
Native XQuery Processing in Oracle XMLDB
Zhen Hua Liu

zhen.liu@oracle.com

Muralidhar Krishnaprasad

muralidhar.krishnaprasad@oracle.com

Vikas Arora

vikas.arora@oracle.com

ABSTRACT
With XQuery becoming the standard language for querying XML,
and the relational SQL platform being recognized as an important
platform to store and process XML, the SQL/XML standard is
integrating XML query capability into the SQL system by
introducing new SQL functions and constructs such as
XMLQuery() and XMLTable. This paper discusses the Oracle
XMLDB XQuery architecture for supporting XQuery in the
Oracle ORDBMS kernel which has the XQuery processing tightly
integrated with the SQL/XML engine using native XQuery
compilation, optimization and execution techniques.

1. Introduction
With the introduction of the XML datatype for typing XML data
in SQL via SQL/XML standard[6][7][8], Oracle XMLDB
enables users to store XML natively in object relational DBMS
via the use of XMLType tables and views. Furthermore, users can
convert their relational data into XMLType views using
SQL/XML publishing functions, such as XMLElement(),
XMLConcat() etc., defined by SQL:2003 [8] standard. There is
ongoing work in the SQL/XML committee to provide XML
querying capabilities in the next version of the SQL standard
using XQuery. A new SQL function called XMLQuery() and a
from-clause construct - XMLTable have been proposed in this
regard [9]. XMLQuery() function allows an arbitrary XQuery [1]
to be embedded directly in SQL to query and construct XML
data. XMLTable construct, on the other hand, enables the users to
convert the result of XQuery into a virtual relational table.
Supporting XMLQuery() and XMLTable construct in SQL
imposes new challenges on the RDBMS engine. A
straightforward approach, referred to as the coprocessor
approach, is to simply embed an off-the-shelf XQuery processor
and treat the XQuery related functions as a black-box - sending
the queries over to the embedded processor and getting the
results. Although this approach is conceptually clean and easy to
implement, it does not leverage the full potential of RDBMS as a
query optimization and execution engine and suffers from
intrinsic performance limitations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGMOD2005, June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06…$5.00.

In this paper, we propose a native XQuery compilation,
optimization and execution approach in the RDBMS by
rewriting XQuery into SQL operators and constructs with XML
extensions, which are then amenable to optimization by the
underlying relational optimizer and efficiently executable by the
underlying relational execution engine. This approach enables us
to tightly integrate XQuery and SQL/XML support within the
ORDBMS kernel and delivers performance that is orders of
magnitude faster than the coprocessor approach. This also enables
us to utilize standard indexes that are present on the underlying
data and enable relational performance optimization techniques
such as parallel query and partitioning on XML queries.
The rest of the paper is organized as follows. In section 2, we
illustrate the key concepts of native XQuery compilation
optimization and execution with examples. In section 3, we
describe related work and comparisons with our approach. In
section 4, we describe the XQuery native compilation process. In
section 5, we look at the native XQuery compilation technique
and the algebra optimizations. In sections 6 and 7, we draw the
conclusion with acknowledgements.

2. Key Concepts – native XQuery
compilation, optimization and execution
2.1 Co-processor Approach
The coprocessor approach logically represents the semantics of
running XQuery inside the RDBMS. In this approach, the
evaluation of the XMLQuery() function is done by invoking the
XQuery processor to execute the XQuery. This approach has
inherent performance and scalability limitations due to the
following reasons:

Storage Optimization: Because the XQuery processor is
completely opaque to the rest of the RDBMS engine, it may not
be able to take advantage of the physical storage of the XML
input data. In many cases, the XML data as input to the XQuery
processor may have to be constructed by the SQL processor at run
time even though the underlying storage of the XML data may
have been shredded into object relational tables or may have been
defined as an XMLType view over the relational data.

Intra-Query Optimization: Having a separate processor distinct
from the SQL engine may prevent the use of standard relational
optimization technology such as constant folding, view merging,
subquery optimizations, distributed query processing, parallel
query, partition pruning and common sub-expression elimination
within the XQuery functions. These may have to be re-
implemented as part of the XQuery processing separately.

