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Overview 

 Vector architecture outline 
 Vector Execution Time 
 Improvements to Vector Architectures 
 Performance summary 
 
The chapter is much larger than this…. 
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Intro to Data-Level Parallelism 

 The goal:  simultaneous operations on large sets 
of data 
 SIMD:  Single Instruction, Multiple Data 

 Many implementations have developed for these 
kind of operations 
 Vector architectures 
 SIMD Multimedia Instructions 
 GPUs 
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Applications of Data Parallelism 

 Any application that involves number crunching 
on a lot of similar data: 
 Graphics and image processing 
 Digital Signal Processing (DSP) 
 Physics Simulations 
 Searching and Sorting 
 Financial Simulations 
 Etc. 
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Vector Architectures:  The Basics 

 Vector architectures provide pipelined execution 
of many data operations 

 Vector Register:  register file containing multiple 
elements of a set of data stored sequentially 
 One instruction performs an operation on an entire 

vector of data 
 Operations are performed in parallel on independent 

elements 

Vector Architectures CS-4515, D-Term 2015 5 

a[0] a[1] a[2] a[3] a[4] a[5] ... a[63] V0 

one 64-bit Element 

  

4096-bit Vector Register 
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The VMIPS Architecture 

 Textbook model of vector architecture (stylized) 
 ISA is based on MIPS 
 Architecture is based on the Cray-1 
 Idealized example of how a vector architecture might 

work 

 VMIPS Vector registers 
 8 registers, each with 64 64-bit elements 
 16 read ports and 8 write ports for communication with 

other units 
 Connected with crossbar switches (expensive) 
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The VMIPS Architecture (cont’d) 
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Figure 4.2 
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The VMIPS Architecture (continued) 

 Vector Functional Units 
 Separate units for each 

operation, each fully 
pipelined 
 Control unit to detect 

hazards between units 

 Scalar Registers 
 As in ordinary MIPS 

 Load/Store Unit 
 Fully pipelined—ideal 

bandwidth of one word 
per clock cycle  
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FP Add/Subtract 
FP Multiply 
FP Divide 

ADDVV.D V0,V1,V2 

MULVV.D V3,V4,V5 

DIVVS.D V6,V7,F1 

Vector Registers 

V0 
V1 
V2 
V3 
V4 
V5 
V6 
V7 

Scalar Registers 
F0 
F1 
F2 
F3 

Crossbar Switch 
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VMIPS Instruction Set 
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Figure 4.3 
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Loading and Storing Vectors 

 A vector load or store instruction reads or writes 
to an entire vector at once 

 Long latency to fetch or store an entire vector, 
rather than a latency for each element 
 Latency is amortized over each element in the vector 

 
 Memory operations are heavily pipelined 
 “Hides” latency by taking advantage of memory 

bandwidth 
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Execution Time 

Vector Architectures 
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3 Factors Affect Execution Time 

1. Structural Hazards 
2. Data Dependences 
3. Length of Vectors 

Adapted from Figure 4.4 
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Measuring Vector Operations 

 Single Vector Instruction (Execution Time) 
 Initiation Rate: Rate at which Vector Unit consumes 

vector elements 
 [Execution Time]=[vector length]/[Initiation Rate] 

 

 Most Vector processors implement pipelining and 
multiple lanes 
 Higher initiation rate 
 Typically n elements per cycle 

Vector Architectures CS-4515, D-Term 2015 13 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

Measuring Vector Operations 

 Convoy 
 Convoy: Set of vector instructions that could potentially 

execute together  
 (w/o structural hazards) 

 Unit by which long instruction sequences are measured 
 

 Chaining: 
 Allows vector operations to start as soon as individual 

elements of its operands become available 
 I.e., as output of other operands 
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Measuring Vector Operations 

 Chime: execution time for one Convoy 
 Ignores vector-length dependent calculation overhead 
 Better for measuring longer vectors 
 VMIPS 

 [Execution Time] = [# Chimes] × [Length of Vector] 
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Example 
LV   V1,Rx   ;load vector X 
MULVS.D  V2,V1,F0  ;vector-scalar multiply 
LV   V3,Ry   ;load vector Y 
ADDVV.D  V4,V2,V3  ;add two vectors 
SV   Ry,V4   ;store the sum 

