBy
inverse Studio::owns;

Many-to-Many relationship
};

class Star {
attribute string name; p 3
attribute Struct Addr One-to-Many relationship
{string street, string city} address;
relationship Set<Movie> starredln
inverse Movie::stars;

};

class Studio {
attribute string name;
attribute string address; --Not supported

relationship Set<Movie> owns --Need to convert a mul’riwoy to

s inverse HMovie: :ounedBy; multiple binary relationships

1)
2)
3)
4)
5)
6)

7)
8)

)
10)

ODL: METHODS

class Movie {

};

attribute string title;

attribute integer year;

attribute integer length;

attribute enumeration(color,blackAndWhite) filmType; g

relationship Set<Star> stars Three methods declarations
inverse Star::starredln;

relationship Studio ownedBy
inverse Studio::owns;

float lengthInHours() raises(noLengthFound);

void starNames(out Set<String>); P ; ith
void otherMovies(in Star, out Set<Movie>) arameiters are elnner

raises(noSuchStar); |N, OUT, or INOUT

Definition (implementation) is
not part of the class

23

ODL: INHERITANCE

« Same ldea as in OO programming (C++ or Java)
« Subclass inherits all attributes, relationships, and methods

» Plus adding additional fields

class Cartoon extends Movie {
relationship Set<Star> voices;

};

class MurderMystery extends Movie {
attribute string weapon;

};

class CartoonMurderMystery
extends MurderMystery : Cartoon;

Keyword extends

Cartoon movie is a movie
with voices of characters

Murder moyvie is a movie
with the weapons used

Inherits from two other
classes

24

ODL: INSTANCES & KEYS

+ Instance of a class are all objects currently exist of that class
In ODL that is called extent (and is given a name)

« Keys are not as important for referencing objects
Because each object already has a unique OID

« Defining keys in ODL is optional

« ODL adllows defining multiple keys (Comma separated)

Keywords extent & key

class Movie :
(extent Movies key (title, year))

f attribute string title; < The key is the pair of (title, year)

class Employee :
(extent Employees key (empID, ssNo))

The key is the pair of (emplID, SSN)

class Employee Two keys emplD and SSN
(extent Employees key empID, ssNo)

25

WHAT'S NEXT

* First Approach: Object-Oriented Model
« Concepts from OO programming languages
« ODL: Object Definition Language

 What about querying OO databasesee?
OQL: Object Oriented Query Language

26

OQL: OBJECT-ORIENTED QUERY
LANGUAGE

OQL is a query language designed to operate on
databases described in ODL.

Tries o bring some concepts from the relational model to
the ODBMs

* E.g., the SELECT statement, joins, aggregation, etc.

Reference of class properties (attributes, relationships,
and methods) using:

- Dot notation (p.a), or
« Arrow notation (p->qQ)

In OQL both notations are equivalent

27

OQL: EXAMPLE QUERIES I

class Movie
(extent Movies key (title, year))
{
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Film {color,blackAndWhite} filmType;
relationship Set<Star> stars
inverse Star::starredIn;
relationship Studio ownedBy
inverse Studio::owns;
float lengthInHours() raises(noLengthFound);
void starNames(out Set<String>);
void otherMovies(in Star, out Set<Movie>)
raises(noSuchStar);

};

class Star
(extent Stars key name)

{
attribute string name;
attribute Struct Addr
{string street, string city} address;
relationship Set<Movie> starredIn
inverse Movie::stars;
};

class Studio
(extent Studios key name)
{ ‘
attribute string name;
attribute string address;
relationship Set<Movie> owns
inverse Movie::ownedBy;

Reference the extent (instance of class)

SELECT m,year
FROM Movies m
WHERE m.title = "Gone With the Wind*

Select the year of movie ‘Gone with the wind’

For each movie m, s is the set of stars in
that movie (follow a relationship)

SELECT s.name
FROM Movies m, m.stars s
WHERE m.title = "Casablanca"

Select star names from movie ‘Casablanca’

Another notation

SELECT s.name
FROM m IN Movies, s IN m.stars
WHERE m.title = "Casablanca"