Inter-Query Optimization: Furthermore, even if the embedded
XQuery processor is able to optimize the single XQuery passed to
it, it may not be able to optimize the XQuery in the global context

828

of the original SQL statement which invokes the XMLQuery
function. A SQL statement can invoke multiple XMLQuery()
functions and the output of one XMLQuery() can become the
input of another XMLQuery() in the same SQL statement. This
occurs naturally in the presence of views in relational system
where one view may use XMLQuery() to query result from
another view which in turn uses XMLQuery() to query another
XMLType tables, views or columns. In the case of supporting
XMLTable construct, the output of the XMLQuery() computing
the row XML value is passed as input to the multiple invocations
of XMLQuery() to compute each column value.

2.2 Native Compilation
The optimal strategy for supporting XMLQuery() and XMLTable,
is to compile the embedded XQuery into SQL constructs and
operators with XML extensions as needed, so that the entire SQL
statement that includes the XMLQuery() and XMLTable
constructs can be optimized as a whole. This approach fits
naturally inside an RDBMS environment.

As SQL is a compiled language, it makes sense to do the static
type analysis of the XQuery for each XMLQuery() and
XMLTable invocation during SQL compilation . As a result,
XQueries can then be compiled into a set of subquery blocks and
operators that can be algebraically optimized in the context of the
global SQL statement. This strategy works gracefully within the
model of view expansion and merge techniques in relational
systems as it enables the pushdown of predicates and optimizes
the result by eliminating unnecessary intermediate
materializations of XML values.

2.3 Example
Consider the following example: Table 1 shows an XML view
purchaseOrderXML which is constructed using SQL/XML
publishing functions over the relational tables purchaseorder and
lineitems constituting the classical master detail relationship.
Table 2 shows an example of a SQL statement with XQuery
embedded in the XMLQuery() function to find the
ShippingAddress of all the purchaseOrder XML instances that
have purchased the ‘CPU’ item.
Table 3 shows an example to convert the XML document
instances into relational tables via XMLTable construct.

CREATE VIEW purchaseOrderXml AS
SELECT XMLElement("PurchaseOrder",
 XMLAttributes(pono AS "pono"),

 XMLElement("ShipAddr",
 XMLForest(street AS "Street", city AS "City", state AS "State")),
 (SELECT XMLAgg(
 XMLElement ("LineItem",XMLAttributes(lino as "lineno"),
 XMLElement("liname", liname)))
 FROM lineitems l WHERE l.pono = p.pono)
) AS po

FROM purchaseorder p
Table 1 - purchaseOrderXML view

SELECT XMLQuery(
 'for $i in ./PurchaseOrder
 where $i/LineItem/liname = "CPU"
 return $i/ShipAddr' PASSING BY VALUE p.po

 RETURNING CONTENT)
FROM purchaseOrderXml p

Table 2 – XMLQuery() example

SELECT xt.lineno, xt.liname
FROM purchaseOrderXml p,
 XMLTABLE('for $i in ./PurchaseOrder/LineItem return $i'

PASSING p.po
 COLUMNS

 lineno NUMBER PATH '/LineItem/@lineno',
 liname VARCHAR(20) PATH '/LineItem/liname'

) xt;
Table 3 – XMLTable() example

SELECT

 (SELECT XMLElement("ShipAddr",
 XMLFOREST(street AS "Street", city AS "City", state AS "State"))

 FROM dual
 WHERE EXISTS (
 SELECT NULL
 FROM lineitems l
 WHERE l.liname='CPU' AND l.pono = p.pono)
)
FROM purchaseorder p

Table 4 - Rewritten Query for XMLQuery in table 1

SELECT l.lino AS "LINENO", l.liname AS "LINAME"
FROM purchaseorder p, lineitems l
WHERE l.pono = p.pono

Table 5 - Rewritten Query for XMLTable in table 2
The SQL equivalent for the natively compiled XQueries in tables
2 and 3 are shown in tables 4 and 5 respectively. This example
illustrates the XQuery native compilation process to convert the
original SQL statement into a semantically equivalent relational
query using SQL/XML publishing functions to construct the
result XML. The equivalent query can then be optimized by a
classical relational optimizer and executed natively by tuple
oriented relational execution engine. This strategy enables us to
leverage the mature object relational technology and SQL/XML
infrastructure inside Oracle XMLDB to support native XQuery
execution.

