

Synchronization in Distributed

Systems

CS-4513 Distributed Systems
Hugh C. Lauer

Slides include materials from Modern Operating Systems, 3rd ed., by Tannenbaum,

Operating System Concepts, 7th ed., by Silbershatz, Galvin, & Gagne,
Distributed Systems: Principles & Paradigms, 2nd ed. By Tanenbaum and Van Steen, and

Distributed Systems: Concepts and Design, 4th ed., by Coulouris, et. al.

CS-4513, B-Term 2010 Synchronization in Distributed Systems 1

Issue

• Synchronization within one system is

hard enough
• Semaphores

• Messages

• Monitors

• …

• Synchronization among processes in a

distributed system is much harder

Synchronization in Distributed Systems 2 CS-4513, B-Term 2010

Reading Assignment

• See Coulouris et al

– Chapter 11, Time and Global States

– Chapter 12, Coordination and Agreement

• Note that Atomic Transactions are an

example of coordination and

agreement.

Synchronization in Distributed Systems 3 CS-4513, B-Term 2010

Example

• File locking in NFS
• Not supported directly within NFS v.3

• Need lockmanager service to

supplement NFS

Synchronization in Distributed Systems 4 CS-4513, B-Term 2010

What about using Time?

• make recompiles if foo.c is newer than
foo.o

• Scenario
• make on machine A to build foo.o

• Test on machine B; find and fix a bug in foo.c

• Re-run make on machine B

• Nothing happens!

• Why?

Synchronization in Distributed Systems 5 CS-4513, B-Term 2010

Problem

• Time not a reliable method of
synchronization

• Users mess up clocks
• (and forget to set their time zones!)

• Unpredictable delays in Internet

• Relativistic issues
• If A and B are far apart physically, and

• two events TA and TB are very close in time, then

• which comes first? how do you know?

Synchronization in Distributed Systems 6 CS-4513, B-Term 2010

Berkeley Algorithm

Synchronization in Distributed Systems 7 CS-4513, B-Term 2010

• Berkeley Algorithm
• Time Daemon polls other systems

• Computes average time

• Tells other machines how to adjust their clocks

NTP (Network Time Protocol)

• A requests time of B at its own T1

• B receives request at its T2, records T2

• B responds at its T3, sending values of T2 and T3

• A receives response at its T4

• Question: what is = TB – TA?

Synchronization in Distributed Systems 8 CS-4513, B-Term 2010

A

B

T1

T2 T3

T4

NTP (Network Time Protocol)

• Question: what is = TB – TA?

• Assume transit time is approximately the same both

ways

• Assume that B is the time server that A wants to

synchronize to

Synchronization in Distributed Systems 9 CS-4513, B-Term 2010

A

B

T1

T2 T3

T4

NTP (Network Time Protocol)

2314 TTTT

Synchronization in Distributed Systems 10 CS-4513, B-Term 2010

• A knows (T4 – T1) from its own clock

• B reports T3 and T2 in response to NTP

request

• A computes total transit time of

A

B

T1

T2 T3

T4

NTP (Network Time Protocol)

2

2314 TTTT

Synchronization in Distributed Systems 11

• One-way transit time is approximately ½ total,
i.e.,

• B’s clock at T4 reads approximately

22

32142314
3

TTTTTTTT
T

A

B

T1

T2 T3

T4

CS-4513, B-Term 2010

NTP (Network Time Protocol)

2

3214 TTTT

Synchronization in Distributed Systems 12 CS-4513, B-Term 2010

• B’s clock at T4 reads approximately (from previous slide)

• Thus, difference between B and A clocks at T4 is

22

4312
4

3214 TTTT
T

TTTT

T2 T3

A

B

T1

T2 T3

T4

NTP (continued)

• Servers organized as strata

– Stratum 0 server adjusts itself to WWV

directly

– Stratum 1 adjusts self to Stratum 0 servers

– Etc.

• Within a stratum, servers adjust with

each other

Synchronization in Distributed Systems 13 CS-4513, B-Term 2010

Adjusting the Clock

• If TA is slow, add to clock rate
• To speed it up gradually

• If TA is fast, subtract from clock rate
• To slow it down gradually

Synchronization in Distributed Systems 14 CS-4513, B-Term 2010

Problem (again)

• All of this helps, but not enough!

• Users mess up clocks
• (and forget to set their time zones!)

• Unpredictable delays in Internet

• Relativistic issues
• If A and B are far apart physically, and

• two events TA and TB are very close in time, then

• which comes first? how do you know?

