
Presentation Layer

The presentation layer is concerned with preserving the meaning of information sent across
a network. The presentation layer may represent (encode) the data in various ways (e.g.,
data compression, or encryption), but the receiving peer will convert the encoding back
into its original meaning. The presentation layer concerns itself with the following issues:

1. Data Format. Converting the complex data structures used by an application —
strings, integers, structures, etc. — into a byte stream transmitted across the
network.

Representing information in such a way that communicating peers agree to the
format of the data being exchanged. E.g., How many bits does an integer contain?,
ASCII or EBCDIC character set?

2. Compressing data to reduce the amount of transmitted data (e.g., to save money).

3. Security and Privacy issues:

Encryption : Scrambling the data so that only authorized participants can
unscramble the messages of a conversation. Recall, that it’s easy to “wiretap”
transmission media such as Ethernets.

Authentication : Verifying that the remote party really is the party they claim to be
rather than an impostor.

Note: Encryption is the solution to these problems. Where should encryption be
done? Data link or presentation layer? It is not exactly clear. For instance, it is
easy to add encryption at the data link layer, encrypting every transmitted
frame. However, if you are concerned about security, would you trust someone
else to perform encryption for you? On the other hand, having the presentation
layer perform encryption leaves the packet headers of the lower layers
unencrypted, allowing intruders to perform traffic analysis.

CS 513 1 week12-presentation.tex



Abstract Syntax Notation

Abstract Syntax Notation (ASN.1) is an ISO standard that addresses the issue of
representing, encoding, transmitting, and decoding data structures. It consists of two parts:

1. An abstract syntax that describes data structures in an unambiguous way. The
syntax allows programmers to talk about “integers”, “character strings”, and
“structures” rather than bits and bytes.

2. A transfer syntax that describes the bit stream encoding of ASN.1 data objects.

Send: data and additional fields to describe the type of data.

Upon receipt of data, the reverse operation takes place, with the receiver converting from
ASN.1 format to the internal representation of the local machine.

Alternative approaches to the data representation problem:

1. Have the sender convert data into the format expected by the receiver, so that the
receiver doesn’t have to perform any decoding. The disadvantage to this approach is
that every sender needs to know how to encode data for every possible target
machine.

2. ASN.1 takes the approach of converting everything into a common form, much like
the “network standard representation” of TCP/IP. However, this approach has the
disadvantage that communication between two identical machines results in
(needless) conversions.

CS 513 2 week12-presentation.tex



ASN.1’s abstract syntax is similar in form to that of any high level programming language.
For instance, consider the following C structure:

struct Student {

char name[50]; /* ‘‘Foo Bar’’ */

int grad; /* Grad student? (yes/no) */

float gpa; /* 1.1 */

int id; /* 1234567890 */

char bday[8]; /* mm/dd/yy */

}

Its ASN.1 counterpart is:

Student ::= SEQUENCE {

name OCTET STRING, -- 50 characters

grad BOOLEAN, -- comments preceded

gpa REAL, -- by ‘‘--’’

id INTEGER,

bday OCTET STRING -- birthday

}

CS 513 3 week12-presentation.tex



ASN.1 consists of primitive types, and complex types built from primitive types. The
names of primitive types are written (by convention) in upper case, and the following
primitive types are defined:

INTEGER : An integer (of arbitrary length).

BOOLEAN : TRUE or FALSE.

BIT STRING : Sequence of zero or more bits. Bit string values are written as ‘01001101’B
(for binary) or ‘4D’H (in hex).

OCTET STRING : List of zero or more bytes. Used to represent strings, they have no
maximum length.

ANY : A union of all types (e.g. one of several different possible values).

REAL : A real number.

NULL : No type at all, corresponds to “NIL” in C.

OBJECT IDENTIFIER : The name of an object (e.g. library). When a session is
established, both sides negotiate about which ASN.1 objects they will be using.

Primitive types can be combined into more complex types. ASN.1 provides the following
constructors:

SEQUENCE : Ordered list of various types (like a C structure). Types can be either
primitive or complex types.

SEQUENCE OF : Ordered list of a single type (e.g., an array).

SET : Unordered collection of various types.

SET OF : Unordered collection of a single type.

Note: SET and SET OF are similar to SEQUENCE and SEQUENCE OF, except
that the order of components is not guaranteed to be preserved at the receiver. Using
SET or SET OF may reduce the amount of copying relative to SEQUENCE or
SEQUENCE OF.

CHOICE : Any one type taken from a given list.