3. Related Work Survey and Comparison

SQL Translation versus Native Compilation
There are many published papers on XQuery implementation
[10][11][12][13][14][18][22]. Most of them build an XQuery
engine in the middleware interacting with relational DBMS in the
backend [11][13][14][18][22]. In cases where the XQuery engine
needs to communicate with the SQL backend, the XQuery is
typically translated into a set of classical relational SQL
statements that are then sent to the backend RDBMS for
execution. A translation to SQL essentially creates a SQL string
and then sends it to the server for compilation as a regular SQL
statement. Our native compilation approach on the other hand
compiles XQueries into the same internal data structures as SQL
such as sub query blocks and SQL operators with extensions as
needed. The advantage of native compilation is that SQL,

829

SQL/XML, XQuery merely become language syntaxes, all of
which are converted into the same underlying structures for
compilation, optimization and execution. The Oracle XMLDB has
the XQuery framework built directly in the ORDBMS kernel and
delivers SQL/XQuery duality and interoperability using the
SQL/XML infrastructure.

Our approach is based on the following key principles:

1. XQuery Data Model based XMLType: We leverage the
fact that SQL/XML has defined a new XML type as a first
class datatype in the SQL type system. The Oracle XMLDB
provides the XML type infrastructure which can natively
support the XQuery data model [2] inside the relational
engine.

2. XQuery SQL Operators: From XQuery data model based
XML type, we can develop new SQL operators that can
consume and generate XQuery data model instances and use
them for the implementation of XQuery operations that are
foreign to the SQL system. For example, we create internal
SQL operators that can do XQuery Sequence type matching
expressions. This is different from a direct translation of
XQueries to SQL which may not always be feasible without
extending the SQL language to add new primitives. For
example, paper [18] observed that relational engines need to
add primitives to support construction of XML document
fragments.

3. Efficient XML construction: We leverage the SQL/XML
publishing functions as the basis for XQuery constructors by
compiling XQuery constructors into the same operators
underlying the SQL/XML publishing functions. This
approach allows us to leverage optimizations implemented
for efficient execution of SQL/XML publishing functions
such as top-down stream evaluation [17]. Again, this is
different from most middleware solutions which build the
XML tagging layer in the middleware itself.

4. Enhancing relational query transformations: Although
the SQL constructs that an XQuery is compiled to may have
many extensions that might appear to be exotic to pure
relational users, these are indeed natural extensions from the
perspective of SQL/XML users. The Oracle SQL extension
functions, such as extract(), existsNode(), extractValue() and
XMLSequence() table function and their rewrite optimization
[16] had provided a foundation to enable the optimization of
the SQL/XML from XQuery. Native support for XQuery in
Oracle XMLDB has been implemented by extending the
SQL query transformation and rewrite modules, such as view
merging, subquery unfolding, and operator tree algebraic
optimizations to handle the complete optimization of the
SQL constructs and operators underlying XQuery. This
yields XQuery performance that is orders of magnitude
faster in the database server as compared to execution in
middleware.

5. Static type checking for SQL/XML expression: We
further leverage the static type information to generate
appropriate operators for optimal performance. Since the
XQuery static type analysis is done at the time of SQL
compilation, the types of XQuery expressions can be derived
based on the SQL types of the underlying constructs.

Furthermore, this approach indeed opens an opportunity for
middleware XQuery engines to push down XQuery into the
backend RDBMS engine via the XMLQuery() function or
XMLTable construct when needed. This is particularly beneficial
for XQuery middleware performance with XML content stored in
Oracle XMLDB in the form of XML type tables and views, or in
the XML file repository.