28

OQL: EXAMPLE QUERIES 11

class Movie
(extent Movies key (title, year))
{
attribute string title;
attribute integer year;
attribute integer length;
attribute enum Film {color,blackAndWhite} filmType;
relationship Set<Star> stars
inverse Star::starredIn;
relationship Studio ownedBy
inverse Studio::owns;
float lengthInHours() raises(noLengthFound);
void starNames(out Set<String>);
void otherMovies(in Star, out Set<Movie>)
raises(noSuchStar);

};

class Star
(extent Stars key name)

{
attribute string name;
attribute Struct Addr
{string street, string city} address;
relationship Set<Movie> starredIn
inverse Movie::stars;
};

class Studio
(extent Studios key name)
{ ‘
attribute string name;
attribute string address;
relationship Set<Movie> owns
inverse Movie::ownedBy;

SELECT DISTINCT s.name

SELECT DISTINCT s.name FROM (SELECT m

FROM Movies m, m.stars s FROM Movies m _
WHERE m.ownedBy.name = "Disney" WHERE m.ownedBy.name = "Disney") d,
d.stars s

Select distinct star names in movies owned by ‘Disney’

subquery

SELECT m

FROM Movies m

WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m.title

order movies owned by ‘Disney’ based on length and title

Report set of structures

Join two classes

SELECT DISTINCT Struct{starl: si, star2: s2)
FROM Stars si, Stars s2 -
WHERE s1.address = s2.address AND sl.name < s2.name

Report pairs of stats who have the same address
29

OQL OUTPUT

Unlike SQL which produces relations, OQL produces

collection (set, bag, list) of objects
» The object can be of any type

SELECT DISTINCT s.name
FROM Movies m, m.stars s Set of strings
WHERE, m.ownedBy.name = "Disney"

SELECT m

FROM Movies m

WHERE m.ownedBy.name = "Disney" Set of objects of type Movie
ORDER BY m.length, m.title

SELECT DISTINCT Struct(starl: sl, star2: s2)
FROM Stars si, Stars s2 : Set of structures
WHERE s1.address = s2.address AND sl.name < s2.name Set<Struct{starl: Star, star2: Star}>

30

OQL: AGGREGATION

class Movie

(extent Movies key (title, year)) Aggregaie over the pqrﬁﬁon
{
attribute string title; /
attribute integer year;
attribute integer length; SELECT stdo, yr, sumLength: SUM(SELECT p.m.length
attribute enum Film {color,blackAndWhite} filmType; FROM partition p)

relationship Set<Star> stars
inverse Star::starredIn;
relationship Studio ownedBy
inverse Studio::owns;
float lengthInHours() raises(noLengthFound);
void starNames(out Set<String>);
void otherMovies(in Star, out Set<Movie>)
raises(noSuchStar);

FROM Movies m
GROUP BY stdo: m.ownedBy.name, yr: m.year
HAVING MAX(SELECT p.m.length FROM partitiom p) > 120

};

class Star
(extent Stars key name)

{

attribute string name; S'ITUC'I'{ Grouping fields
attribute Struct Addr
{string street, string city} address; S-I-dO: —
relationship Set<Movie> starredIn]
inverse Movie::stars; yr.)
};

partition: bag(struct {m: ...})
%

class Studio
(extent Studios key name)
{ ‘
attribute string name;

attribute string address; .
relationship Set<Movie> owns qu of structures with members

inverse Movie::ownedBy; follow what's in the FROM clause 3]

OQL: COLLECTION OPERATORS

class Movie

(o ovter o (ratie, yeE Like in SQL, we have ANY, ALL,
attribute string title; EXlSTS

attribute integer year;

attribute integer length;

attribute enum Film {color,blackAndWhite} filmType;

relationship Set<Star> stars) H
inverse Star::starredIn; O Q L h | .I.

relationship Studio ownedBy OS SI ml Or Operg Ors
inverse Studio::owns;

float lengthInHours() raises(noLengthFound);

void starNames(out Set<String>); 1) SELECT s
void otherMovies(in Star, out Set<Movie>)
raises(noSuchStar); 2) FROM Stars s
}; 3) WHERE EXISTS m IN s.starredln :
4) m.ownedBy.name = "Disney"
class Star) e P
(extent Stars key name) sele(.:f stars who pqr’napcﬁed Ina
{ movie made by ‘Disney’

attribute string name;
attribute Struct Addr

{string street, string city} address;
relationship Set<Movie> starredIn

inverse Movie::stars; SELECT s
Y FROM Stars s
WHERE FOR ALL m IN s.starredIn :
class Studio m.ownedBy.name = "Disney"

