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Outline 

 What exceptions are and when to use them 
 Using try, catch and throw to detect, handle and 

indicate exceptions, respectively 
 To process uncaught and unexpected exceptions 
 To declare new exception classes 
 How stack unwinding enables exceptions not 

caught in one scope to be caught in another 
scope 

 To handle new failures 
 To understand the standard exception hierarchy 
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Introduction 

 Exceptions 
 Indicate problems that occur during a program’s 

execution 
 Occur infrequently 

 Exception handling 
 Can resolve exceptions 

 Allow a program to continue executing or 
 Notify the user of the problem and 
 Terminate the program in a controlled manner 

 Makes programs robust and fault-tolerant 
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Exception Handling in C++ 

 A standard mechanism for processing errors 
 Especially important when working on a project with a 

large team of programmers 
 

 C++ exception handling is much like Java’s 
 

 Java’s exception handling is much like C++ 
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Fundamental Philosophy 

 Mechanism for sending an exception signal up 
the call stack 

 Regardless of intervening calls 
 

 Note: there is a mechanism based on same 
philosophy in C 

 setjmp(), longjmp() 
 See man pages 
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Traditional Exception Handling 

 Intermixing program and error-handling logic 
 Pseudocode outline 

 Perform a task 
 If the preceding task did not execute correctly 
    Perform error processing 
 Perform next task 
 If the preceding task did not execute correctly 
    Perform error processing 
 … 

 Makes the program difficult to read, modify, 
maintain and debug 

 Impacts performance 
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Note:– In most large systems, code to  
handle errors and exceptions represents 
>80% of the total code of the system 
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Fundamental Philosophy (continued) 

 Remove error-handling code from the program 
execution’s “main line” 

 

 Programmers can handle any exceptions they 
choose 
 All exceptions 
 All exceptions of a certain type 
 All exceptions of a group of related types 
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Fundamental Philosophy (continued) 

 Programs can  
 Recover from exceptions 
 Hide exceptions 
 Pass exceptions up the “chain of command” 
 Ignore certain exceptions and let someone else handle 

them 
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Fundamental Philosophy (continued) 

 An exception is a class 
 Usually derived from one of the system’s exception 

base classes 
 If an exceptional or error situation occurs, 

program throws an object of that class 
 Object crawls up the call stack 

 

 A calling program can choose to catch exceptions 
of certain classes 

 Take action based on the exception object 
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Class exception 

 The standard C++ base class for all exceptions 
 Provides derived classes with virtual function 

what() 
 Returns the exception’s stored error message 
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Example — Divide by Zero 
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 1 // Fig. 27.1: DivideByZeroException.h 

 2 // Class DivideByZeroException definition. 

 3 #include <stdexcept> // stdexcept header file contains runtime_error  

 4 using std::runtime_error; // standard C++ library class runtime_error 

 5  
 6 // DivideByZeroException objects should be thrown by functions 

 7 // upon detecting division-by-zero exceptions 

 8 class DivideByZeroException : public runtime_error  

 9 { 

10 public: 
11    // constructor specifies default error message 
12    DivideByZeroException::DivideByZeroException() 
13       : runtime_error( "attempted to divide by zero" ) {} 
14 }; // end class DivideByZeroException 
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 1 // Fig. 27.2: Fig27_02.cpp 

 2 // A simple exception-handling example that checks for 

 3 // divide-by-zero exceptions. 

 4 #include <iostream> 

 5 using std::cin; 

 6 using std::cout; 

 7 using std::endl; 

 8  
 9 #include "DivideByZeroException.h" // DivideByZeroException class  

10  
11 // perform division and throw DivideByZeroException object if  
12 // divide-by-zero exception occurs 
13 double quotient( int numerator, int denominator ) 
14 { 
15    // throw DivideByZeroException if trying to divide by zero 
16    if ( denominator == 0 ) 
17       throw DivideByZeroException(); // terminate function 
18  
19    // return division result 
20    return static_cast< double >( numerator ) / denominator; 
21 } // end function quotient 
22  
23 int main() 
24 { 
25    int number1; // user-specified numerator 
26    int number2; // user-specified denominator 
27    double result; // result of division 
28  
29    cout << "Enter two integers (end-of-file to end): "; 

 