4. XQuery Compilation
4.1 Architectural Overview
The processing of XMLQuery() and XMLTable() functions
occurs during SQL query compilation time. After SQL parsing,
we syntactically transform XMLTable into an XMLQuery()
function within the built-in XQSeq() table function. Then after the
SQL semantic analysis, type checking and view expansion
process, we start the processing of each XMLQuery() function in
the SQL statement. The XQuery native compilation driver parses
the static XQuery string, does static analysis and type checking of
the XQuery and compiles it into native SQL data structures with
XML extension operators. In cases where the XQuery expression
can not be compiled into SQL and SQL/XML constructs, we
leave the XMLQuery() function intact. This is thus a hybrid
approach. After this phase, the generated SQL structure goes
through various query transformations, such as operator tree
optimizations, view merging, subquery unnesting, etc and then
goes to the optimizer which generates an optimal plan for
execution.
Figure 1 shows the hybrid approach where we use the native
XQuery optimization and execution as a primary strategy and use
the co-processor approach for cases where we are unable to
perform the native compilation. This allows us to deliver the full
functionality of XQuery in the server while continuously
enhancing the ORDBMS kernel to eventually process all XQuery
constructs natively.

Figure 2 shows the XQuery compilation engine.

4.2 XQuery Parser and Semantic Analyzer
The parsing modules take in the XQuery text and convert it into
an XQueryX [4] representation. This is different from a
traditional parser which constructs an abstract syntax tree directly.
The intermediate XQueryX form helps us to isolate the parser
from the rest of the XQuery expression tree structure changes and
allows us to effectively support XQueryX as an alternative
language to XQuery. After the parsing, a standard XML parser is
called to construct a DOM tree from the XQueryX representation,
and the XQuery compiler subsequently works on the DOM tree to
construct the XQuery expression tree.
The semantic analyzer performs the semantic analysis of the
XQuery. It maintains various lists of namespace declarations,
variable declarations, schema imports and function definitions
with variable declaration associate with a lexical scope. The list is
used to resolve variable and QName references, and to resolve
XQuery Functions & Operators calls.

830

Figure 1 – XQuery hybrid evaluation strategy

Figure 2 – XQuery Compilation Engine

4.3 XQuery Static Type Checking
4.3.1 Goal of XQuery static type checking
The XQuery Formal Semantics specification [3] has defined the
rules of XQuery static type checking. XQuery static type
checking is very useful for XQuery optimization. We take an
optimistic type checking approach instead of a pessimistic one.
We leverage the information gathered during the static type
checking phase to guide the subsequent XQuery native
compilation because we view static type checking as an important
opportunity for XQuery optimization. The following is a list of

sample optimizations we do based on static type checking and
analysis:

1. We annotate each XQuery expression tree with static type
information.

2. We expand wildcard XPath step and // XPath step based on
the static type information. This is conceptually the same as
that of Compile-Time Path Expansion idea in Lore [20].

3. We determine the cardinality of XML element or attribute
access and convert general comparison expressions into
value comparison expressions.

4. Since we do optimistic static type checking, we annotate the
XQuery expression tree that fails on conservative static type
checking so that the compilation can generate operators
which do run time occurrence checks and type verification
for such XQuery expressions.

5. We prune non-feasible branches of XQuery conditional
expression, the where clause of FLWOR expression, type-
switch clause of sequence type expressions, etc based on the
static type information.

6. We prune unnecessary validate expressions if the input XML
is proven to be valid based on the static type information.

4.3.2 Typing SQL expression with XQuery static
type information
We use a tree representation to represent the static type of an
XQuery expression and we extend this mechanism further to
associate a type tree with each SQL expression returning an
XML type value. We have developed a type manager that
provides the type tree construction, manipulation and type
computation operations on the type tree so that the rest of the
system only needs to interact with the type manager. This is
crucial for the XQuery type checking module to do better static
type analysis for SQL functions which query XML, such as the
XMLQuery() function.
The XQuery context item and variables referenced in the
XMLQuery() function are passed in as an arbitrary SQL
expression. Our system can build an XMLType tree for an
arbitrary SQL expression tree and does XQuery static type
checking based on the XML type tree.