CS 513 4 week12-presentation.tex



ASN.1 allows fields to be declared OPTIONAL or DEFAULT. The idea is to allow the
sender to omit parts of a data structure and let the omitted fields take on default values.
For data structure containing many components, this may lead to substantially less actual
data transferred.

However, the use of the OPTIONAL or DEFAULT types leads to potential problems.
Suppose that a SEQUENCE has ten fields, all of them of type INTEGER and all
OPTIONAL. If only three fields were transmitted, how would the receiver know which
three they are?

ASN.1 uses tagging to solve this problem, allowing any data type or field to have a tag that
identifies it. Tags are written in square brackets, and the following four types have been
defined:

UNIVERSAL : Tags that are universally defined and globally unique. Such tags are
defined in the ASN.1 standards.

APPLICATION : Tags that are unique within a given ASN.1 module. In any particular
ASN.1 module, only one data type may have a given tag.

PRIVATE : The tag must be unique within a given enterprise, as provided by bilateral
agreement. Used between principles (e.g. organizations) that have agreed to a set of
tags that can be used when communicating with each other (e.g., a library of tags).

CONTEXT SPECIFIC : Tags that are unique within a given constructor type, such as
SEQUENCE.

For example, [APPLICATION 4] refers to an APPLICATION tag; [PRIVATE 12] refers to
a PRIVATE tag; and [44] refers to a PRIVATE tag (the default if no type is specified).

Now, if only three items of a 10-item sequence are transmitted, the receiver can use the
tags to determine which fields have been transmitted.

CS 513 5 week12-presentation.tex



Note: Whenever we send an item, we send its type, length, and value. If it is tagged, we
also transmit its tag. Thus, we’ve added redundancy to our representation. If we include a
tag, the tag implicitly specifies the type. To suppress the transmission of redundant
information, ASN.1 also allows an IMPLICIT keyword to be appended after tag. When
specified, the IMPLICIT keyword surpresses transmission of the type information.

Back to our original example, all tags are of type CONTEXT SPECIFIC:

Student ::= SEQUENCE {

name [0] IMPLICIT OCTET STRING OPTIONAL,

grad [1] IMPLICIT BOOLEAN OPTIONAL DEFAULT FALSE,

gpa [2] IMPLICIT REAL OPTIONAL,

id [3] IMPLICIT INTEGER,

bday [4] IMPLICIT OCTET STRING OPTIONAL

}

In addition to defining types, the ASN.1 syntax includes rules for defining values. Sample
values for our example are:

{ “Wiz Kid”, TRUE, { 4, 10, 0}, 123456789, “11/11/65” }

{ “Slow Learner”, FALSE, {12, 10, -1}, 123456780, “12/24/88” }

Note: REAL values contain 3 components, a mantissa, base, and exponent. Thus, 4, 10, 0
means 4 × 100.

When transmitting a Student value, the following might be possible:

{ “Wiz Kid” [1], 123454321} : Here, we omit the grad, gpa, and bday fields. Grad defaults
to FALSE, while gpa and bday are unspecified.

{ “Slow Learner” [1], TRUE, “11/5/60” [4]} : An error; we must send an id.

{ “11/5/60” [4], 123454321} : The tag [4] distinguishes bday from name.

ASN.1 is currently used in the Internet as part of the Simple Network Monitoring Protocol
(SNMP), a protocol used to query gateways. SNMP is used to ask a gateway about its
routing tables, the status of its interfaces, etc.

CS 513 6 week12-presentation.tex



Sun’s XDR

Sun Microsystem’s External Data Representation (XDR) is an alternative to ASN.1. XDR
is much simpler than ASN.1, but less powerful. For instance:

1. XDR uses implicit typing. Communicating peers must know the type of any
exchanged data. In contrast, ASN.1 uses explicit typing; it includes type information
as part of the transfer syntax.

2. In XDR, all data is transferred in units of 4 bytes. Numbers are transferred in
network order, most significant byte first.

3. Strings consist of a 4 byte length, followed by the data (and perhaps padding in the
last byte). Contrast this with ASN.1.

4. Defined types include: integer, enumeration, boolean, floating point, fixed length
array, structures, plus others.

One advantage that XDR has over ASN.1 is that current implementations of ASN.1
execute significantly slower than XDR.

CS 513 7 week12-presentation.tex



Data Compression

Why do data compression? What is it? Trying to reduce the amount of data sent. What is
the tradeoff? Higher overhead on each end.

