
Carnegie Mellon Worcester Polytechnic Institute 

Threads in the Operating System Kernel 

Professor Hugh C. Lauer 
CS-3013 — Operating Systems 
Slides include copyright materials Modern Operating Systems, 3rd ed., by Andrew Tanenbaum and from Operating 
System Concepts, 7th and 8th ed., by Silbershatz, Galvin, & Gagne 

Threads in the Kernel CS-3013, C-Term 2014 1 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

In the old days … 

 Operating system kernels did one thing at a time 
 

 … with interrupts disabled 
 

   … and all processes and threads suspended! 
 
 

 Challenging enough to keep track of everything 
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No longer! 

 Desktop PC 
 ~100 processes 
 > 1,000 threads 
 8 processors 

 

 Shared system 
 1000s of processes 
 Many 1000s of threads 
 100s of processors 

 

 Single-threaded kernel becomes serious 
bottleneck 
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Alternatives 

 Microkernels — e.g., MACH 
 Different subsystems operate in separate address 

spaces 
 Communication via message passing 
 Performance issues 

 

 Cluster systems 
 Partition applications across computers 
 Shared files, but … 
   … not much else 
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Need for multi-threaded kernel! 
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Multi-threaded Kernel 

 Linux kernel became multi-threaded in mid-2000s 
 Between Linux 2.4.x and 2.6.x 

 

 Windows, other forms of Unix at about same 
time 
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Linux approach 

 Thread is unit of scheduling 
 

 Kernel maintains 
 Interrupt stack for each processor (or core) 

 4-8 kilobytes 

 Kernel stack for each thread 
 4-8 kilobytes 
 Fixed location within address space 
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Interrupt handler 

 Entered with interrupts disabled 
 

 Do minimal processing to handle interrupt 
 Using interrupt stack of interrupted processor! 

 

 Hand off to some thread for real work 
 
 
 

More later in the course! 
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Definition – System Call 

 A structured function call across a protection 
boundary between less privileged applications 
and more privileged operating system functions 

 

 Also, across privilege layers of the operating 
system itself 
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Protection Boundary 

 Application programs are not allowed to 
 Read or write data structures in the kernel 
 Call functions in the kernel directly 
 Change settings of the machine 
 Control arbitrary devices directly 
 Interfere with the operation of the kernel in any way 

 

 Enforced by hardware 
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System Call 

 A trap caused by executing a special machine 
language instruction 

 Causes a synchronous interrupt to a specific 
interrupt/trap handler in the OS 

 Allows the OS to control access, check 
arguments, manage behavior, etc. 

 Causes machine to switch modes from “user” to 
“system” or “privileged” 

 As indicated by bits in the PSW 
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Trap handling 

 Find kernel stack for this thread 
 

 Enable interrupts 
 

 Handle the trap or system call 
 As a kernel function 
 Like the syscall stubs that we implemented in Project 0 
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From previous topic 
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In reality:– 
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Digression – Process Address Space 

 Linux includes (parts of) kernel in every address 
space 

 Protected 
 Easy to access 
 Allows kernel functions to see into client processes 

– Transferring data 
– Examining state 
– … 

 
 

 Also many other operating systems 
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Linux Kernel Implementation 

 Kernel may execute in either Interrupt context or 
Process context 

 

 In Interrupt context, no assumption about what 
process was executing (if any) 

 No access to virtual memory, files, resources 
 May not sleep, take page faults, wait for input, etc. 

 

 In Process context, kernel has access to 
 Virtual memory, files, other process resources 
 May sleep, take page faults, etc., on behalf of process 
 May access shared resources & wait till available, etc. 
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Modern Linux Threads (continued) 

 Multiple threads can be executing in kernel at 
same time 
 In various states of activity 

 

 Multiple processors can be executing in kernel at 
the same time 
 Handling interrupts 
 In process context on behalf of some thread 

 

 Made possible by 
 One kernel stack per thread 
 One interrupt stack per processor 
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Threads in Linux Kernel 

 Kernel has its own threads 
 No associated process context 

 Supports concurrent activity within kernel 
 Multiple devices operating at one time 
 Multiple application activities at one time 
 Multiple processors in kernel at one time 

 A useful tool 
 Special kernel thread packages, synchronization primitives, etc. 
 Useful for complex OS environments 
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Windows NT/XP/Vista Threads 

 Much like Linux 2.6 threads 
 Primitive unit of scheduling defined by kernel 
 Threads can block independently of each other 
 Threads can make kernel calls 
 … 

 Process  
 A higher level (non-kernel) abstraction 
 A container 

 See Tanenbaum, §11.4 
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Threads – Summary 

 Threads were invented to counteract the 
heavyweight nature of Processes in Unix, 
Windows, etc. 

 

 Provide lightweight concurrency within a single 
address space 

 

 Have evolved to become the primitive execution 
abstraction defined by kernel 

 Fundamental unit of scheduling in Linux, Windows, etc 
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Questions? 
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