CS548 2015 Decision Trees / Random Forests

Showcase by: Lily Amadeo, Bir B Kafle, Suman Kumar Lama, Cody Olivier

Showcase work by Jamie Shotton, Andrew Fitzgibbon, Richard Moore, Mat Cook, Alex Kipman, Toby Sharp, Andrew Blake, Mark Finocchio on Real-Time Human Pose Recognition in Parts from Single Depth Images

Sources

Microsoft Kinect. (n.d.). Retrieved February 14, 2015, from http://hamlynkinect.wikispaces.com/Microsoft Kinect

Oberg, J., Eguro, K., Bittner, R., & Forin, A. (2012). Random Decision Tree Body Part Recognition Using FPGAs. *International Conference on Field Programmable Logic and Applications,* University of Oslo, Norway.

Oberg, J. (2011, October 7). The Kinect's Body Part Recognition Algorithm on an FPGA - Microsoft Research. Retrieved from http: //research.microsoft.com/apps/video/dl.aspx?id=157648

Shotton, Jamie, Sharp, Toby, Kipman, Alex, Fitzgibbon, Andrew, Finocchio, Mark, Blake, Andrew, Cook, Mat & Moore, Richard (2013). Real-time Human Pose Recognition in Parts from Single Depth Images. Commun. ACM, 56, 116-124.

Xbox One. (n.d.). Retrieved from http://en.wikipedia.org/wiki/Xbox_One

Xbox 360. (n.d.). Retrieved from http://en.wikipedia.org/wiki/Xbox_360

Microsoft Kinect

- Video game console: XBox 360, XBox One
- Similar: Playstation, Nintendo Wii
- No game controllers/peripherals
- Use of "natural user interface"
- Features:
 - 3D motion capture
 - Facial recognition
 - Voice recognition

Microsoft Kinect

• Uses infrared laser light with speckle pattern

- speckle effect : interference of many waves of same frequency, having different phases, amplitude.

- Tracks upto 6 people
 - 2 active players using motion analysis; <x, y, z>
- Automatic Sensor Calibration
 - Based on Gameplay
 - Based on physical Environment

Microsoft Kinect

- Vision based object recognition
- Pixel classification using Random Decision Trees (RDT)
- Algorithm: forest fire pixel classification algorithm
- Hardware: Field Programmable Gate Array (FPGA)
- Inferring body position:
 - Compute a depth map using structured light
 - Depth from focus
 - Depth from stereo
 - Machine learning

Decision Trees

Use of Decision Trees in Kinect a) Efficiency - computationally efficient

b) Relatively Easy to Update Algorithm

- Integrate new innovations
- Include new use cases

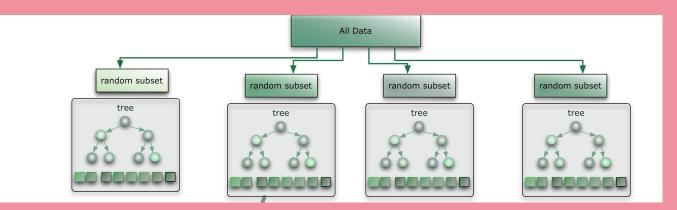
Random Forests

- Ensemble learning
 - Example: the Netflix prize
- Combined models
 - Trees, trees, more trees
- Bagging
 - Bootstrap aggregating
- Add more randomness
 - Feature bagging

Random Forest

One tree trained on a subset of features p features, sqrt p selected each time

• Another tree trained on a different subset of features



• Whole forest of trees

http://citizennet.com/blog/wp-content/uploads/2012/11/RF.jpg

Random Forest

Pros:

- Efficient
- Distributed
- Variable importance

Cons:

• Interpretability

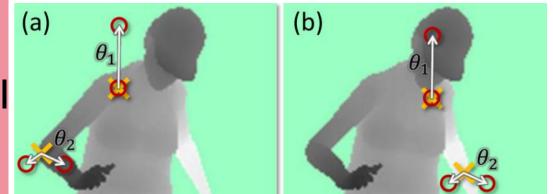
Body Part Inference

Define several body parts labels. Parts could be changed to suit a particular application. Small parts = accurately localized body joined.