(extent Studios key name)

{ : hay
attribute string name; Select stars who participated only

attribute string address; in movies made by ‘Disney’
relationship Set<Movie> owns
inverse Movie::ownedBy;

INTEGRATING OQL & EXTERNAL
LANGUAGES

« OQL fits naturally in OO host languages

* Returned objects are assigned in variables in the
host program

1) movielList = SELECT m

FROM Movies m

ORDER BY m.title, m.year;
2) numberOfMovies = COUNT(movielist);
3) for(i=0; i<numberOfMovies; i++) {

oldMovies = SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920;

4) movie = movielist([i];
Variable in host 5) cout << movie.title << " " << movie.year << " "

angque (C++ or quq) 6) << movie.length << "\n";

Array of objects of type Movie

lterate over the list in a natural way

e

WHAT'S NEXT

* First Approach: Object-Oriented Model
« Concepts from OO programming languages
« ODL: Object Definition Language

 What about querying OO databasesee?
OQL: Object Oriented Query Language

- Second Approach: Object-Relational Model

34

SECOND APPROACH: OBJECT-
RELATIONAL MODEL

* Object-oriented model fries to bring the main
concepfts from relational model to the OO domain

* The heart is OO concepts with some extensions

» Object-relational model fries to bring the main
concepfts from the OO domain to the relational
model
« The heart is the relational model with some extensions
« Extensions through user-defined types

£

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

« Relation is still the fundamental structure

- Relational model extended with the following features

+ Type system with primitive and structure types (UDT)
Including set, bag, array, list collection types
Including structures like records

* Methods
?ggﬁiol operations can be defined over the user-defined types
SEr>ecic1|ized operators for complex types, e.g., images, multimedia,
etc.

 |dentifiers for tuples
Unique identifiers even for identical tuples
* References
Several ways for references and de-references

36

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

name address birthdate movies
Fisher street city 9/9/99 ritle year | length
| Maple |H’wood | Star Wars 1577 124
Locusti{Malibu _E_:rrlp_i_ria_ _l1s80 _1_2_'7_‘ .
Return | 1683] 133 « Allow of nested relations
Hamill street city 8/8/88 ritle year | lengti . RepeGTIﬂg mOV|eS |nS|de .I.he S.I.Ors
o Rveos S Eakl B records is redundanc
- | Empire 1980 127| v
Return 1983] 133
Star(name, address(street, city), birthdate, - To avoid redundancy, use pointers
movies(title, year, length)) (references)
name address birthdate| movies
Fisher street city 9/9/99 ~
Hile year | length
Maple | H' wood \\\
"""""""" 977 124
LocustiMalibu N Star Wars) 1377) 124
———————————————————————————— gt Emp i_r:e_ _11980) 127
Hamill { | street | city 8/8/88 | Return |1983] 133
1
Qak B'w > Movie

Star

37

SUPPORT FROM VENDORS

« Several major software companies including IBM,
Informix, Microsoft, Oracle, and Sybase have all
released object-relational versions of their products

» Extended SQL standards called SQL-99 or SQL3

38

SQL-99: QUERY LANGUAGE FOR OBJECT-
RELATIONAL MODEL

- User-defied types (UDT) replace the concept of
classes

» Create relations on top of the UDTs
* Multiple relations can be created on top of the same UDT

<name> (attributes and method declarafions)

39

CREATING UDT

CREATE TYPE AddressType AS (

street CHAR(50), Creating a type for the address of
city CHAR(20)

stars
)s

CREATE TYPE StarType AS (

name CHAR(30), A hierarchy of types
address AddressType

y (inheritance)

CREATE TYPE AddressType AS (

street CHAR(50) Adding a method declaration
city CHAR(20) for a type (n.oi definition)
) (Encapsulation)

METHOD houseNumber() RETURNS CHAR(10);

CREATE METHOD houseNumber () RETURNS CHAR(10)
FOR AddressType
BEGIN

END;

40

COLLECTIONS AND LARGE OBJECTS

- Book Type contains collections
* Arrays of authors - capture the order of authors
« Set of keywords

create type Book as
(title varchar(20),
author-array varchar(20) array [10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))

+ Large object types
- CLOB: Character large objects Usually provide methods inside
book-review CLOB(10KB) the UDT to manipulate CLOB &
- BLOB: binary large objects BLOB
image BLOB(10MB)
movie BLOB(2GB)

41

CREATING RELATIONS

- Once types are created, we can create relations

 In general, we can create tables without types
« But types provide encapsulation, inheritance, etc.

