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ABSTRACT 
With XQuery becoming the standard language for querying XML, 
and the relational SQL platform being recognized as an important 
platform to store and process XML, the SQL/XML standard is 
integrating XML query capability into the SQL system by 
introducing new SQL functions and constructs such as 
XMLQuery() and XMLTable. This paper discusses the Oracle 
XMLDB XQuery architecture for supporting XQuery in the 
Oracle ORDBMS kernel which has the XQuery processing tightly 
integrated with the SQL/XML engine using native XQuery 
compilation, optimization and execution techniques. 

1. Introduction 
With the introduction of the XML datatype for typing XML data 
in SQL via SQL/XML standard[6][7][8],  Oracle XMLDB 
enables users to store XML natively in object relational DBMS 
via the use of XMLType tables and views. Furthermore, users can 
convert their relational data into XMLType views using 
SQL/XML publishing functions, such as XMLElement(), 
XMLConcat() etc., defined by SQL:2003 [8] standard. There is 
ongoing work in the SQL/XML committee to provide XML 
querying capabilities in the next version of the SQL standard 
using XQuery. A new SQL function called XMLQuery() and a 
from-clause construct - XMLTable have been proposed in this 
regard [9]. XMLQuery() function allows an arbitrary XQuery [1] 
to be embedded directly in SQL to query and construct XML 
data. XMLTable construct, on the other hand, enables the users to 
convert the result of XQuery into a virtual relational table. 
Supporting XMLQuery() and XMLTable construct in SQL 
imposes new challenges on the RDBMS engine. A 
straightforward approach, referred to as the coprocessor 
approach, is to simply embed an off-the-shelf XQuery processor 
and treat the XQuery related functions as a black-box - sending 
the queries over to the embedded processor and getting the 
results. Although this approach is conceptually clean and easy to 
implement, it does not leverage the full potential of RDBMS as a 
query optimization and execution engine and suffers from 
intrinsic performance limitations.  
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In this paper, we propose a native XQuery compilation, 
optimization and execution approach in the RDBMS by 
rewriting XQuery into SQL operators and constructs with XML 
extensions, which are then amenable to optimization by the 
underlying relational optimizer and efficiently executable by the 
underlying relational execution engine. This approach enables us 
to tightly integrate XQuery and SQL/XML support within the 
ORDBMS kernel and delivers performance that is orders of 
magnitude faster than the coprocessor approach. This also enables 
us to utilize standard indexes that are present on the underlying 
data and enable relational performance optimization techniques 
such as parallel query and partitioning on XML queries.  
The rest of the paper is organized as follows. In section 2, we 
illustrate the key concepts of native XQuery compilation 
optimization and execution with examples. In section 3, we 
describe related work and comparisons with our approach. In 
section 4, we describe the XQuery native compilation process. In 
section 5, we look at the native XQuery compilation technique 
and the algebra optimizations. In sections 6 and 7, we draw the 
conclusion with acknowledgements. 

2. Key Concepts – native XQuery 
compilation, optimization and execution 
2.1 Co-processor Approach 
The coprocessor approach logically represents the semantics of 
running XQuery inside the RDBMS. In this approach, the 
evaluation of the XMLQuery() function is done by invoking the 
XQuery processor to execute the XQuery. This approach has 
inherent performance and scalability limitations due to the 
following reasons: 

Storage Optimization: Because the XQuery processor is 
completely opaque to the rest of the RDBMS engine, it may not 
be able to take advantage of the physical storage of the XML 
input data. In many cases, the XML data as input to the XQuery 
processor may have to be constructed by the SQL processor at run 
time even though the underlying storage of the XML data may 
have been shredded into object relational tables or may have been 
defined as an XMLType view over the relational data. 

Intra-Query Optimization: Having a separate processor distinct 
from the SQL engine may prevent the use of standard relational 
optimization technology such as constant folding, view merging, 
subquery optimizations, distributed query processing, parallel 
query, partition pruning and common sub-expression elimination 
within the XQuery functions. These may have to be re-
implemented as part of the XQuery processing separately. 

