
3: Processes 1

Jerry Breecher

OPERATING SYSTEMS

PROCESSES

3: Processes 2

What Is In This Chapter?

Process Definition

Scheduling Processes

What Do Processes Do?

Inter-process Communication

OPERATING SYSTEM
Processes

3: Processes 3

PROCESSES
PROCESS CONCEPT:

A program is passive; a process active.
Attributes held by a process include
hardware state,
memory,
CPU,
progress (executing)

WHY HAVE PROCESSES?

Resource sharing (logical (files) and physical(hardware)).

Computation speedup - taking advantage of multiprogramming – i.e. example of a
customer/server database system.

Modularity for protection.

Definitions

3: Processes 4

PROCESSES PROCESS STATE
• New The process is just being put together.

• Running Instructions being executed. This running process holds the CPU.

• Waiting For an event (hardware, human, or another process.)

• Ready The process has all needed resources - waiting for CPU only.

• Suspended Another process has explicitly told this process to sleep. It will be
awakened when a process explicitly awakens it.

• Terminated The process is being torn apart.

3: Processes 5

PROCESS CONTROL BLOCK:

CONTAINS INFORMATION ASSOCIATED WITH EACH
PROCESS:

It's a data structure holding:

• PC, CPU registers,

• memory management information,

• accounting (time used, ID, ...)

• I/O status (such as file resources),

• scheduling data (relative priority, etc.)

• Process State (so running, suspended, etc. is simply
a field in the PCB).

PROCESSES Process State

3: Processes 6

The act of Scheduling a process means changing the active PCB pointed to by the CPU.
Also called a context switch.

A context switch is essentially the same as a process switch - it means that the memory,
as seen by one process is changed to the memory seen by another process.
See Figure on Next Page (4.3)

SCHEDULING QUEUES:

(Process is driven by events that are triggered by needs and availability)

•Ready queue = contains those processes that are ready to run.

•I/O queue (waiting state) = holds those processes waiting for I/O service.

What do the queues look like? They can be implemented as single or double linked.
See Figure Several Pages from Now (4.4)

PROCESSES
Scheduling
Components

3: Processes 7

PROCESSES
Scheduling
Components

The CPU switching
from one process to
another.

3: Processes 8

Figure 4.4

PROCESSES
Scheduling
Components

Ready Q
And

IO Q’s

3: Processes 9

LONG TERM SCHEDULER

• Run seldom (when job comes into memory)

• Controls degree of multiprogramming

• Tries to balance arrival and departure rate through an appropriate job mix.

SHORT TERM SCHEDULER

Contains three functions:

• Code to remove a process from the processor at the end of its run.
a)Process may go to ready queue or to a wait state.

• Code to put a process on the ready queue –
a)Process must be ready to run.
b)Process placed on queue based on priority.

PROCESSES
Scheduling
Components

3: Processes 10

SHORT TERM SCHEDULER (cont.)

• Code to take a process off the ready queue and run that process (also called
dispatcher).

a) Always takes the first process on the queue (no intelligence required)
b) Places the process on the processor.

This code runs frequently and so should be as short as possible.

MEDIUM TERM SCHEDULER

Mixture of CPU and memory resource management.

Swap out/in jobs to improve mix and to get memory.

Controls change of priority.

PROCESSES
Scheduling
Components

3: Processes 11

INTERRUPT HANDLER
In addition to doing device work, it also readies processes, moving them, for
instance, from waiting to ready.

How do all
these

scheduling
components
fit together?

Fig 4.5

PROCESSES
Scheduling
Components

Interrupt Handler

Short Term
Scheduler

Short Term
Scheduler

Long Term
Scheduler

Medium Term
Scheduler

3: Processes 12

What needs to be done on a process schedule?

What needs to be done on a thread schedule?

What is a context switch?

PROCESSES
Scheduling Processes

and Threads

3: Processes 13

Parent can run concurrently with child,
or wait for completion.

Child may share all (fork/join) or part
of parent's variables.

Death of parent may force death of
child.

Processes are static (never terminate)
or dynamic (can terminate).

Independent Execution is
deterministic and reproducible.
Execution can be stopped/ started
without affecting other processes.

Cooperating Execution depends on
other processes or is time dependent.
Here the same inputs won't always
give the same outputs; the process
depends on other external states.

PROCESSES
Process

Relationships

3: Processes 14

This is how processes talk to each other.

There are basically two methods:

Shared memory (with a process "kick") -- fast/ no data transfer.

Message Passing -- distributed/ better isolation.

METHODS OF IMPLEMENTATION:

• Direct or indirect - to process or mailbox.
• Symmetric or asymmetric?
• Buffering mechanism
• Send by copy or by reference?
• Fixed or variable size messages?

FUNCTIONALITY OF COMMUNICATION
LINKS:

• How are the links formed?
• How many processes on each link?
• How many links per pair of processes?
• Capacity - buffer space - can messages

be enqueued.
• Message formats and sizes
• Uni- or bidirectional

PROCESSES
Interprocess

Communication

3: Processes 15

DIRECT COMMUNICATION:

Need to know name of sender/receiver. Mechanism looks like this:

send (Process_P, message) ;

receive (Process_Q , message);

receive (id, message) <-- from any sender

The Producer/Consumer Problem is a standard mechanism. One process produces items
that are handed off to the consumer where they are "used".

repeat repeat
produce item receive(producer, nextp)
send(consumer, nextp) consume item

until false until false

PROCESSES
Interprocess

Communication

3: Processes 16

Other properties of Direct Communication:

•Link established automatically (when send or receive requested.)
•Only two processes in this form.
•One link per pair of processes.
•Generally Bi-directional
•Receiver may not need ID of sender.

Disadvantage of Direct Communication:

•The names of processes must be known - they can't be easily changed since they are
explicitly named in the send and receive.

PROCESSES
Interprocess

Communication

3: Processes 17

INDIRECT COMMUNICATION

• Processes communicate via a named mailbox rather than via a process name.
Mechanism looks like this:

open(mailbox_name);
send (mailbox_name, message);
receive (mailbox_name, message);

• Link is established if processes have a shared mailbox. So mailbox must be established
before the send/receive.

• More than two processes are allowed to use the same mailbox.

• May cause confusion with multiple receivers - if several processes have outstanding
receives on a mailbox, which one gets a message?

PROCESSES
Interprocess

Communication

3: Processes 18

BUFFERING:

Options include:
•Zero -- sender must wait for recipient to get message. Provides a rendezvous.

•Bounded -- sender must wait for recipient if more than n messages in buffer.

•Unbounded -- sender is never delayed.

MESSAGE FORMAT:

•Fixed, Variable, or Typed (as in language typing) size messages.

•Send reference rather than copy (good for large messages).

•Suspended vs. unsuspended sends.

PROCESSES
Interprocess

Communication

3: Processes 19

Remote procedure call (RPC) abstracts
procedure calls between processes on
networked systems.

Stubs – client-side proxy for the actual
procedure on the server.

The client-side stub locates the server and
marshalls the parameters.

The server-side stub receives this message,
unpacks the marshalled parameters, and

peforms the procedure on the server.

PROCESSES
Interprocess

Communication

3: Processes 20

WRAPUP

PROCESSES

We’ve looked in detail at how processes work. Specifically we’ve

• Seen how they get scheduled (and studied schedulers in doing so),
• Visited the actions that can be performed on objects,
• Examined the extension of processes called threads,
• Looked at how processes communicate with each other’