Synchronization in Distributed Systems 15 CS-4513, B-Term 2010

Example

• At midnight PDT, bank posts interest to your
account based on current balance.

• At 3:00 AM EDT, you withdraw some cash.

• Does interest get paid on the cash you just
withdrew?

• Depends upon which event came first!

• What if transactions made on different replicas?

Synchronization in Distributed Systems 16 CS-4513, B-Term 2010

Example (continued)

Synchronization in Distributed Systems 17 CS-4513, B-Term 2010

Exaggerated View

Synchronization in Distributed Systems 18 CS-4513, B-Term 2010

It is impossible to conclude

anything about order of

events by comparing clocks

Solution — Logical Clocks

• Not “clocks” at all

• Just monotonic counters
• Lamport’s temporal logic

• Definition: a b means
• a occurs before b

• More specifically, all processes agree that first a
happens, then later b happens

• E.g., send(message) receive(message)

Synchronization in Distributed Systems 19 CS-4513, B-Term 2010

For example, if b is known

to be caused by something

associated with a

Implementation of Logical

Clocks
• Every machine maintains its own logical

“clock” C

• Transmit C with every message

• If Creceived > Cown, then adjust Cown forward
to Creceived + 1

• Result: Anything that is known to follow
something else in time has larger logical
clock value.

Synchronization in Distributed Systems 20 CS-4513, B-Term 2010

Logical Clocks (continued)

Synchronization in Distributed Systems 21 CS-4513, B-Term 2010

Without Logical Clocks

Logical Clocks (continued)

Synchronization in Distributed Systems 22 CS-4513, B-Term 2010

With Logical Clocks Without Logical Clocks

Variations

• See Coulouris, et al,

11.4

• Note: Grapevine timestamps for

updating its registries behave somewhat

like logical clocks.

Synchronization in Distributed Systems 23 CS-4513, B-Term 2010

Questions?

Synchronization in Distributed Systems 24 CS-4513, B-Term 2010

Mutual Exclusion in Distributed

Systems

• Prevent inconsistent usage or updates

to shared data

• Two approaches
• Token

• Permission

Synchronization in Distributed Systems 25 CS-4513, B-Term 2010

Centralized Permissions

Synchronization in Distributed Systems 26 CS-4513, B-Term 2010

• One process is elected coordinator for a resource

• All others ask permission.

• Possible responses

– Okay; denied (ask again later); none (caller waits)

Centralized Permissions (continued)

• Advantages

– Mutual exclusion guaranteed by coordinator

– “Fair” sharing possible without starvation

– Simple to implement

• Disadvantages

– Single point of failure (coordinator crashes)

– Performance bottleneck

– …

Synchronization in Distributed Systems 27 CS-4513, B-Term 2010

Decentralized Permissions

• n coordinators; ask all
• E.g., n replicas

• Must have agreement of m > n/2

• Advantage
• No single point of failure

• Disadvantage
• Lots of messages

• Really messy

Synchronization in Distributed Systems 28 CS-4513, B-Term 2010

Distributed Permissions

• Use Lamport’s logical clocks

• Requestor sends reliable messages to all
other processes (including self)

• Waits for OK replies from all other processes

• Replying process
• If not interested in resource, reply OK

• If currently using resource, queue request, don’t reply

• If interested, then reply OK if requestor is earlier;
Queue request if requestor is later

Synchronization in Distributed Systems 29 CS-4513, B-Term 2010

Distributed Permissions (continued)

• Process 0 and Process 2 want resource

• Process 1 replies OK because not interested

• Process 0 has lower time-stamp, thereby goes first

• …

Synchronization in Distributed Systems 30 CS-4513, B-Term 2010

Distributed Permissions (continued)

• Advantage

– No central bottleneck

– Fewer messages than Decentralized

• Disadvantage

– n points of failure

– i.e., failure of one node to respond locks up

system

Synchronization in Distributed Systems 31 CS-4513, B-Term 2010

Token system

• Organize processes in logical ring

• Each process knows successor

• Token is passed around ring
• If process is interested in resource, it waits for

token

• Releases token when done

• If node is dead, process skips over it
• Passes token to successor of dead process

Synchronization in Distributed Systems 32 CS-4513, B-Term 2010

Token system (continued)

• Advantages
• Fairness, no starvation

• Recovery from crashes if token is not lost

• Disadvantage
• Crash of process holding token

• Difficult to detect; difficult to regenerate exactly one token

Synchronization in Distributed Systems 33 CS-4513, B-Term 2010

Questions?

Synchronization in Distributed Systems 34 CS-4513, B-Term 2010