• Zero-divide 
example 
– (1 of 2) 
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30  
31    // enable user to enter two integers to divide 
32    while ( cin >> number1 >> number2 )  
33    { 
34       // try block contains code that might throw exception      
35       // and code that should not execute if an exception occurs 
36       try                                                        
37       {                                                          
38          result = quotient( number1, number2 );                  
39          cout << "The quotient is: " << result << endl;          
40       } // end try                                               
41                                                                  
42       // exception handler handles a divide-by-zero exception    
43       catch ( DivideByZeroException &divideByZeroException )     
44       {                                                          
45          cout << "Exception occurred: "                          
46             << divideByZeroException.what() << endl;             
47       } // end catch                                             
48  
49       cout << "\nEnter two integers (end-of-file to end): "; 
50    } // end while 
51  
52    cout << endl; 
53    return 0; // terminate normally 
54 } // end main 

 

• Zero-divide 
example 
– (2 of 2) 
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Questions? 
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try Blocks 

 Keyword try followed by curly braces "{}“ 
 

 Should enclose 
 Statements that might cause exceptions 
 Statements that should be skipped in case of an 

exception 
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Software Engineering Observation 

 Exceptions may surface  
 through explicitly mentioned code in a try block,  
 through calls to other functions and  
 through deeply nested function calls initiated by code in 

a try block. 
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Catch Handlers 
 Immediately follow a try block 
 One or more catch handlers for each try block 

 Keyword catch 
 Exception parameter enclosed in parentheses 
 Represents the type of exception to process 
 Can provide an optional parameter name to interact 

with the caught exception object 
 Executes if exception parameter type matches 

the exception thrown in the try block 
 Could be a base class of the thrown exception’s class 
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Catch Handlers (continued) 

try { 
// code to try 

} 
catch (exceptionClass1 &name1) { 

// handle exceptions of exceptionClass1 
} 
catch (exceptionClass2 &name2) { 

// handle exceptions of exceptionClass2 
} 
catch (exceptionClass3 &name3) { 

// handle exceptions of exceptionClass3 
} 
... 
/* code to execute if no exception or 

if catch handler successfully handled exception*/ 
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Other classes of exceptions 
are not handled here 

catch clauses attempted 
in order; first match wins! 
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Common Programming Errors 

 Syntax error to place code between a try block 
and its corresponding catch handlers 

 

 Each catch handler can have only a single 
parameter 

 Specifying a comma-separated list of exception 
parameters is a syntax error 
 

 Logic error to catch same type in two different 
catch handlers following a single try block 

Exception Handling in C++ CS-2303, A-Term 2012 20 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

Fundamental Philosophy (continued) 

 Termination model of exception handling 
 try block expires when an exception occurs 

 Local variables in try block go out of scope 
 Code within the matching catch handler executes 
 Control resumes with the first statement after the last 

catch handler following the try block 
 

 Stack unwinding 
 Occurs if no matching catch handler is found 
 Program attempts to locate another enclosing try block 

in the calling function 
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Control does not return to throw point 
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Stack “Unwinding” 

 Occurs when a thrown exception is not caught in 
a particular scope 

 Unwinding a Function terminates that function 
 All local variables of the function are destroyed 

 Invokes destructors 
 Control returns to point where function was invoked 

 Attempts are made to catch the exception in 
outer try…catch blocks 

 If the exception is never caught, the function 
terminate() is called 
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Observations 

 With exception handling, program can continue 
executing after dealing with a problem 

 rather than terminating  
 

 Helps to support robust applications that 
contribute to mission-critical computing or 
business-critical computing 

 

 When no exceptions occur, there is no 
performance penalty 
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Throwing an Exception 

 Use keyword throw followed by an operand 
representing the type of exception 
 The throw operand can be of any type 
 If the throw operand is an object, it is called an 

exception object 

 The throw operand initializes the exception 
parameter in the matching catch handler, if one 
is found 
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Notes 

 Catching an exception object by reference 
eliminates the overhead of copying the object 
that represents the thrown exception 
 

 Associating each type of runtime error with an 
appropriately named exception object improves 
program clarity. 