Inter-Query Optimization: Furthermore, even if the embedded 
XQuery processor is able to optimize the single XQuery passed to 
it, it may not be able to optimize the XQuery in the global context 
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of the original SQL statement which invokes the XMLQuery 
function. A SQL statement can invoke multiple XMLQuery() 
functions and the output of one XMLQuery() can become the 
input of another XMLQuery() in the same SQL statement. This 
occurs naturally in the presence of views in relational system 
where one view may use XMLQuery() to query result from 
another view which in turn uses XMLQuery() to query another 
XMLType tables, views or columns. In the case of supporting 
XMLTable construct, the output of the XMLQuery() computing 
the row XML value is passed as input to the multiple invocations 
of XMLQuery() to compute each column value.  

2.2 Native Compilation 
The optimal strategy for supporting XMLQuery() and XMLTable, 
is to compile the embedded XQuery into SQL constructs and 
operators with XML extensions as needed, so that the entire SQL 
statement that includes the XMLQuery() and XMLTable 
constructs can be optimized as a whole. This approach fits 
naturally inside an RDBMS environment.  

As SQL is a compiled language, it makes sense to do the static 
type analysis of the XQuery for each XMLQuery() and 
XMLTable invocation during SQL compilation . As a result, 
XQueries can then be compiled into a set of subquery blocks and 
operators that can be algebraically optimized in the context of the 
global SQL statement. This strategy works gracefully within the 
model of view expansion and merge techniques in relational 
systems as it enables the pushdown of predicates and optimizes 
the result by eliminating unnecessary intermediate 
materializations of XML values.  

2.3 Example 
Consider the following example: Table 1 shows an XML view 
purchaseOrderXML which is constructed using SQL/XML 
publishing functions over the relational tables purchaseorder and 
lineitems constituting the classical master detail relationship.   
Table 2 shows an example of a SQL statement with XQuery 
embedded in the XMLQuery() function to find the 
ShippingAddress of  all the purchaseOrder XML instances that 
have purchased the ‘CPU’ item.  
Table 3 shows an example to convert the XML document 
instances into relational tables via XMLTable construct. 

CREATE VIEW purchaseOrderXml  AS 
SELECT XMLElement("PurchaseOrder",  
                       XMLAttributes(pono AS "pono"), 

       XMLElement("ShipAddr", 
    XMLForest(street AS  "Street", city AS  "City", state AS "State")), 
      ( SELECT XMLAgg( 
            XMLElement ("LineItem",XMLAttributes(lino as "lineno"),  
                       XMLElement("liname", liname))) 
       FROM  lineitems l WHERE  l.pono = p.pono) 
    ) AS  po 

FROM purchaseorder p 
Table 1 - purchaseOrderXML view 

SELECT XMLQuery( 
  'for $i in ./PurchaseOrder  
  where $i/LineItem/liname = "CPU" 
  return $i/ShipAddr' PASSING  BY VALUE p.po  

      RETURNING CONTENT) 
FROM  purchaseOrderXml p 

Table 2 – XMLQuery() example 

SELECT  xt.lineno, xt.liname 
FROM  purchaseOrderXml p, 
  XMLTABLE(  'for $i in ./PurchaseOrder/LineItem return $i' 

PASSING p.po 
        COLUMNS 

      lineno NUMBER PATH '/LineItem/@lineno', 
      liname VARCHAR(20) PATH '/LineItem/liname' 

  ) xt; 
Table 3 – XMLTable() example 

SELECT 

    ( SELECT XMLElement("ShipAddr", 
  XMLFOREST(street AS "Street", city AS "City", state AS "State")) 

     FROM  dual 
     WHERE EXISTS ( 
         SELECT NULL  
         FROM lineitems l  
        WHERE l.liname='CPU' AND l.pono = p.pono) 
  ) 
FROM  purchaseorder p 

Table 4 - Rewritten Query for XMLQuery in table 1 

SELECT l.lino AS "LINENO", l.liname AS "LINAME" 
FROM purchaseorder p, lineitems l 
WHERE l.pono = p.pono 

Table 5 - Rewritten Query for XMLTable in table 2 
The SQL equivalent for the natively compiled XQueries in tables 
2 and 3 are shown in tables 4 and 5 respectively. This example 
illustrates the XQuery native compilation process to convert the 
original SQL statement into a semantically equivalent relational 
query using SQL/XML publishing functions to construct the 
result XML. The equivalent query can then be optimized by a 
classical relational optimizer and executed natively by tuple 
oriented relational execution engine. This strategy enables us to 
leverage the mature object relational technology and SQL/XML 
infrastructure inside Oracle XMLDB to support native XQuery 
execution. 