MovieStar StarType;
=)
_' How to define keys and
relationshipseee

CREATE TYPE StarType AS (
name CHAR(30),
address AddressType

);

42

CREATING RELATIONS

A single primary key can be defined using Primary Key
keyword

To reference another relation R, R has to be referenceable
using REF keyword

Tuples can be referenced using attribute
movielD (system,generated)

1) CREATE TYPE MovieType AS (5) CREATE TABLE Movie OFMovieType (
2) title CHAR(30), 6) REF IS movieID SYSTEM GENERATED,
3) year INTEGER, 7) PRIMARY KEY (title, year)
4) inColor BOOLEAN); . :
); Define primary key

A Create Movie table
Create type for movies

CREATE TYPE StarType AS (

name CHAR(30), CREATE TABLE MovieStar OF StarType (Referenceable, but no
address AddressType REF IS starID SYSTEM GENERATED prtimary key
););

Create type for stars Create MovieStar table 43

DEFINING RELATIONSHIPS

One-to-many Or one-to-one
* Plug it inside the existing types

Many-to-many
« Create a new type or new table referencing existing types

CREATE TYPE StarType AS (CREATE TABLE StarsIn (
name CHAR(30), star REF(StarType) SCOPE MovieStar,

address AddressType, , movie REF(MovieType) SCOPE Movie
bestMovie REF(MovieType) SCOPE Movie)
]

);
Table for each star participated in

el e el LEH U which movies (many-many)

best movie (one-many)

SCOPE points to a ‘referenceable’ table

44

WHAT'S NEXT

* First Approach: Object-Oriented Model
« Concepts from OO programming languages
« ODL: Object Definition Language

 What about querying OO databasesee?
OQL: Object Oriented Query Language

- Second Approach: Object-Relational Model
- Conceptual view

« Data Definition Language (Creating types, tables, and
relationships)

* Querying object-relational database (SQL-99)

45

QUERYING OBJECT-RELATIONAL
DATABASE

* Most relational operators work on the object-
relational tables

* E.g., selection, projection, aggregation, set operations

« Some new operators and new syntax for some
existing operators

» SQL-929 (SQL3): Extended SQL to operate on object-
relational databases

46

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED

)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

EXAMPLES |

Q1: Find the year of movie ‘King Kong’

Select m.year
From Movie m
Where m.title =\'King Kong’;

Variable m is important to reference the fields

Q2: Find the title of the best movie 'Jim Carry

Select s.bestMovie->title
From MovieStar s
Where s.name = ‘Jim Carry’;

Follow a reference (pointer)
using > operator

47

EXAMPLES II: DE-REFERENCING

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED

)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

Q3: Find movies starred by ‘Jim Carry’

Select DEREF(movie)
From Starsin
Where star->name = ‘Jim Carry’;

DEREF: Get the tuple pointed to by the given pointer

Q4: Find movies starred by ‘Jim Carry’ (Another way)

Select s.movie->title, s.movie->year, s.movie->inColor,
From Starsin's
Where s.star->name = ‘Jim Carry’;

***Using a variable for Startsin (s in Q4) is not
necessary because the table is not based on type.

EXAMPLES III: COMPARISON

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (

name CHAR(30Q),

address AddressType,

bestMovie REF (MovieType) SCOPE Movie
);

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED
)3

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

Select Distinct DEREF(movie)
From Starsin

Where star->name = ‘Jim Carry’
Or star->name = ‘Mel Gibson’;

X

at is wrong because all objects of type
MovieType are unique even if they have the
same content

Need a mechanism to define how objects

compare to each other

ORDERING RELATIONSHIPS

Need to define how to compare objects of a given

type T

Equality or non-equality (=, #)

EQUALS

Create Ordering For T

ORDERING FULL

Full comparison (=, <, >, £, 2, #)

Identical content

ONLY BY STATE;

