
1

Murali Mani

The Entity-

Relationship Model

Murali Mani

Database Design Stages

Application

Requirements

Conceptual

Design

Logical Design

Physical Design

Conceptual Schema

Logical Schema

Physical Schema



2

Murali Mani

Conceptual Design

� What is conceptual Design?

� Concise representation of our DB application requirements

� Conceptual Models

� ER (Entity Relationship) Model, UML (Unified Modeling 

Language), ORM (Object Role Modeling) etc

� ER Model

� Structures: entities and relationships

� Constraints

� An ER schema is represented as an ER diagram.

Murali Mani

ER Model: Entity Types and 

Attributes
� Entity: “Object”

� Entity Type: “Class”

� Attribute: property of an entity, has a domain

� In ER diagrams 
� Entity Type � rectangle

� Attribute � Oval.

Student

sNamesNumber

sAge

Entity Type Student

with attributes 

(sNumber, sName, sAge)



3

Murali Mani

ER Example

� Consider DB 

instance with 3 

students

(1, Joe, 21), 

(2, Mary, 20), 

(3, Emily, 20)

s1

s2

s3

Student

1

2

3

Emily

Mary

Joe

21

20

Murali Mani

ER Model: Complex Attributes

Composite Attribute: address Multivalued Attribute: major

major

Student entity type

with all its attributes

statestreet

address

city

Student

sNamesNumber

sAge

major

statestreet

address

city



4

Murali Mani

ER Model: Relationship Types
� Relationship: Association between entities

� Relationship Type: class of relationships

� Represented as diamond

Student

sNumber

sName

Course

cNumber

title

Has

Taken

Relationship type HasTaken to represent 

Courses taken by Students

Murali Mani

ER Model: Relationship Types 

with Attributes

Relationship HasTaken has an attribute project which is the

project the Student did for the Course



5

Murali Mani

Example: Relationship 

Instance

� Consider students {Hong, Song}, courses 

{DB1, DB2}, and the relationships {(Hong, 

DB1, 98), (Song, DB1, 99), (Hong, DB2, 97)}

HasTaken

98

97

99

DB1

DB2

Hong

Song

Student Course

Murali Mani

N-ary relationship type

Supplier

sName

sLoc

Consumer

cName

cLoc

Supply

price

Product

pName pNumber

qty

Ternary relationship type: Supplier supplies Products to Consumers

Note: This is NOT equivalent to 2 binary relationships



6

Murali Mani

Recursive Relationship Types 

and Roles

Part-Subpart recursive relationship type

Roles: There are Parts that play the role of

superPart

There are Parts that play the role of subPart

Contains

Part

pName pNumber

subPartsuperPart

quantity
Contains

bike

Part

frame

wheel

seat

tire

1

2

1

1

Murali Mani

ER Model so far

� Structures

� Entity Types

� Relationship Types

� Binary, ternary, n-ary

� Recursive

� Attributes

� For entity types and relationship types

� Simple, composite, multivalued

� Roles



7

Murali Mani

ER Model: Key Constraints
Underline the key attribute/attributes

Key for Student is sNumber Student

sNumber

sName

Key for Movie is <title, year>Movie

title

year

Note:

We can represent key for an entity type consists of more than 1 attribute 

(eg: Movie)

We cannot represent multiple keys for an entity type (eg: key for Student

can be either sNumber or sName)

Murali Mani

ER Model: Cardinality 

Constraints
Expressed using (min, max)

Student

sNumber

sName

Course

cNumber

title

Has

Taken
(2, 3) (0, *)

Student can take >= 2 and <= 3 Courses

Course can have >= 0 and <= * (infinity) Students

min and max are non-negative integers

max >= min



8

Murali Mani

Cardinality Constraints
1:1 relationship type: A Dept has exactly one Manager, 

A Person can manage atmost one Dept

Person

pNumber

pName

Dept

dNumber

dName

Manages
(0, 1) (1, 1)

1:many (1:n) relationship type: A Person works for exactly one Dept, 

A Dept can have any number of Persons

Person

pNumber

pName

Dept

dNumber

dName

Works

For
(1, 1) (0, *)

Murali Mani

Cardinality Constraints

many:many (m:n) relationship type: A Person works for one or more Depts, 

A Dept can have any number of Persons

Person

pNumber

pName

Dept

dNumber

dName

Works

For
(1, *) (0, *)