3. Related Work Survey and Comparison 
 

SQL Translation versus Native Compilation 
There are many published papers on XQuery implementation 
[10][11][12][13][14][18][22]. Most of them build an XQuery 
engine in the middleware interacting with relational DBMS in the 
backend [11][13][14][18][22]. In cases where the XQuery engine 
needs to communicate with the SQL backend, the XQuery is 
typically translated into a set of classical relational SQL 
statements that are then sent to the backend RDBMS for 
execution. A translation to SQL essentially creates a SQL string 
and then sends it to the server for compilation as a regular SQL 
statement. Our native compilation approach on the other hand 
compiles XQueries into the same internal data structures as SQL 
such as sub query blocks and SQL operators with extensions as 
needed. The advantage of native compilation is that SQL, 
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SQL/XML, XQuery merely become language syntaxes, all of 
which are converted into the same underlying structures for 
compilation, optimization and execution. The Oracle XMLDB has 
the XQuery framework built directly in the ORDBMS kernel and 
delivers SQL/XQuery duality and interoperability using the 
SQL/XML infrastructure.  

Our approach is based on the following key principles: 

1. XQuery Data Model based XMLType: We leverage the 
fact that SQL/XML has defined a new XML type as a first 
class datatype in the SQL type system. The Oracle XMLDB 
provides the XML type infrastructure which can natively 
support the XQuery data model [2] inside the relational 
engine.  

2. XQuery SQL Operators: From XQuery data model based 
XML type, we can develop new SQL operators that can 
consume and generate XQuery data model instances and use 
them for the implementation of XQuery operations that are 
foreign to the SQL system.  For example, we create internal 
SQL operators that can do XQuery Sequence type matching 
expressions. This is different from a direct translation of 
XQueries to SQL which may not always be feasible without 
extending the SQL language to add new primitives.  For 
example, paper [18] observed that relational engines need to 
add primitives to support construction of XML document 
fragments.  

3. Efficient XML construction: We leverage the SQL/XML 
publishing functions as the basis for XQuery constructors by 
compiling XQuery constructors into the same operators 
underlying the SQL/XML publishing functions. This 
approach allows us to leverage optimizations implemented 
for efficient execution of SQL/XML publishing functions 
such as top-down stream evaluation [17]. Again, this is 
different from most middleware solutions which build the 
XML tagging layer in the middleware itself.  

4. Enhancing relational query transformations: Although 
the SQL constructs that an XQuery is compiled to may have 
many extensions that might appear to be exotic to pure 
relational users, these are indeed natural extensions from the 
perspective of SQL/XML users. The Oracle SQL extension 
functions, such as extract(), existsNode(), extractValue() and 
XMLSequence() table function and their rewrite optimization 
[16] had provided a foundation to enable the optimization of 
the SQL/XML from XQuery.  Native support for XQuery in 
Oracle XMLDB has been implemented by extending the 
SQL query transformation and rewrite modules, such as view 
merging, subquery unfolding, and operator tree algebraic 
optimizations to handle the complete optimization of the 
SQL constructs and operators underlying XQuery.  This 
yields XQuery performance that is orders of magnitude 
faster in the database server as compared to execution in 
middleware. 

5. Static type checking for SQL/XML expression: We 
further leverage the static type information to generate 
appropriate operators for optimal performance.  Since the 
XQuery static type analysis is done at the time of SQL 
compilation, the types of XQuery expressions can be derived 
based on the SQL types of the underlying constructs.  

Furthermore, this approach indeed opens an opportunity for 
middleware XQuery engines to push down XQuery into the 
backend RDBMS engine via the XMLQuery() function or 
XMLTable construct when needed. This is particularly beneficial 
for XQuery middleware performance with XML content stored in 
Oracle XMLDB in the form of XML type tables and views, or in 
the XML file repository. 

