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Solutions to HOMEWORK 4.  Association Rules Using Apriori. By Artem Gritsenko. 

1. “Join” condition or “merge” is the process of generation new candidate k-itemset based on the 

frequent (k-1)-itemsets found in the previous iteration. The idea is to merge a pair of frequent 

(k-1)-itemsets from the previous iteration of the Apriori algorithm into k-itemset if and only if 

their first k-2 items are the same. This results in adding the last item of the first merging (k-1)-

itemset to the second (k-1)-itemset and creating a new k-itemset. 

2. “Subset” condition or “candidate pruning” is the process that allows to reduce the number of 

itemsets (from the “merge” step) for which we need to perform support counting by removing 

infrequent itemsets from consideration. This is done by ensuring that all the possible (k-1)-

subsets of the k-itemset (constructed with “merge” procedure) are frequent, that is they are 

among the frequent (k-1)-itemsets from the previous iteration of the Apriori algorithm. 

3. We start the Apriori algorithm on the dataset by producing a list of all possible 1-itemsets (that 

in this case are all possible attribute-value pairs in the dataset). For each itemset, support is 

calculated as the frequency of the itemset occurring in the dataset.  

The next step is to perform support-based pruning strategy that will eliminate all the itemsets 

that have a low support value (we use minimum support =3 by the problem definition). This step 

allows us to eliminate infrequent rules.  

Support counts for candidate 1-itemsets 

Buying=vhigh 2 Maint=med 6 Safety=med 10 

Buying=high 4 Maint=low 4 Safety=high 5 

Buying=med 11 Persons=2 6 Class=unacc 15 

Buying=low 5 Persons=4 11 Class=acc 5 

Maint=vhigh 9 Persons=more 5 Class=good 2 

Maint=high 3 Safety=low 7   

Here is the resulting list of frequent 1-itemsets. 

Frequent 1-itemsets 

Buying=high 

Buying=med 

Buying=low 

Maint=vhigh 

Maint=high 

Maint=med 

Maint=low 

Persons=2 

Persons=4 

Persons=more 

Safety=low 

Safety=med 

Safety=high 

Class=unacc 

Class=acc 



On the next steps the algorithm generates new candidate k-itemsets using the frequent (k-1)-itemsets 

from previous iteration. The “merge” and “candidate pruning” procedures do not apply at this step 

because the 1-itemsets from previous iteration have empty prefixes. That is why we just use all possible 

combinations of 1-itemsets to generate candidate 2-itemsets. Here and further to reduce duplicates we 

will use lexicographical ordering of the attributes (the order in which attributes appear in the dataset) 

when generating candidate itemsets. As we use minimum support = 3, so we prune all the itemsets with 

support less than 3. 