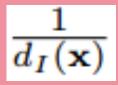
Depth Image Features

dl (x)= depth
 of pixel

 θ = offsets



$$f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$



ensures features are depth invariant

Depth Feature continued

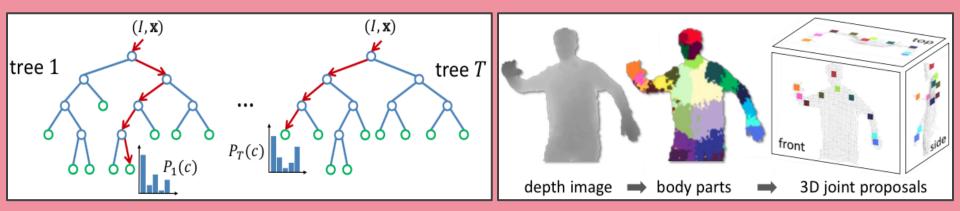
- fθ1 looks upward : gives a large positive response at the upper portion of the body but close to zero near lower down the body
- Provide weak signal about which part of the body a pixel belongs to.
- Decision forest is what makes it accurate. Removes disambiguity.

Decision Tree Creation

- Each tree gets: depth limit, a random 2000 pixel from each training image, set of candidate features
- Candidate features: parameters that determine how likely a pixel is a particular joint and a threshold
- Candidate features used in splitting subset in half
 - Pixels above and below threshold
- Entropy and Info Gain calculated from these two subset

Classification

- Probability distribution at leaves
- Distributions of trees in forest are averaged for classification of a pixel
- 31 joints calculated with mean-shift clustering



Experiment

- Forests: 3 trees, 20 nodes deep, 300k training images per tree, 2000 random pixels per image, 2000 candidate features, 50 candidate thresholds per feature
- Datasets:
 - 8808 real images, hand labeled
 - 5000 images synthesized from motion capture poses
 - Synthetic silhouette images

Results per Pixel

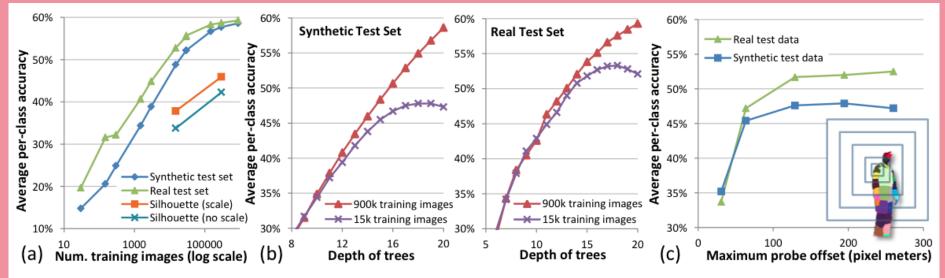


Figure 6. Training parameters vs. classification accuracy. (a) Number of training images. (b) Depth of trees. (c) Maximum probe offset.

Results for Joints

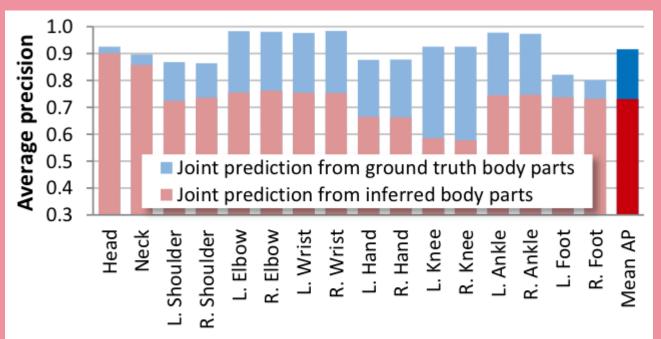


Figure 7. **Joint prediction accuracy.** We compare the actual performance of our system (red) with the best achievable result (blue) given the ground truth body part labels.

Conclusion

- Better accuracy than previous NN methods
 Faster classification time than NN
- Better than Ganapathi et al. method
 - Doesn't exploit temporal and kinematic constraints