4. XQuery Compilation 
4.1 Architectural Overview 
The processing of XMLQuery() and XMLTable() functions 
occurs during SQL query compilation time. After SQL parsing, 
we syntactically transform XMLTable into an XMLQuery() 
function within the built-in XQSeq() table function. Then after the 
SQL semantic analysis, type checking and view expansion 
process, we start the processing of each XMLQuery() function in 
the SQL statement. The XQuery native compilation driver parses 
the static XQuery string, does static analysis and type checking of 
the XQuery and compiles it into native SQL data structures with 
XML extension operators. In cases where the XQuery expression 
can not be compiled into SQL and SQL/XML constructs, we 
leave the XMLQuery() function intact. This is thus a hybrid 
approach. After this phase, the generated SQL structure goes 
through various query transformations, such as operator tree 
optimizations, view merging, subquery unnesting, etc and then 
goes to the optimizer which generates an optimal plan for 
execution.  
Figure 1 shows the hybrid approach where we use the native 
XQuery optimization and execution as a primary strategy and use 
the co-processor approach for cases where we are unable to 
perform the native compilation. This allows us to deliver the full 
functionality of XQuery in the server while continuously 
enhancing the ORDBMS kernel to eventually process all XQuery 
constructs natively. 

Figure 2 shows the XQuery compilation engine. 

4.2 XQuery Parser and Semantic Analyzer 
The parsing modules take in the XQuery text and convert it into 
an XQueryX [4] representation. This is different from a 
traditional parser which constructs an abstract syntax tree directly. 
The intermediate XQueryX form helps us to isolate the parser 
from the rest of the XQuery expression tree structure changes and 
allows us to effectively support XQueryX as an alternative 
language to XQuery. After the parsing, a standard XML parser is 
called to construct a DOM tree from the XQueryX representation, 
and the XQuery compiler subsequently works on the DOM tree to 
construct the XQuery expression tree.  
The semantic analyzer performs the semantic analysis of the 
XQuery. It maintains various lists of namespace declarations, 
variable declarations, schema imports and function definitions 
with variable declaration associate with a lexical scope. The list is 
used to resolve variable and QName references, and to resolve 
XQuery Functions & Operators calls. 
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Figure 1 – XQuery hybrid evaluation strategy 
 

 
Figure 2 – XQuery Compilation Engine 

4.3 XQuery Static Type Checking 
4.3.1 Goal of XQuery static type checking 
The XQuery Formal Semantics specification [3] has defined the 
rules of XQuery static type checking. XQuery static type 
checking is very useful for XQuery optimization. We take an 
optimistic type checking approach instead of a pessimistic one.   
We leverage the information gathered during the static type 
checking phase to guide the subsequent XQuery native 
compilation because we view static type checking as an important 
opportunity for XQuery optimization. The following is a list of 

sample optimizations we do based on static type checking and 
analysis: 

1. We annotate each XQuery expression tree with static type 
information. 

2. We expand wildcard XPath step and // XPath step based on 
the static type information. This is conceptually the same as 
that of Compile-Time Path Expansion idea in Lore [20]. 

3. We determine the cardinality of XML element or attribute 
access and convert general comparison expressions into 
value comparison expressions. 

4. Since we do optimistic static type checking, we annotate the 
XQuery expression tree that fails on conservative static type 
checking so that the compilation can generate operators 
which do run time occurrence checks and type verification 
for such XQuery expressions. 

5. We prune non-feasible branches of XQuery conditional 
expression, the where clause of FLWOR expression, type-
switch clause of sequence type expressions, etc based on the 
static type information. 

6. We prune unnecessary validate expressions if the input XML 
is proven to be valid based on the static type information.  

4.3.2 Typing SQL expression with XQuery static 
type information  
We use a tree representation to represent the static type of an 
XQuery expression and we extend this mechanism further to 
associate a type tree with each SQL expression returning an 
XML type value. We have developed a type manager that 
provides the type tree construction, manipulation and type 
computation operations on the type tree so that the rest of the 
system only needs to interact with the type manager. This is 
crucial for the XQuery type checking module to do better static 
type analysis for SQL functions which query XML, such as the 
XMLQuery() function. 
The XQuery context item and variables referenced in the 
XMLQuery() function are passed in as an arbitrary SQL 
expression. Our system can build an XMLType tree for an 
arbitrary SQL expression tree and does XQuery static type 
checking based on the XML type tree. 