Support counts for candidate 2-itemsets 

Buying=high, Maint=vhigh 0 Maint=vhigh, Persons=2 2 

Buying=high, Maint=high 1 Maint=vhigh, Persons=4 3 

Buying=high, Maint=med 2 Maint=vhigh, Persons=more 4 

Buying=high, Maint=low 1 Maint=vhigh, Safety=high 0 

Buying=high, Persons=2 1 Maint=vhigh, Safety=med 7 

Buying=high, Persons=4 3 Maint=vhigh, Safety=low 2 

Buying=high, Persons=more 0 Maint=vhigh, Class=unacc 6 

Buying=high, Safety=high 2 Maint=vhigh, Class=acc 3 

Buying=high, Safety=med 0 Maint=high, Persons=2 1 

Buying=high, Safety=low 2 Maint=high, Persons=4 2 

Buying=high, Class=unacc 3 Maint=high, Persons=more 0 

Buying=high, Class=acc 0 Maint=high, Safety=high 1 

Buying=med, Maint=vhigh 6 Maint=high, Safety=med 0 

Buying= med, Maint=high 1 Maint=high, Safety=low 2 

Buying= med, Maint=med 2 Maint=high, Class=unacc 3 

Buying= med, Maint=low 2 Maint=high, Class=acc 0 

Buying= med, Persons=2 2 Maint=med, Persons=2 1 

Buying= med, Persons=4 6 Maint=med, Persons=4 4 

Buying= med, Persons=more 3 Maint=med, Persons=more 1 

Buying= med, Safety=low 5 Maint=med, Safety=high 2 

Buying= med, Safety=med 6 Maint=med, Safety=med 2 

Buying= med, Safety=high 0 Maint=med, Safety=low 2 

Buying= med, Class=unacc 7 Maint=med, Class=unacc 3 

Buying= med, Class=acc 4 Maint=med, Class=acc 1 

Buying=low, Maint=vhigh 1 Maint=low, Persons=2 2 

Buying= low, Maint=high 1 Maint= low, Persons=4 2 

Buying= low, Maint=med 2 Maint= low, Persons=more 0 

Buying= low, Maint=low 1 Maint= low, Safety=high 2 

Buying= low, Persons=2 3 Maint= low, Safety=med 1 

Buying= low, Persons=4 1 Maint= low, Safety=low 1 

Buying= low, Persons=more 1 Maint= low, Class=unacc 1 

Buying= low, Safety=low 0 Maint= low, Class=acc 3 

Buying= low, Safety=med 2 Safety=low, Class=unacc 7 

Buying= low, Safety=high 3 Safety=low, Class=acc 0 

Buying= low, Class=unacc 3 Safety=med, Class=unacc 5 

Buying= low, Class=acc 1 Safety=med, Class=acc 5 

Persons=2, Safety=low 0 Safety=high, Class=unacc 3 



Persons=2, Safety=med 3 Safety=high, Class=acc 0 

Persons=2, Safety=high 3   

Persons=2, Class=unacc 6   

Persons=2, Class=acc 0   

Persons=4, Safety=low 5   

Persons=4, Safety=med 4   

Persons=4, Safety=high 2   

Persons=4, Class=unacc 6   

Persons=4, Class=acc 3   

Persons=more, Safety=low 2   

Persons= more, Safety=med 3   

Persons= more, Safety=high 0   

Persons= more, Class=unacc 3   

Persons= more, Class=acc 2   

    

Here is the list of frequent 2-itemsets that survived the support-based pruning. To generate the 

candidate 3-itemsets we use the “merge” procedure described above. We will merge pair of 2-itemsets 

only if their first 1 item is identical. The 2-itemsets with the same first item marked with the same color 

in the table below. 

Frequent 2-itemsets 

Buying=high, Persons=4 3 

Buying=high, Class=unacc 3 

Buying=med, Maint=vhigh 6 

Buying= med, Persons=4 6 

Buying= med, Persons=more 3 

Buying= med, Safety=low 5 

Buying= med, Safety=med 6 

Buying= med, Class=unacc 7 

Buying= med, Class=acc 4 

Buying= low, Persons=2 3 

Buying= low, Safety=high 3 

Buying= low, Class=unacc 3 

Persons=2, Safety=med 3 

Persons=2, Safety=high 3 

Persons=2, Class=unacc 6 

Persons=4, Safety=low 5 

Persons=4, Safety=med 4 

Persons=4, Class=unacc 6 

Persons=4, Class=acc 3 

Persons= more, Safety=med 3 

Persons= more, Class=unacc 3 

Maint=vhigh, Persons=4 3 

Maint=vhigh, Persons=more 4 

Maint=vhigh, Safety=med 7 

Maint=vhigh, Class=unacc 6 

Maint=vhigh, Class=acc 3 



Maint=high, Class=unacc 3 

Maint=med, Persons=4 4 

Maint=med, Class=unacc 3 

Maint= low, Class=acc 3 

Safety=low, Class=unacc 7 

Safety=med, Class=unacc 5 

Safety=med, Class=acc 5 

Safety=high, Class=unacc 3 

Here are all the possible 3-itemsets generated from 2-itemsets with “merge” procedure (within each 

colored group). Before running support-based pruning we want to make sure that all the 2-item subsets 

of these 3-itemsets are frequent. Based on the Apriori principle if a subset of the itemset is infrequent 

than the itemset is infrequent. So, we apply “subset” condition to the 3-itemsets. Because we know that 

the subset with the 1st and 2nd items and the subset with the 2nd and 3rd items came from frequent 

itemsets, we only need to make sure that the subset with the 2nd and 3rd items is among the frequent 2-

itemsets from the previous iteration. The itemsets that did not meet the conditions are crossed over in 

the table below. 

