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Microsoft Kinect
● Video game console: XBox 360, XBox One
● Similar: Playstation, Nintendo Wii

● No game controllers/peripherals
● Use of “natural user interface”
● Features: 

○ 3D motion capture
○ Facial recognition
○ Voice recognition



Microsoft Kinect
● Uses infrared laser light with speckle pattern

- speckle effect : interference of many waves of same frequency, having 
different phases, amplitude.

● Tracks upto 6 people
- 2 active players using motion analysis; <x, y, z> 

● Automatic Sensor Calibration
- Based on Gameplay
- Based on physical Environment



Microsoft Kinect
● Vision based object recognition
● Pixel classification using Random Decision Trees (RDT)
● Algorithm: forest fire pixel classification algorithm 
● Hardware: Field Programmable Gate Array (FPGA)
● Inferring body position: 

○ Compute a depth map using structured light
■ Depth from focus
■ Depth from stereo

○ Machine learning



Decision Trees
Use of Decision Trees in Kinect
a) Efficiency
- computationally efficient

b) Relatively Easy to Update Algorithm
- Integrate new innovations
- Include new use cases



Random Forests
● Ensemble learning

○ Example: the Netflix prize
● Combined models

○ Trees, trees, more trees
● Bagging

○ Bootstrap aggregating
● Add more randomness

○ Feature bagging



Random Forest
● One tree trained on a subset of features

○ p features, sqrt p selected each time
● Another tree trained on a different subset of features

● Whole forest of trees                    http://citizennet.com/blog/wp-content/uploads/2012/11/RF.jpg



Random Forest
Pros: 
● Efficient
● Distributed
● Variable importance
Cons: 
● Interpretability



Body Part Inference

Define several body parts  labels. 
Parts could be changed to suit a particular 
application.
Small parts = accurately localized body joined. 



Depth Image Features

● dI (x)= depth
                of pixel 
● θ = offsets
             

               ensures features are depth invariant 



Depth Feature continued

● fθ1 looks upward : gives a large positive 
response at the upper portion of the body 
but close to zero near lower down the body 

● Provide weak signal about which part of the 
body a pixel belongs to.

●  Decision forest is what makes it accurate. 
Removes disambiguity.



Decision Tree Creation
● Each tree gets: depth limit, a random 2000 pixel from 

each training image, set of candidate features
● Candidate features: parameters that determine how 

likely a pixel is a particular joint and a threshold
● Candidate features used in splitting subset in half

○ Pixels above and below threshold

● Entropy and Info Gain calculated from these two subset



Classification
● Probability distribution at leaves
● Distributions of trees in forest are averaged for 

classification of a pixel
● 31 joints calculated with mean-shift clustering



Experiment
● Forests: 3 trees, 20 nodes deep, 300k training images 

per tree, 2000 random pixels per image, 2000 candidate 
features, 50 candidate thresholds per feature

● Datasets:
○ 8808 real images, hand labeled
○ 5000 images synthesized from motion capture poses
○ Synthetic silhouette images



Results per Pixel



Results for Joints



Conclusion

● Better accuracy than previous NN methods
○ Faster classification time than NN

● Better than Ganapathi et al. method
○ Doesn’t exploit temporal and kinematic constraints