4.4 Native support of XQuery Data Model 
We have enhanced the current Oracle XML type image [17] to 
accommodate the XQuery data model so that we can natively 
support an XQuery data model based XML type value inside the 
ORDBMS kernel. Our XML type image is flexible enough to 
support atomic values, node references, etc as required by the 
XQuery data model. This is crucial as each XQuery expression 
returns an XQuery data model instance, which is modeled at the 
SQL/XML type level as an XML(Sequence) type. All the internal 
SQL operators created by the XQuery expression compilation 
process actually return an XML(Sequence) type. 

5. XQuery Rewrite to SQL/XML 
5.1 New SQL Operators and Rewrite Logic 
Each XQuery expression is converted into a SQL operator or 
operator tree or a sub-query block. Due to space limitations, we 

Yes No 

Transform XMLTable to XMLQuery 

SQL query containing 
XMLQuery/XMLTable 

Native Compilation of XMLQuery 

SQL query containing 
XMLQuery 

View merging, sub query 
optimization 

SQL structures with 
XML operators 

SQL structures 
containing XMLQuery 

Co-processor evaluates 
XMLQuery expressions 

XQuery evaluated 
natively 

Non-native 
expressions 

Relational Execution tree 

Relational expression tree 

Compiled Tree 

XQueryX form 

XQueryX 

XQuery Parser XQuery 

XQuery Semantic Analysis

Typed expression tree 

XQuery Static Typing 

Compilation to SQL/XML 

Relational Optimizer 

Relational Execution 
Co-processor 
Execution 
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do not list all the internal SQL operators to support all XQuery 
constructs.  

Rewrite of FLWOR expression – we construct a SQL select 
scalar subquery as the rewrite result. The for-clause of the 
FLWOR is converted into from-clause of the SQL with table 
function. The where-clause is rewritten into the SQL where-
clause. The order-by clause is rewritten to the SQL order-by 
clause. The return clause is rewritten into the SQL select list.  The 
entire select list is wrapped with the XQAgg() aggregate function 
so that the resulting SQL becomes a scalar subquery. For nested 
FLWOR expressions, the XQAgg() based scalar subquery is 
expanded with XQSequence() in table function used in the outer 
from clause which can then be view merged and algebraically 
collasped during the collection view merge process. 
LET clause is handled by rewriting the XQuery expression for the 
variable definition into a SQL expression and binding the XQuery 
variable with the rewritten SQL expression. This is then used for 
the processing of XQuery variable references by substituting 
each variable reference with the SQL expression binding for that 
variable. 

Rewrite of Constructors – we construct a SQL operator tree 
consisting of SQL/XML publishing functions, such as 
XMLElement(), XMLAttributes(), XMLPI(), XMLComment(), as 
the result of the rewrite. We internally enhance these publishing 
functions to handle tag names whose value is only available at run 
time as this is required for the rewrite of the computed 
constructors. 

Rewrite of Path Expression – we construct XQExtract() SQL 
operator which evaluates the XPath on XML inputs and returns 
the result as XML(Sequence).  Then we do further XPath rewrite 
on the XQExtract() operator into SQL/XML and object relational 
primitive operators leveraging the XPath rewrite framework that 
were built in [16]. 

Rewrite of literals – we rewrite each literal into a SQL literal and 
then wrap the result with an operator that converts the scalar value 
into an XML(Sequence) of atomic value. 

Rewrite of Conditional Expression – we construct a SQL CASE 
operator. 

Rewrite of Quantified Expression – we construct a SQL 
EXISTS/NOT EXISTS subquery.  

Rewrite of Aggregate Expression – we construct the 
corresponding SQL aggregate functions, such as min(), max(), 
count() etc. 

Rewrite of XQuery Sequence Construction – we construct a 
new XQConcat() SQL operator.  