Exception Handling in C++ CS-2303, A-Term 2012 25 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

When to Use Exception Handling 
 To process synchronous errors 
 Occur when a statement executes 

 Not to process asynchronous errors 
 Occur concurrently with, and independent of, program 

execution 
 To process problems arising in predefined 

software elements 
 Such as predefined functions and classes 
 Error handling can be performed by customized 

program code based on the application needs 
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Don’t use for routine stuff 
such as end-of-file or null  
string checking 
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Software Engineering Notes 

 Incorporate exception-handling strategy into system 
design from the start 

 Very difficult to retrofit after the system has been implemented! 
 

 Exception handling provides uniform technique for 
processing problems 

 Helps with understandability of each other’s error handling code 
 

 Avoid using exception handling as an alternate form 
of flow of control 

 These “additional” exceptions can “get in the way” of genuine 
error handling 
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Re-throwing an Exception 

 Empty throw; statement 
 

 Use when a catch handler cannot or can only 
partially process an exception 

 

 Next enclosing try block attempts to match the 
exception with one of its catch handlers 
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Common Programming Error 

 Executing an empty throw statement outside a 
catch handler causes a function call to terminate 

 Abandons exception processing and terminates the 
program immediately  
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Exception Specifications 

 Also called throw lists 
 Keyword throw 
 Comma-separated list of exception classes in 

parentheses 
 Example 
 int someFunction( double value ) 

   throw ( ExceptionA, ExceptionB, 
           ExceptionC ) 
{ 
   ... 
} 
 Indicates someFunction can throw types ExceptionA, 

ExceptionB and ExceptionC 
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Exception Specifications (continued) 

 A function can throw only exceptions of types in 
its specification (or derived types) 
 If a function throws a non-specification exception, 

function unexpected is called 
 This usually terminates the program 

 Absence of exception specification indicates that 
the function can throw any exception 

 An empty exception specification, throw(), 
indicates the function cannot throw any 
exceptions 
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Error Note 

 Compiler will not generate compilation error if  
 Function contains a throw expression for an exception 

not listed in exception specification 

 Error occurs only when that function attempts to 
throw that exception 
 At run time 

 To avoid surprises at execution time, carefully 
check your code to ensure that functions do not 
throw exceptions not listed in their exception 
specifications 
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Questions? 
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Constructors and Destructors 

 Exceptions and constructors 
 Exceptions enable constructors to report errors 

 Unable to return values 

 Exceptions thrown by constructors cause any already-
constructed component objects to call their destructors 
 Only objects that have already been constructed will be destroyed 

 Exceptions and destructors 
 Destructors are called for all automatic objects in the 

terminated try block when an exception is thrown 
 Acquired resources can be placed in local objects to automatically 

release the resources when an exception occurs 

 If a destructor invoked by stack unwinding throws an 
exception, function terminate() is called 
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Note 

 When an exception is thrown from the 
constructor for an object that is created in a new 
expression, … 

 

 … the dynamically allocated memory for that 
object is released. 
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Exceptions and Inheritance 

 New exception classes can be defined to inherit 
from existing exception classes 

 

 A catch handler for a particular exception class 
can also catch exceptions of classes derived from 
that class 

 Enables catching related errors with a concise 
notation 
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Failure of calls to new 

 Some compilers throw a bad_alloc exception 
 Compliant with the C++ standard specification 

 Some compilers return 0 
 C++ standard-compliant compilers also have a version 

of new that returns 0 
 Use expression new( nothrow ), where nothrow is of type 

nothrow_t 

 Some compilers throw bad_alloc if <new> is 
included 
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Standard Library Exception Hierarchy 

 Base-class exception 
 Contains virtual function what() for storing error 

messages 

 Exception classes derived from exception 
 bad_alloc – thrown by new 
 bad_cast – thrown by dynamic_cast 
 bad_typeid – thrown by typeid 
 bad_exception – thrown by unexpected 

 Instead of terminating the program or calling the function 
specified by set_unexpected 

 Used only if bad_exception is in function’s throw list 
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Exception Handling Summary 

 Exceptions are derived from class exception  
 Exceptional or error condition is indicated by 

throwing an object of that class 
 Created by constructor in throw statement 

 Calling programs can check for exceptions with 
try...catch construct 

 Unified method of handling exceptions 
 Far superior to coding exception handling in long hand 

 No performance impact when no exceptions 
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Exception Handling Summary (continued) 

 Many more details — see 
 Absolute C++, Chapter 18 
 Any other textbook 
 C++ standard 
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Questions? 
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