
Carnegie Mellon Worcester Polytechnic Institute

Threads in the Operating System Kernel

Professor Hugh C. Lauer
CS-3013 — Operating Systems
Slides include copyright materials Modern Operating Systems, 3rd ed., by Andrew Tanenbaum and from Operating
System Concepts, 7th and 8th ed., by Silbershatz, Galvin, & Gagne

Threads in the Kernel CS-3013, C-Term 2014 1

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

In the old days …

 Operating system kernels did one thing at a time

 … with interrupts disabled

 … and all processes and threads suspended!

 Challenging enough to keep track of everything

Threads in the Kernel CS-3013, C-Term 2014 2

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

No longer!

 Desktop PC
 ~100 processes
 > 1,000 threads
 8 processors

 Shared system
 1000s of processes
 Many 1000s of threads
 100s of processors

 Single-threaded kernel becomes serious
bottleneck

Threads in the Kernel CS-3013, C-Term 2014 3

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Alternatives

 Microkernels — e.g., MACH
 Different subsystems operate in separate address

spaces
 Communication via message passing
 Performance issues

 Cluster systems
 Partition applications across computers
 Shared files, but …
 … not much else

Threads in the Kernel CS-3013, C-Term 2014 4

Carnegie Mellon Worcester Polytechnic Institute

Need for multi-threaded kernel!

Threads in the Kernel CS-3013, C-Term 2014 5

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Multi-threaded Kernel

 Linux kernel became multi-threaded in mid-2000s
 Between Linux 2.4.x and 2.6.x

 Windows, other forms of Unix at about same
time

Threads in the Kernel CS-3013, C-Term 2014 6

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Linux approach

 Thread is unit of scheduling

 Kernel maintains
 Interrupt stack for each processor (or core)

 4-8 kilobytes

 Kernel stack for each thread
 4-8 kilobytes
 Fixed location within address space

Threads in the Kernel CS-3013, C-Term 2014 7

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Interrupt handler

 Entered with interrupts disabled

 Do minimal processing to handle interrupt
 Using interrupt stack of interrupted processor!

 Hand off to some thread for real work

More later in the course!

Threads in the Kernel CS-3013, C-Term 2014 8

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Definition – System Call

 A structured function call across a protection
boundary between less privileged applications
and more privileged operating system functions

 Also, across privilege layers of the operating
system itself

System Calls CS-3013, C-Term 2013 9

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Protection Boundary

 Application programs are not allowed to
 Read or write data structures in the kernel
 Call functions in the kernel directly
 Change settings of the machine
 Control arbitrary devices directly
 Interfere with the operation of the kernel in any way

 Enforced by hardware

System Calls CS-3013, C-Term 2013 10

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

System Call

 A trap caused by executing a special machine
language instruction

 Causes a synchronous interrupt to a specific
interrupt/trap handler in the OS

 Allows the OS to control access, check
arguments, manage behavior, etc.

 Causes machine to switch modes from “user” to
“system” or “privileged”

 As indicated by bits in the PSW

System Calls CS-3013, C-Term 2013 11

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Trap handling

 Find kernel stack for this thread

 Enable interrupts

 Handle the trap or system call
 As a kernel function
 Like the syscall stubs that we implemented in Project 0

Threads in the Kernel CS-3013, C-Term 2014 12

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

From previous topic

Threads CS-3013, C-Term 2014 13

0x00000000 PC (T1)

0xFFFFFFFF

(virtual)
address space

program code
(text)

global & static
data

heap
(dynamically allocated)

Thread 3 stack

PC (T1)

SP (T2)
Thread 2 stack

Thread 1 stack

PC (T2)

SP (T2)

SP (T1)

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

In reality:–

Windows, Unix, & Linux Processes CS-3013, C-Term 2013 14

0x00000000 PC (T1)

0xFFFFFFFF

(virtual)
address space

program code
(text)

global & static
data

heap
(dynamically allocated)

Thread 3 stack

PC (T1)

SP (T2)
Thread 2 stack

Thread 1 stack

PC (T2)

SP (T2)

SP (T1)

Kernel code &
data

Including kernel
stack

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Digression – Process Address Space

 Linux includes (parts of) kernel in every address
space

 Protected
 Easy to access
 Allows kernel functions to see into client processes

– Transferring data
– Examining state
– …

 Also many other operating systems

Threads CS-3013, C-Term 2013 15

But not touchable in non-privileged mode
In privileged mode

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Linux Kernel Implementation

 Kernel may execute in either Interrupt context or
Process context

 In Interrupt context, no assumption about what
process was executing (if any)

 No access to virtual memory, files, resources
 May not sleep, take page faults, wait for input, etc.

 In Process context, kernel has access to
 Virtual memory, files, other process resources
 May sleep, take page faults, etc., on behalf of process
 May access shared resources & wait till available, etc.

Threads CS-3013, C-Term 2013 16

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Modern Linux Threads (continued)

 Multiple threads can be executing in kernel at
same time
 In various states of activity

 Multiple processors can be executing in kernel at
the same time
 Handling interrupts
 In process context on behalf of some thread

 Made possible by
 One kernel stack per thread
 One interrupt stack per processor

Threads CS-3013, C-Term 2013 17

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Threads in Linux Kernel

 Kernel has its own threads
 No associated process context

 Supports concurrent activity within kernel
 Multiple devices operating at one time
 Multiple application activities at one time
 Multiple processors in kernel at one time

 A useful tool
 Special kernel thread packages, synchronization primitives, etc.
 Useful for complex OS environments

Threads CS-3013, C-Term 2013 18

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Windows NT/XP/Vista Threads

 Much like Linux 2.6 threads
 Primitive unit of scheduling defined by kernel
 Threads can block independently of each other
 Threads can make kernel calls
 …

 Process
 A higher level (non-kernel) abstraction
 A container

 See Tanenbaum, §11.4

Threads CS-3013, C-Term 2013 19

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Threads – Summary

 Threads were invented to counteract the
heavyweight nature of Processes in Unix,
Windows, etc.

 Provide lightweight concurrency within a single
address space

 Have evolved to become the primitive execution
abstraction defined by kernel

 Fundamental unit of scheduling in Linux, Windows, etc

Threads CS-3013, C-Term 2013 20

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Threads in the Kernel CS-3013, C-Term 2014 21

	Threads in the Operating System Kernel
	In the old days …
	No longer!
	Alternatives
	Need for multi-threaded kernel!
	Multi-threaded Kernel
	Linux approach
	Interrupt handler
	Definition – System Call
	Protection Boundary
	System Call
	Trap handling
	From previous topic
	In reality:–
	Digression – Process Address Space
	Linux Kernel Implementation
	Modern Linux Threads (continued)
	Threads in Linux Kernel
	Windows NT/XP/Vista Threads
	Threads – Summary
	Questions?