As in the previous steps, we perform support-based pruning leaving only the 3-itemsets that  have 

support larger or equal to 3. 

Support counts for candidate 3-itemsets 

Buying=high, Persons=4, Class=unacc 2 

Buying=med, Maint=vhigh, Persons=4 2 

Buying= med, Maint=vhigh, Persons=more 2 

Buying= med, Maint=vhigh, Safety=low  

Buying= med, Maint=vhigh, Safety=med 4 

Buying= med, Maint=vhigh, Class=unacc 4 

Buying= med, Maint=vhigh, Class=acc 2 

Buying= med, Persons=4, Safety=low 3 

Buying= med, Persons=4, Safety=med 3 

Buying= med, Persons=4, Class=unacc 3 

Buying= med, Persons=4, Class=acc 3 

Buying= med, Persons= more, Safety=low  

Buying= med, Persons= more, Safety=med 1 

Buying= med, Persons= more, Class=unacc 2 

Buying= med, Persons=more, Class=acc  

Buying= med, Maint=vhigh, Safety=med 4 

Buying= med, Safety=low, Class=acc  

Buying= med, Safety=low, Class=acc 5 

Buying= med, Safety=med, Class=unacc 2 

Buying= med, Safety=med, Class=acc 4 

Buying= low, Persons=2, Safety=high 2 

Buying= low, Persons=2, Class=unacc 3 

Buying= low, Safety=high, Class=unacc 2 

Persons=2, Safety=med, Class=unacc 3 



Persons=2, Safety=high, Class=unacc 3 

Persons=4, Safety=low, Class=unacc 5 

Persons=4, Safety=low, Class=acc  

Persons=4, Safety=med, Class=unacc 1 

Persons=4, Safety=med, Class=acc 3 

Persons=more, Safety=med, Class=unacc 1 

Maint=vhigh, Persons=4, Safety=med 3 

Maint=vhigh, Persons=4, Class=unacc 1 

Maint=vhigh, Persons=4, Class=acc 2 

Maint=vhigh, Persons=more,Safety=med 2 

Maint=vhigh,Persons=more,Class=unacc 3 

Maint=vhigh, Persons= more, Class=acc  

Maint=vhigh, Safety=med, Class=unacc 4 

Maint=vhigh, Safety=med, Class=acc 3 

Maint=med, Persons=4, Class=unacc 2 

 

Here is the list of the frequent 3-itemsets. To generate candidate 4-itemsets we apply “merge” 

procedure again. We merge 3-itemsets that have first 3 items identical to each other. The groups of 3-

itemsets that have first 3 items identical are marked with different colors. 

Frequent 3-itemsets 

Buying= med, Maint=vhigh, Safety=med 4 

Buying= med, Maint=vhigh, Class=unacc 4 

Buying= med, Persons=4, Safety=low 3 

Buying= med, Persons=4, Safety=med 3 

Buying= med, Persons=4, Class=unacc 3 

Buying= med, Persons=4, Class=acc 3 

Buying= med, Safety=low, Class=unacc 5 

Buying= med, Safety=med, Class=acc 4 

Buying= low, Persons=2, Class=unacc 3 

Persons=2, Safety=med, Class=unacc 3 

Persons=2, Safety=high, Class=unacc 3 

Persons=4, Safety=low, Class=unacc 5 

Persons=4, Safety=med, Class=acc 3 

Maint=vhigh, Persons=4, Safety=med 3 

Maint=vhigh,Persons=more,Class=unacc 3 

Maint=vhigh, Safety=med, Class=unacc 4 

Maint=vhigh, Safety=med, Class=acc 3 

 

Merging of the 3-itemsets (within the same color band following the merge condition) produces 5 

candidate 4-itemsets. We perform “candidate pruning” to eliminate infrequent itemsets. We check if all 

possible combinations of 3-items subsets present among the frequent 3-itemsets.  