4.4 Native support of XQuery Data Model
We have enhanced the current Oracle XML type image [17] to
accommodate the XQuery data model so that we can natively
support an XQuery data model based XML type value inside the
ORDBMS kernel. Our XML type image is flexible enough to
support atomic values, node references, etc as required by the
XQuery data model. This is crucial as each XQuery expression
returns an XQuery data model instance, which is modeled at the
SQL/XML type level as an XML(Sequence) type. All the internal
SQL operators created by the XQuery expression compilation
process actually return an XML(Sequence) type.

5. XQuery Rewrite to SQL/XML
5.1 New SQL Operators and Rewrite Logic
Each XQuery expression is converted into a SQL operator or
operator tree or a sub-query block. Due to space limitations, we

Yes No

Transform XMLTable to XMLQuery

SQL query containing
XMLQuery/XMLTable

Native Compilation of XMLQuery

SQL query containing
XMLQuery

View merging, sub query
optimization

SQL structures with
XML operators

SQL structures
containing XMLQuery

Co-processor evaluates
XMLQuery expressions

XQuery evaluated
natively

Non-native
expressions

Relational Execution tree

Relational expression tree

Compiled Tree

XQueryX form

XQueryX

XQuery Parser XQuery

XQuery Semantic Analysis

Typed expression tree

XQuery Static Typing

Compilation to SQL/XML

Relational Optimizer

Relational Execution
Co-processor
Execution

831

do not list all the internal SQL operators to support all XQuery
constructs.

Rewrite of FLWOR expression – we construct a SQL select
scalar subquery as the rewrite result. The for-clause of the
FLWOR is converted into from-clause of the SQL with table
function. The where-clause is rewritten into the SQL where-
clause. The order-by clause is rewritten to the SQL order-by
clause. The return clause is rewritten into the SQL select list. The
entire select list is wrapped with the XQAgg() aggregate function
so that the resulting SQL becomes a scalar subquery. For nested
FLWOR expressions, the XQAgg() based scalar subquery is
expanded with XQSequence() in table function used in the outer
from clause which can then be view merged and algebraically
collasped during the collection view merge process.
LET clause is handled by rewriting the XQuery expression for the
variable definition into a SQL expression and binding the XQuery
variable with the rewritten SQL expression. This is then used for
the processing of XQuery variable references by substituting
each variable reference with the SQL expression binding for that
variable.

Rewrite of Constructors – we construct a SQL operator tree
consisting of SQL/XML publishing functions, such as
XMLElement(), XMLAttributes(), XMLPI(), XMLComment(), as
the result of the rewrite. We internally enhance these publishing
functions to handle tag names whose value is only available at run
time as this is required for the rewrite of the computed
constructors.

Rewrite of Path Expression – we construct XQExtract() SQL
operator which evaluates the XPath on XML inputs and returns
the result as XML(Sequence). Then we do further XPath rewrite
on the XQExtract() operator into SQL/XML and object relational
primitive operators leveraging the XPath rewrite framework that
were built in [16].

Rewrite of literals – we rewrite each literal into a SQL literal and
then wrap the result with an operator that converts the scalar value
into an XML(Sequence) of atomic value.

Rewrite of Conditional Expression – we construct a SQL CASE
operator.

Rewrite of Quantified Expression – we construct a SQL
EXISTS/NOT EXISTS subquery.

Rewrite of Aggregate Expression – we construct the
corresponding SQL aggregate functions, such as min(), max(),
count() etc.

Rewrite of XQuery Sequence Construction – we construct a
new XQConcat() SQL operator.

Rewrite of Arithmetic/Logical/Comparsion – we construct the
corresponding SQL arithmetic, logical and comparison operators
as the rewrite result. For general comparison, we rewrite them
into EXISTS subquery as illustrated in [16]. Since the XQuery
allows overloading of basic arithmetic and comparison functions
with multiple built-in types, we need to construct polymorphic
SQL arithmetic and comparison operators if the input type is
determined to be a choice of different built-in types during the
static type checking phase.

Rewrite of Range Expression – we construct the XQRange()
SQL operator.