Suppose that we wanted to transfer a 20 Mb file to another machine. Would we really need
to send 20 Mb of data? If the file consisted entirely of the letter “A”, we could send the
letter “A”, followed by a count of the number of times it appears in the file, and have the
receiver regenerate the file.

There are three general approaches to data compression. Each approach assumes that the
data stream can be transformed into a more compact representation, which the receiver
reconstructs back into the original data.

Approach 1: Finite Set of Symbols

Consider a library with many branch offices in which the previous days transactions are
sent to every other branch after closing. Transactions consist of checked out and returned
books. We could exchange information in the following ways:

1. We could send the name of the book, its author, the copy number, etc. together with
the type of transaction.

2. Alternatively, the library could maintain a sitewide table assigning a unique ID
number to every book in every branch. Transactions could then refer to the book’s
ID number, rather than its title. Because book IDs are small (e.g. a few bytes), less
data will be transmitted.

Note: The above technique is used throughout programming. We frequently exchange
pointers and array subscripts to avoid the cost of transferring large amounts of data
between subroutines.

The previous approach assumes that all objects occur with equal frequency, and that the
set of objects (e.g., books) is finite. If we examine text, however, we immediately notice
that some words appear more often than others. We could reduce the number of bits
needed to represent a document by using a coding scheme that employs small code words to
represent common words and longer code words to represent words the appear infrequently.

CS 513 8 week12-presentation.tex



Approach 2: Huffman Encoding

Huffman encoding is a technique used to encode symbols according to the frequency of
their use. The algorithm is as follows:

1. Create a set of nodes, one node per symbol, with a node’s value given by the
probability of its occurrence in the data.

2. Find the two nodes having the smallest value, remove them from the set, and create a
new node having the two removed nodes as children, and assign the new node a value
that is the sum of its children’s values. Add the new node back to the set of nodes.

3. Repeat step 2 until only one node remains. We now have a tree, whose probability
value is one.

4. The encoding for each symbol is the path from the root to the symbol. Using a code
of 0 for a left child, 1 for a right child, the length of each symbol’s encoding is
proportional to the relative probability of its occurrence.

One drawback with Huffman encoding, however, is that symbols have differing lengths,
making it relatively expensive (computationally) to decode. Also, A single-bit error can
wipe out the entire message.

CS 513 9 week12-presentation.tex



Approach 3: Context Dependent Encoding

The last technique, context dependent encoding, recognizes that the probability of a
particular symbol occurring next depends on the previous symbol. For instance, the
probability that a “T” directly follows a “Q” is about 4 times less than the probability of a
“U” following a “Q”.

The main disadvantage of conditional probability methods is the increase in table space.
Each symbol has its own table that gives the codes for those symbols immediately
following it. For K symbols, the tables will contain K

2 entries. All K symbols have K

entries for the symbols that follow them.

One variation to this technique is as follows:

1. Use 5-bit code to represent symbols.

2. Have four different “modes”, where the current mode determines the meaning of
symbols. Four symbols are reserved to denote a switch to another mode. For
instance, different modes could represent upper-case characters, lower-case characters,
numeric and special characters, and control characters.

3. The underlying assumption is that lower-case letters are likely to follow lower-case
letters, numbers are likely to occur in groups, etc.

4. The occurrence of a mode symbol signifies a mode change.

5. Our 5-bit code now represents 4 × 28 = 112 different values.

One advantage that the above technique has over Huffman encoding is that symbols are all
fixed length, making encoding and decoding using table lookups very efficient. In addition,
it is more immune to transmission errors.

CS 513 10 week12-presentation.tex



Run Length Encoding

Another alternative, run length encoding, is used to encode data containing repetitive
symbols. Consider binary strings of 0s and 1s. One way to handle long runs of 0 is to use a
k-bit symbol that tells how many 0 bits occurred between consecutive 1s. A code word of
all 1’s means that the true distance is 2K − 1 plus the value of the following symbol(s). For
example:

00010000101001100000000000000000000000100000001 (47 bits)

consists of runs of length 3, 4, 1, 2, 0, 23, and 7.

Using 4-bit symbols, it would be encoded as:

0011 0100 0001 0010 0000 1111 0100 0111, for 32 bits and

a savings of 15/47 = 30%.

Using 3-bit symbols, it would be encoded as:

011 100 001 010 000 111 111 111 010 111 000 for 33 bits.

Yet another variation is to encode the difference between the current value and the previous
value, as was used to reduce the number of bits needed in pulse coded modulation (PCM).

CS 513 11 week12-presentation.tex