 



Support counts for candidate 4-itemsets 

Buying= med, Maint=vhigh, Safety=med, Class=unacc  

Buying= med, Persons=4, Safety=low, Class=acc  

Buying= med, Persons=4, Safety=low, Class=unacc 3 

Buying= med, Persons=4, Safety=med, Class=unacc  

Buying= med, Persons=4, Safety=med, Class=acc 3 

 

For the 1st itemset Buying= med, Maint=vhigh, Safety=med, Class=unacc we check: 

1) Maint=vhigh, Safety=med, Class=unacc - frequent 

2) Buying= med, Safety=med, Class=unacc - infrequent 

We don’t need to check the condition for Buying= med, Maint=vhigh, Class=unacc and Buying= med, 

Maint=vhigh, Class=unacc as we know they are frequent. 

For the 2nd itemset Buying= med, Persons=4, Safety=low, Class=acc in the same manner we check: 

1) Buying= med,  Safety=low, Class=acc - infrequent 

2) Persons=4, Safety=low, Class=acc  - infrequent 

For the 3rd itemset Buying= med, Persons=4, Safety=low, Class=unacc we check: 

1) Buying= med, Safety=low, Class=unacc - frequent 

2) Persons=4, Safety=low, Class=unacc- frequent 

For the 4th itemset Buying= med, Persons=4, Safety=med, Class=unacc we check: 

1) Buying= med, Safety=med, Class=unacc - infrequent 

2) Persons=4, Safety=med, Class=unacc - infrequent 

For the 5th itemset Buying= med, Persons=4, Safety=med, Class=acc we check: 

1) Buying= med, Safety=med, Class=acc - frequent 

2) Persons=4, Safety=med, Class=acc – frequent 

Frequent 4-itemsets 

Buying= med, Persons=4, Safety=low, Class=unacc 3 

Buying= med, Persons=4, Safety=med, Class=acc 3 

 

We stop the process of the frequent itemset generation as we can’t construct candidate 5-itemsets from 

these frequent 4-itemsets as they don’t satisfy the merge condition.  

  



2. Interestingness (or goodness) metrics: 

𝑠𝑢𝑝𝑝(𝑋 => 𝑌) = 𝑠𝑢𝑝𝑝(𝑋 & 𝑌) = 𝑃(𝑋 & 𝑌) 

𝑐𝑜𝑛𝑓(𝑋 => 𝑌) = 𝑃(𝑌 | 𝑋) =  
𝑠𝑢𝑝𝑝(𝑋 =>  𝑌)

𝑠𝑢𝑝𝑝(𝑋)
 

𝑙𝑖𝑓𝑡 (𝑋 =>  𝑌) =  
𝑃(𝑌|𝑋)

𝑃(𝑌)
=  

𝑃(𝑋 & 𝑌)

𝑃(𝑋)𝑃(𝑌)
=

𝑠𝑢𝑝𝑝(𝑋 & 𝑌) 

𝑠𝑢𝑝𝑝(𝑋)𝑠𝑢𝑝𝑝(𝑌)
=

𝑠𝑢𝑝𝑝(𝑋 =>  𝑌) 

𝑠𝑢𝑝𝑝(𝑋)𝑠𝑢𝑝𝑝(𝑌)
  

𝑐𝑜𝑛𝑣(𝑋 =>  𝑌) =  
𝑃( 𝑛𝑜𝑡 𝑌)

𝑃(𝑛𝑜𝑡 𝑌 | 𝑋)
=  

1 − 𝑃(𝑌)

1 − 𝑃(𝑌|𝑋)
=

1 − 𝑠𝑢𝑝𝑝(𝑌) 

1 − 𝑐𝑜𝑛𝑓(𝑋 => 𝑌)
 

𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒(𝑋 => 𝑌) = 𝑠𝑢𝑝𝑝(𝑋 =>  𝑌) − 𝑠𝑢𝑝𝑝(𝑋)𝑠𝑢𝑝𝑝(𝑌) =  𝑠𝑢𝑝𝑝(𝑋 & 𝑌) − 𝑠𝑢𝑝𝑝(𝑋)𝑠𝑢𝑝𝑝(𝑌)  