! BY RELATIVE WITH F;
|

User-defined function F(O1, O2) and
returns 0, -ve, +ve

50

ORDERING FUNCTION

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED

)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

CREATE ORDERING FOR AddressType
ORDER FULL BY RELATIVE WITH AddrLEG;

1)
2)
3)
4)

5)
6)
7
8)
9

CREATE FUNCTION AddrLEG(
x1 AddressType,
x2 AddressType

) RETURNS INTEGER

IF x1.city() < x2.city() THEN RETURN(-1)

ELSEIF x1.city() > x2.city() THEN RETURN(1)
ELSEIF x1.street() < x2.street() THEN RETURN(-1)
ELSEIF x1.street() = x2.street(} THEN RETURN(D)

ELSE RETURN(1)
END IF;

S1

EXAMPLES IV: COMPARISON

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER, . - .
s i nColor BOOLEAN Create Ordering For MovieType Equals Only By State;

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

CREATE TYPE StarType AS — :
name CHAR(30), Select Distinct DEREF(movie)
address AddressType,
bestMovie REF (MovieType) SCOPE Movie From Starsin .
); Where star->name = ‘Jim Carry’
— H 1.
CREATE TABLE MovieStar OF StarType (Or star->name = ‘Mel Gibson’;

REF IS starID SYSTEM GENERATED
)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie
);
52

EXAMPLES V: GROUPING & NESTING

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (

name CHAR(30Q),

address AddressType,

bestMovie REF (MovieType) SCOPE Movie
);

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED
)3

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

Qé6: Find stars who participated in less than 10 movies

Select DEREF(star)

From Starsin

Group by DEREF(star)
Having count(movie) < 10;

Create at least an equality ordering on StarType

Q7: Find movie titles in 2000 where ‘Jim Carry’ is not in

Select m

From Movie m
Where m.year = 2000
And m.title Not In (

Select movie->title

From Starsin

Where star->name = ‘Jim Carry’
And movie->year = 2000);

53

QUERYING COLLECTIONS & ARRAYS

To get a relation containing pairs of the form
“title, author-name” for each book and each

author of the book

create type Book as
(title varchar(20),

author-array varchar(20) array [10],
pub-date date,

publisher Publisher, select B title. A
keyword-set setof(varchar(20))) from books as B, unnest (B.author-array) as A

find all books that have the word “database”
as one of their keywords

select title
from books
where ‘database’ in (unnest(keyword-set)) hr ko o rlattn

Get 1st and 2" authors of certain book

select author-array1], author-array|2]
from books
where title = "Database System Concepts’ =

GENERATORS AND MUTATORS

How to insert new new data into tables

Generators
* Like the constructors in OO programming
« Create new objects

Mutators
* Modify the value of an existing object

For each afttribute x in UDT T, the system automatically
CHEEHE ST

« Generator T() that returns an empty object of T

« Mutator x(v) that sets the value of attribute x to value v

55

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED
)3

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

EXAMPLE

1)
2)
3)
4)

5)
6)

7)
8)
9)
10)
11)
12)
13)

CREATE PROCEDURE InsertStar(

)

IN s CHAR(50),
IN ¢ CHAR(20},
IN n CHAR(30)

DECLARE newAddr AddressType;
DECLARE newStar StarType;

BEGIN

END;

SET newAddr = AddressType();

SET newStar = StarType();
newAddr.street(s);

newAddr.city(c);

newStar.name(n);
newStar.address(newAddr);

INSERT INTO MovieStar VALUES(newStar);

CALL InsertStar(’345 Spruce St.’, ’Glendale’, ’Guyneth Paltrow’);

If DBMS allows creating generators with parameters

INSERT INTO MovieStar VALUES(
StarType(’Guyneth Paltrow’,

AddressType(’345 Spruce St.’, ’Glendale’)));

56

CREATING RECORDS OF COMPLEX
TYPES

N create type Book as

Collection and array types (title varchar(20),
author-array varchar(20) array [10],
pub-date date,

publisher Publisher,
keyword-set setof(varchar(20)))

Array construction ; 1
array [‘Silberschatz’” , Korth’ , Sudarshan’]

Set value attributes
set(vi, v2, ..., vn)