Rewrite of Arithmetic/Logical/Comparsion  – we construct the 
corresponding SQL arithmetic, logical and comparison operators 
as the rewrite result. For general comparison, we rewrite them 
into EXISTS subquery as illustrated in [16]. Since the XQuery 
allows overloading of basic arithmetic and comparison functions 
with multiple built-in types, we need to construct polymorphic 
SQL arithmetic and comparison operators if the input type is 
determined to be a choice of different built-in types during the 
static type checking phase. 

Rewrite of Range Expression – we construct the XQRange() 
SQL operator.  

Rewrite of Cast and constructor function – we use low level 
SQL casting functions and operators. 

Rewrite of Sequence Type Expression – we construct the 
XQTypMatch() operator with SQL CASE operator. 

Validate Expression – we construct the internal XMLValidate() 
SQL operator. 

XQuery functions/operators - we map them into existing SQL 
functions/operators. For certain XQuery functions/operators that 
do not have equivalent SQL functions/operators, new SQL 
operators are created in the RDBMS engine to implement the 
semantics of the corresponding XQuery operators. 
For fn:doc() and fn:collection() function, we compile them into 
the underlying SQL query block that selects from the Oracle 
XMLDB repository tables. We also introduce Oracle extension 
function ora:view() which enables users to directly query 
XMLType tables and views or to convert a relational view into 
XML via SQL/XML publishing function automatically. The 
ora:view() functions are converted into an  SQL query block that 
defines the underlying XMLtype table or view. 

User Defined XQuery functions – we compile them into Oracle 
PL/SQL functions. 

5.2 Algebra Optimization 
The syntactic transformation of XMLTable construct and the 
subsequent compilation of the XMLQuery() function into a SQL 
native form often results in a complicated SQL construct as each 
XMLQuery() essentially becomes an expansion of a set of nested 
subquery blocks with a large set of operator trees. We then 
leverage the operator tree optimization, subquery un-nesting and 
view merging mechanisms [16] to simplify the resulting SQL 
structure. We have enhanced our current algebra rules to handle 
the new SQL functions and operators created during XQuery 
compilation. With algebra cancellation rules in mind, we often 
develop a SQL operator along with its inverse operator. New SQL 
operators are distributed to the branches of SQL CASE 
expressions and are usually pushed into the XQAgg() based scalar 
subquery blocks. This often leads to the subsequent application of 
cancellation rules for the SQL operator. The collapsing of 
XQAgg() with XQSeq() table function is carried out during the 
collection view merging step [16]. Due to space limitations, we do 
not list all the algebra rules here. 
Our experience with this algebra optimization system has been 
positive. It is very easy to add new algebra rules for new SQL 
operators and enhance algebra rules for existing SQL operators. 
We have developed internal debugging tools for us to trace 
rewritten SQL query at various stages of algebra optimizations so 
that we know what new algebra rules to develop based on the 
final SQL statement. Since each algebra rule application always 
yields a valid SQL statement whose performance is not worse 
than the previous one, we always end up with a better performing 
query. Many queries end up with a final optimal form which is 
amendable to relational optimizations. Our experience with the 
algebra system is very close to the Query rewrite optimization in 
Starburst [21]. 
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7. Conclusions 
This paper illustrates native XQuery support in Oracle XMLDB 
by compiling XQuery into SQL constructs with XML extensions 
that can be optimized and executed efficiently by the underlying 
ORDBMS engine. This approach allows us to leverage the solid 
industrial strength engine to process XQuery natively and results 
in a tremendous performance improvement over the approach of 
embedding an off-the-shelf XQuery engine as a coprocessor. 

As both XQuery and SQL/XML become the final 
recommendation and standard, there is much work remaining to 
develop new SQL operators, algebraic optimizations and 
execution methods so that all of the XQuery constructs can be 
natively compiled and the coprocessor approach can be 
completely eliminated. The merit of our native approach of 
integrating XQuery infrastructure on top of SQL/XML 
infrastructure enables Oracle XML DB to support both the SQL 
and XQuery syntaxes while utilizing the same underlying 
optimizer and execution engine to make it a truly industrial 
strength XML processing platform. 
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