For Rule 1: Buying= med, Persons=4 => Safety=low, Class=unacc (see rule construction below):  

lift(Rule 1) = lift() = 0.5 / (7/22) = 1.57 

Lift compares the probability that Y occurs in a data instance given that X occurs, against the probability 

of Y occurring in a data instance in general. Hence the value of the lift for the first rule tells us that that Y 

is 1.57 times more likely to occur when X occurs than in general. 

leverage(Rule1) = 3/22 – (6/22 * 7/22) = 0.049 

Leverage measures the difference of antecedent and consequent of the rule appearing together in the 

data set and what would be expected if antecedent and consequent where statistically independent.  

conviction(Rule1)=(1-7/22) / (1-0.5) = 1.36 

Conviction compares the probability that the consequent doesn’t appear in a data instance against the 

probability that the consequent doesn’t appear in a data instance if the antecedent appears. Hence the 

value of conviction for rule 1 tells us that Y is 1.36 times more likely to not occur in a data instance than 

when X occurs in the data instance. 

3. RULE GENERATION 

The last step of the Apriori algorithm is the rule generation. Rules can be generated by dividing each 

itemset on two subsets X and Y and creating the rule X=>Y. All possible combinations of these subsets 

will create new rules. We will create the rules for the 1st 4-itemset that we generated above. We will 

evaluate the rules by calculating lift and confidence. 

Itemset for rule generation 

Buying= med, Persons=4, Safety=low, Class=unacc 

 

𝑐𝑜𝑛𝑓(𝑋 => 𝑌) =
𝑠𝑢𝑝𝑝(𝑋 =>  𝑌)

𝑠𝑢𝑝𝑝(𝑋)
 



Rule 1: Buying= med, Persons=4 => Safety=low, Class=unacc 

conf(Rule1) =(3/22) / (6/22) = 0.5 

lift(Rule 1) =0.5 / (7/22) = 1.57 

Rule 2: Buying= med, Safety=low => Persons=4 Class=unacc 

conf(Rule2)= (3/22) / (5/22)=0.6 

lift(Rule2)=0.6 / (6/22) = 2.2 

Rule 3: Buying= med, Class=unacc => Persons=4, Safety=low 

conf(Rule3) = (3/22) / (7/22) = 0.43 

lift(Rule3) =0.43 / (5/22) = 1.892 

Rule 4: Persons=4, Class=unacc => Buying= med, Safety=low 

conf(Rule4) = (3/22) / (6/22) =0.5 

lift(Rule4)=0.5 / (5/22) = 2.2 

Rule 5: Persons=4, Safety=low => Buying= med, Class=unacc 

conf(Rule5) = (3/22) / (5/22) = 0.6 

lift(Rule5) = 0.6 / (7/22) = 1.892 

Rule 6: Safety=low, Class=unacc => Buying= med, Persons=4 

conf(Rule6) = (3/22) / (7/22) = 0.43 

lift(Rule6) = 0.42 / (6/22) = 1.57 

 

4. Weks’s Implementation of the Apriori Algorithm: 

We will discuss the following parameters of the Weka implementation of the Apriori algorithm:  

1) lowerBoundMinSupport 

2) upperBoundMinSupport 

3) delta 

4) metricType 

5) minMetric 

6) numRules 



The last parameter limits the number of the rules that the Apriori algorithm is supposed to find. 

Weka’s implementation of the Apriori algorithm runs until it finds a user-specified number of 

rules indicated by numRules parameter. If the algorithm can’t find at least this amount of rules 

indicated by the user with certain min support threshold, it decreases the min support threshold 

and runs the algorithm over again. The first 3 parameters tune the way the iterative algorithm 

works. UpperBoundMinSupport is the initial min support value with which the algorithm starts. 

If it can’t find the required amount of rules it decreases min support by delta. The process is 

repeated iteratively until the required number of rules is found or the min support threshold 

reaches the value of lowerBoundMinSupport. Metric type and min metric are used in the rule 

generation. Metric type is the metric that is used to evaluate the rules (lift, confidence, 

conviction or leverage). The minMetric sets the threshold for the rule to be generated or to be 

discarded.  