Rewrite of Cast and constructor function – we use low level
SQL casting functions and operators.

Rewrite of Sequence Type Expression – we construct the
XQTypMatch() operator with SQL CASE operator.

Validate Expression – we construct the internal XMLValidate()
SQL operator.

XQuery functions/operators - we map them into existing SQL
functions/operators. For certain XQuery functions/operators that
do not have equivalent SQL functions/operators, new SQL
operators are created in the RDBMS engine to implement the
semantics of the corresponding XQuery operators.
For fn:doc() and fn:collection() function, we compile them into
the underlying SQL query block that selects from the Oracle
XMLDB repository tables. We also introduce Oracle extension
function ora:view() which enables users to directly query
XMLType tables and views or to convert a relational view into
XML via SQL/XML publishing function automatically. The
ora:view() functions are converted into an SQL query block that
defines the underlying XMLtype table or view.

User Defined XQuery functions – we compile them into Oracle
PL/SQL functions.

5.2 Algebra Optimization
The syntactic transformation of XMLTable construct and the
subsequent compilation of the XMLQuery() function into a SQL
native form often results in a complicated SQL construct as each
XMLQuery() essentially becomes an expansion of a set of nested
subquery blocks with a large set of operator trees. We then
leverage the operator tree optimization, subquery un-nesting and
view merging mechanisms [16] to simplify the resulting SQL
structure. We have enhanced our current algebra rules to handle
the new SQL functions and operators created during XQuery
compilation. With algebra cancellation rules in mind, we often
develop a SQL operator along with its inverse operator. New SQL
operators are distributed to the branches of SQL CASE
expressions and are usually pushed into the XQAgg() based scalar
subquery blocks. This often leads to the subsequent application of
cancellation rules for the SQL operator. The collapsing of
XQAgg() with XQSeq() table function is carried out during the
collection view merging step [16]. Due to space limitations, we do
not list all the algebra rules here.
Our experience with this algebra optimization system has been
positive. It is very easy to add new algebra rules for new SQL
operators and enhance algebra rules for existing SQL operators.
We have developed internal debugging tools for us to trace
rewritten SQL query at various stages of algebra optimizations so
that we know what new algebra rules to develop based on the
final SQL statement. Since each algebra rule application always
yields a valid SQL statement whose performance is not worse
than the previous one, we always end up with a better performing
query. Many queries end up with a final optimal form which is
amendable to relational optimizations. Our experience with the
algebra system is very close to the Query rewrite optimization in
Starburst [21].

6. Acknowledgements
We gratefully acknowledge the contributions of all the members
of the Oracle XML DB development and product management

832

teams. We thank Vishu Krishnamurthy and Susan Kotsovolos for
their managerial support of XQuery and SQL/XML, Sandeepan
Banerjee, Geoff Lee, Stephen Buxton, Mark Drake for their
XQuery product management support, Hui X. Zhang, Karuna
Muthiah, Ying Lu, Qin Yu, Anand Manikutty and James W.
Warner for their great XQuery and SQL/XML project
development effort.

7. Conclusions
This paper illustrates native XQuery support in Oracle XMLDB
by compiling XQuery into SQL constructs with XML extensions
that can be optimized and executed efficiently by the underlying
ORDBMS engine. This approach allows us to leverage the solid
industrial strength engine to process XQuery natively and results
in a tremendous performance improvement over the approach of
embedding an off-the-shelf XQuery engine as a coprocessor.

As both XQuery and SQL/XML become the final
recommendation and standard, there is much work remaining to
develop new SQL operators, algebraic optimizations and
execution methods so that all of the XQuery constructs can be
natively compiled and the coprocessor approach can be
completely eliminated. The merit of our native approach of
integrating XQuery infrastructure on top of SQL/XML
infrastructure enables Oracle XML DB to support both the SQL
and XQuery syntaxes while utilizing the same underlying
optimizer and execution engine to make it a truly industrial
strength XML processing platform.

8. REFERENCES
[1] Scott Boag,Don Chamberlin,Mary F. Fernández,Daniela

Florescu,Jonathan Robie, Jérôme Siméon. XQuery 1.0: An
XML Query Language http://www.w3.org/TR/xquery/.