 
Convoys: 
1  LV — MULVS.D 
2  LV — ADDVV.D 
3  SV 
 
3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 
For 64 element vectors, requires 64 x 3 = 192 clock cycles 
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Vector Architectures 
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Questions? 
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Vector Benefits — DAXPY Loop 

 DAXPY: “Double-precision A × X Plus Y” 
 Y = a × X + Y 

 a is scalar; X & Y are vectors 

 Used for benchmarking performance 

 Vector multiplication requires extra overhead in 
ordinary (non-vectorized) MIPS-like processors 

 How would you do this in MIPS? In VIMPS? 
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DAXPY Loop — (unvectorized) MIPS 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 

From Example on pg. 267 (4.2) 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: value at X[Rx] 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: X[Rx] * a 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: X[Rx] * a 
 F4: Y[Ry] 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: X[Rx] * a 
 F4: X[Rx] * a + Y[Ry] 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: X[Rx] * a 
 F4: X[Rx] * a + Y[Ry] 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: X[Rx] * a 
 F4: X[Rx] * a + Y[Ry] 
 
 Rx: Rx + [cell size] 
 Ry: Ry + [cell size] 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: X[Rx] * a 
 F4: X[Rx] * a + Y[Ry] 
 
 Rx: Rx + [cell size] 
 Ry: Ry + [cell size] 
 
 R20: boundary check 
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DAXPY Loop — (unvectorized) MIPS (con’t) 

MIPS Registers 
  L.D  F0,a 
  DADDIU R4,Rx,#512 
Loop: L.D  F2,0(Rx) 
  MUL.D  F2,F2,F0 
  L.D  F4,0(Ry) 
  ADD.D  F4,F4,F2 
  S.D  F4,9(Ry) 
  DADDIU Rx,Rx,#8 
  DADDIU Ry,Ry,#8 
  DSUBU  R20,R4,Rx 
  BNEZ  R20,Loop 

 F0: a 
 R4: last address 
 
 F2: X[Rx] * a 
 F4: X[Rx] * a + Y[Ry] 
 
 Rx: Rx + [cell size] 
 Ry: Ry + [cell size] 
 
 R20: boundary check 

CS-4515, D-Term 2015 28 Vector Architectures 

From Example on pg. 267 (4.2) 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

DAXPY Loop — VMIPS 

VMIPS Benefits 

 L.D  F0,a 

 LV   V1,Rx 
 MULVS.D V2,V1,F0 
 LV   V3,Ry 
 ADDVV.D V4,V2,V3 
 SV   V4,Ry 

 No looping 
 Straightforward 
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Questions? 
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Vectorizing Compiler 

 Able to extract vector operations from loop 
 

 … in existing code 
 

 Widely used in “number-crunching” organizations 
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Beyond One Element per Clock Cycle 

• Vector instruction sets allow software to pass a 
lot of (parallelizable) work to the hardware using 
one instruction 

• Allows an implementation to use parallel 
functional units 

• Simplified in VMIPS by only letting element N of 
one vector register to take part in operations 
with element N from other vector registers 
 The set of elements that move through a pipeline 

together is called an element group 
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Using Multiple Lanes 

• A highly parallel vector unit can be structured as 
multiple parallel lanes 

• Adding more lanes increases the peak throughput 
of a vector unit 
 E.g. Going to four lanes from one lane reduces number 

of cycles for a chime from 64 to 16 
 ⇒ halving the clock rate 
 but doubling number of lanes gives same performance 

• To get the most out of lanes, applications and 
architecture must both support long vectors 
 Otherwise risk running out of instruction bandwidth 
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Structure of a Lane 

• Each lane contains part of the vector register file 
and an execution pipeline for each vector unit 

• Each lane can complete its operation without 
communicating with the other lanes 
 This reduces wiring cost and the number of required 

register file ports 
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Structure of Vector Unit Containing Four Lanes 
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Natural Vector Length 

 Each vector architecture has a natural vector 
length 
 Natural vector length for VMIPS is 64 

 Determined by number of elements in each 
vector register 

 This usually has nothing to do with the real 
vector length in a program 
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Vector-Length Registers  

 The Vector-Length Register controls the length of 
any vector operation 
 Including loads and stores 

 MVL — the Maximum Vector Length 
 Cannot be greater than the length of the vector 

registers 

 MVL as a parameter 
 ⇒ length of the vector registers can change in later 

generations and the instruction set can stay the same 
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Strip Mining 