9

Murali Mani

Cardinality Constraints for 

n-ary relationships

Supplier

sName

sLoc

Consumer

cName

cLoc

Supply

price

Product

pName pNumber

qty

(1, *) (0, *)

(0, *)

A Supplier supplies at least one Product to some Consumer

We cannot specify:

A Consumer gets a Product from only one Supplier

Each Supplier supplies exactly 2 Products

Murali Mani

Cardinality Constraints for 

Recursive Relationships

A Part can be subpart of one superPart

A Part can have many subParts

A Part can be subpart of many superParts

A Part can have many subParts

Contains

Part

pName pNumber

subPartsuperPart

quantity

(0, 1)(0, *)

Contains

Part

pName pNumber

subPartsuperPart

quantity

(0, *)(0, *)



10

Murali Mani

ER Model Constraints 

Summary

� Key Constraints

� Cardinality Constraints

� Expressed using (min, max)

� Binary relationship types are called 1:1, 1:many, 

many:many

Murali Mani

An Application Example

� Courses offered in CS Dept, WPI, in A term

• What entity types? – Student, Professor, 
Course, GradStudent

• Attributes and key constraints for entity types

• What relationship types? 

• Cardinality for Relationship Types



11

Murali Mani

Possible Solution

Student

sNumber

sName

Course

cNumber

title

Is

Taking

Professor

pNumber

pName

Is
Teaching

GradStudent

gSNumber

gSName

Is
TAFor

(0, 1)

(1, 1)

(0, *)

(0, 1)

(0, *)(1, *)

Murali Mani

ER Model: ISA Relationship 

Types

Similar to “subclass”

Students can be UGStudents or GradStudents

UGStudents take Classes, GradStudents are TAs for Classes

GradStudents are advised by Professors



12

Murali Mani

Student

GradStudent

(0, *)(0, *)

(1, *)

Course

sNamesNumber

ISA ISA

UGStudent

Is
TAFor

cNumber title

Is

Taking

(0, 1)

programyear

Professor
Is

AdvisedBy

pNumber pName

(1, 1) (0, *)

Murali Mani

ISA

Student

sNamesNumber

ISA

UGStudent

year

(1, 1)

(0, 1)

Note:

Implicit 1:1 relationship

Key for subtype is same as key for supertype

Subtypes can have additional attributes



13

Murali Mani

Weak Entity Types

Consider Depts and Courses

The Courses offered by a Dept are identified by Cnumber

Course is weak entity type

Its identifying relationship is Offers

Its identifying entity type is Dept

A weak entity type can have multiple identifying relationship types and entity types

Note: The cardinality of the weak entity type in a identifying relationship type

is (1, 1)

Murali Mani

Summary of ER

� Structures
� Entity Types

� Relationship types – binary, ternary, n-ary. 
recursive

� Attributes

� For entity types or relationship types

� Simple, composite or multi-valued

� Constraints – key, cardinality

� Roles of entity types in a relationship type

� ISA relationship types

� Weak Entity Types – identifying relationship 
type, identifying entity type



14

Murali Mani

Coming up with a good design 

for your application

� Give good names to entity types, relationship 

types, attributes and roles

C

P

a1 a2

r1r2

q

(0, *)(0, *)

Murali Mani

Good Design: Attribute or 

entity type?
Should we represent something as an attribute or entity type?

How should dept be represented?

(or)

Person

pNumber

pName

Dept

dNumber

Works

For
(1, 1) (0, *)



15

Murali Mani

Good Design: Keep it simple
Do not introduce unnecessary entity types

Person

pNumber

pName

Dept

dNumber

Works

For
(1, 1) (0, *)

(or)

Entity type Contract

Is unnecessary

Murali Mani

Good Design: Determine 

correct cardinality constraints

Person

pNumber

pName

Dept

dNumber

dName

Works

For
(1, 1) (0, *)

Person

pNumber

pName

Dept

dNumber

dName

Works

For
(1, *) (0, *)

(or)



16

Murali Mani

Good Design: Try to avoid 

redundancy

Redundant attribute

Attribute dNum is redundant

Person

pNumber

pName

Dept

dNumber

Works

For
(1, 1) (0, *)

dNum

Murali Mani

Good Design: Try to Avoid 

redundancy

Redundant relationship type

Relationship Type IsObtainedBy is redundant

Supplier

sName

sLoc

Consumer

cName

cLoc

Supply

Product

pName pNumber

(1, *) (0, *)

(0, *)

IsObtained

By

(0, *)

(0, *)