[2] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, Norman Walsh. XQuery 1.0 and XPath 2.0 Data
Model http://www.w3c.org/TR/xpath-datamodel/

[3] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok
Malhotra, Kristoffer Rose, Michael Rys, Jérôme Siméon,
Philip Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics
http://www.w3c.org/TR/xquery-semantics/.

[4] Ashok Malhotra,Jim Melton,Jonathan Robie,Michael
Rys.XML Syntax for XQuery 1.0 (XQueryX)
http://www.w3.org/TR/2003/WD-xqueryx-20031219/

[5] World Wide Web Consortium, "XML Schema Standard"
http://www.w3c.org/XML/Schema

[6] The international Committee for Information Technology
Standard H2.3 Task Group, http://www.sqlx.org

[7] Andrew Eisenberg, Jim Melton. SQL/XML Is Making Good
Progress. SIGMOD Record Vol 31, No 2, June 2002.

[8] SQL/XML 2003, the first edition of the SQL/XML standard
published by the ISO as part 14 of the SQL standard:
ISO/IEC 9075-14:2003.

[9] Andrew Eisenberg, Jim Melton . SQL/XML Advancements.
http://www.sigmod.org/sigmod/record/issues/0409/11.JimMe
lton.pdf.

[10] Mary Fernández,Jérôme Siméon, Byron Choi, Amelie
Marian, Gargi Sur. Implementing XQuery 1.0: The Galax
Experience. VLDB 2003.

[11] Ioana Manolescu,Daniela Florescu,Donald Kossmann.
Answering XML Queries over Hetergenous Data Sources.
VLDB 2001.

[12] Daniela Florescu, Chris Hillery, Donald Kossman, Paul
Lucas, Fabio Riccardi, Till Westmann, Michael J. Carey,
Arvind Sundararajan. The BEA/XQRL Streaming XQuery
Processor. VLDB 2003.

[13] Xin Zhang, Elke A. Rundesnteiner. Honey, I Shrunk the
XQuery! - An XML Algebra Optimization Approach.
WIDM'02 Nov, 2002, McLean, Virginia, USA.

[14] David DeHaan, David Toman, Mariano P. Consens, M.
Tamer Ozsu. A Comprehensive XQuery to SQL Translation
using Dynamic Interval Encoding. SIGMOD 2003.

[15] Ravi Murthy, Sandeepan Banerjee. XML Schemas in Oracle
XML DB. VLDB 2003.

[16] Muralidhar Krishnaprasad, Zhen Hua Liu, Anand
Manikutty, Jim Warner, Vikas Arora, Susan Kotsovolos.
Query rewrite for XML in Oracle XMLDB. VLDB 2004.

[17] Muralidhar Krishnaprasad, Zhen Hua Liu, Anand Manikutty,
Jim Warner, VikasArora. Towards an industrial strength
SQL/XML infrastructure. ICDE 2005.

[18] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene Shekita,
Catalina Fan, John Funderburk. Querying XML Views of
Relational Data. VLDB 2001.

[19] Jayavel Shanmugasundaram, Eugene Shekita, Rimon Barr,
Michael Carey, Bruce Lindsay, Hamid Pirahesh, Berthold
Reinwald. Efficiently Publishing Relational Data as XML
Documents. VLDB2000

[20] Jason McHugh, Jennifer Widom. Compile-Time Path
Expansion in Lore. http://www-
db.stanford.edu/lore/pubs/re.pdf

[21] Hamid Pirahesh, Joseph M. Hellerstein, Waqar Hasan.
Extensible/Rule Based Query Rewrite Optimization in
Starburst. SIGMOD 1992.

[22] Torsten Grust,Sherif Sakr,Jens Teubner. XQuery on SQL
Hosts. VLDB 2004

[23] Albrecht Schmidt, Florian Wass, Martin Kersten, Michael J.
Carey, Ioana Manolescu, Ralph Busse. Xmark: A
Benchmark for XML Data Management. VLDB 2002.

833