 Strip Mining: technique to make sure that each 
vector operation is done for a size ≤ MVL 
 

  

for (i = 0; i < n; i++) 
 Y[i] = a * X[i] + Y[i]; 

low = 0; 
VL = (n % MVL) 
for (j = 0; j <= (n/MVL); j = j + 1) { 
 for (i = low; i < (low + VL); i = i + 1) 
  Y[i] = a * X[i] + Y[i]; 
 low = low + VL; 
 VL = MVL; 
} 

p.274 
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Strip Mining: A Visual Guide 

Odd-Sized Piece  
(Less than MVL) MVL 

 

Long Vector in Memory 
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IF Statements in Vector Loops 

 Conditionals (IF statements) introduce control 
dependencies into loops 
 Cannot be run in vector mode using techniques 

previously discussed  

  

for (i = 0; i < 64; i = i + 1) 
 if (X[i] != 0) 
  X[i] = X[i] – Y[i]; 

  Vector Architectures CS-4515, D-Term 2015 40 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

Vector-Mask Control 

 Vector-Mask Control uses a Boolean vector to 
control the execution of a vector instruction 
 Similar to using a Boolean condition to determine 

whether to execute a scalar instruction 

 The Boolean vector is called the Vector-Mask 
Register 
 Entries in the destination vector that correspond to 

zeros in the mask register are not affected by the vector 
operation 
 Clearing the vector mask sets all entries to ones, so later 

vector instructions operate on all elements 
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Using the Vector Mask for a Loop 

  

LV  V1,Rx ;load vector X into V1 
LV  V2,Ry ;load vector Y into V2 
L.D  F0,#0 ;load FP zero into F0 
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0 
SUBVV.D V1,V1,V2 ;subtract under vector mask 
SV  V1,Rx ;store the result in X 

for (i = 0; i < 64; i = i + 1) 
 if (X[i] != 0) 
  X[i] = X[i] – Y[i]; 
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Vector Masks: A Visual Guide 

1 0 1 1 0 0 1 0 1 

0 1 3 4 5 6 7 8 2 

Vector Mask 

Only these entries will be affected 
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Vector-Mask Performance  

 Vector instructions executed with a vector mask 
take the same execution time, even for elements 
where the mask is zero 
 Similar to scalar architectures  
 Can still be faster than scalar mode, even with a 

significant number of zeros in the vector-mask 

 Mask registers are part of the architectural state 
and rely on compilers to manipulate mask 
registers explicitly 
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Memory Banks 

 Vector processors are usually bottlenecked by 
memory bandwidth 

 How do we improve memory bandwidth? 
 Banked memory 
 Improved vector load/store unit 

 Memory is significantly slower than CPUs. We 
need a lot of banks to compensate. 
 If we have multiple CPUs, they will likely share a single 

memory system as well 
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Example: Cray T932 
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Strides 

 The position in memory of adjacent memory 
elements in a vector may not be sequential 
 Single element from each row or column of a 2D array 

 The distance separating elements in a single 
register is called stride 
 By default, unit-stride – stride of 1 word 

 Some vector load/store instructions permit 
specifying a stride other than 1 
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Gather-Scatter 

 Some vectors may have indirectly indexed 
elements 
 For example: indexing an array with elements of 

another array 

 Gather and Scatter operations use an index 
vector loaded with offsets and a base address 
 We Load (Gather) or Store (Scatter) from the base address plus the offset specified 

in the index vector 
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Gather-Scatter Example 

Sample Code: 
for(i = 0; i < n; i = i+1) A[K[i]] = A[K[i]] + C[M[i]]; 

 

 

LV  Vk, Rk     ; load K 

LVI Va, (Ra + Vk)  ; load A[K[]] 

LV Vm, Rm     ; load M 

LVI Vc, (Rc + Vm)  ; load C[M[]] 

ADDVV.D Va, Va, Vc  ; add A[] and C[] 

SVI (Ra+Vk), Va   ; store A[K[]] 
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Programming Vector Architectures 

 The compiler can easily determine at compile 
time whether a section of code will vectorize 
 And if they will not, where the dependences are 

 The compiler must be given hints by the 
programmer in some cases 
 We can tell it to vectorize operations it otherwise would 

not 
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Questions? 
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