To insert the preceding tuple into the relation books
Insert into books values s
(' Compilers” , array[Smith’ , Jones’], null,
Publisher(‘McGraw Hill" ,”New York™),
set(parsing’ , analysis’))

5/

WHAT WE COVERED

- First Approach: Object-Oriented Model
« Concepts from OO programming languages
« ODL: Object Definition Language

 What about querying OO databasesee?
+ OQL: Object Oriented Query Language

- Second Approach: Object-Relational Model
« Conceptual view

« Data Definition Language (Creating types, tables, and
relationships)

* Querying object-relational database (SQL-99)

Make use of the in’re'res’rring features of ObjeC’r—O'rien’red info

database systems = ODBMSs

58

WHEN TO CONSIDER
OODBMS OR ORDBMS

Complex Relationships

* A lot of many-to-many relationships, tree structures or network (graph)
structures.

Complex Data

+ Multi-dimensional arrays, nested structures, or binary data, images,
mulfimedia, efc.

Distributed Databases
* Need for free objects without the rigid table structure.

Repetitive use of Large Working Sets of Objects
« To make use of inheritance and reusability

Expensive Mapping Layer

* Expensive decomposition of objects (hormalization) and re-
composition at query time

5%

KEY BENEFITS OF ODBMS

Persistence & Versioning

« Created objects are maintained across different database runs

(persistent)

- Different evolving copies of the same object can be created over

time (versioning)

PersistentObject Superclass Approach
Superclass encapsulates any class for storage and retrieval

This superclass implements all functionalities of read/write
operations

\'

V

A4

TIME

B odatabaseruns
@ existing objects
— — object creation

60

KEY BENEFITS OF ODBMS (CONT'D)

Sharing in highly distributed environment
» Easier to share and distribute objects than tables

@ objects shared between different processes, users efc.

61

KEY BENEFITS OF ODBMS (CONT'D)

Beiter memory usage and less paging
« Bringing only objects of interest

ODBMS Relational DBMS

available
2mory.

uselul

objects .
unneeded\:'-, @ ® o
objects :
. useful unneeded

clata clata

62

OBJECT-ORIENTED VS. OBJECT-
RELATIONAL

* Object-oriented DBMSs

* Did not achieve much success (until now) in the market
place

* No query support (Indexing, optimization)
« No security layer

- Object-relational DBMSs

« Better support from big vendors

* Tries to make use of all advances in RDBMSs
Indexes, views, triggers, query optimizations, security layer, etc.
Work in progress --- Long way to go

63

MODIFICATIONS TO RDBMS

* Parsing
 Type-checking for methods prefty complex

- Query Rewriting
* New rewriting rules including complex types and collections

- Optimization
* New algebra operators needed for complex types.
* Must know how to integrate them into optimization.

« WHERE clause exprs can be expensive!l
Selection pushdown may be a bad idea.

64

MODIFICATIONS TO RDBMS (CONT'D)

* Execution
* New algebra operators for complex types.
« OID generation & reference handling.
Dynamic linking and overriding.
Support objects bigger than 1 page.
Caching of expensive methods.

- Access Methods
* Indexes on methods, not just columns.
* Indexes over collection hierarchies.
* Need indexes for new WHERE clause exprs (not just <, >, =)

- Data Layout
» Clustering of nested objects.
* Chunking of arrays.

65

COMPARISON

Table 2

A Comparison of Database Management Systems

Criteria

RDBMS

ORDBMS

ODBMS

Defining standard

SQL2 (ANSI X3H2)

SQL3/4 (in process)

ODMG-V2.0

Support for object-oriented
programming

Poor; programmers
spend 25% of coding
time mapping the
program object to the
database

Limited mostly to new
data types

Direct and extensive

Simplicity of use

Table structures easy to
understand; many end-
user tools available

Same as RDBMS, with
some confusing
extensions

OK for programmers;
some SQL access for
end users

Simplicity of development

Provides independence
of data from application,
good for simple

Provides independence
of data from application,
good for simple

Objects are a natural
way to model; can
accommodate a wide
variety of types and

relationships relationships] .
p P relationships
Can handle arbitrary
Limited mostly to new complexity; users can
Extensibility and content None y P Y

data types

write methods and on
any structure

Complex data relationships

Difficult to model

Difficult to model

Can handle arbitrary
complexity; users can
write methods and on
any structure

