
Carnegie Mellon Worcester Polytechnic Institute

Exception Handling in C++

Professor Hugh C. Lauer
CS-2303, System Programming Concepts
(Slides include materials from The C Programming Language, 2nd edition, by Kernighan and Ritchie,
Absolute C++, by Walter Savitch, The C++ Programming Language, Special Edition, by Bjarne Stroustrup,
 and from C: How to Program, 5th and 6th editions, by Deitel and Deitel)

Exception Handling in C++ CS-2303, A-Term 2012 1

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Outline

 What exceptions are and when to use them
 Using try, catch and throw to detect, handle and

indicate exceptions, respectively
 To process uncaught and unexpected exceptions
 To declare new exception classes
 How stack unwinding enables exceptions not

caught in one scope to be caught in another
scope

 To handle new failures
 To understand the standard exception hierarchy

Exception Handling in C++ CS-2303, A-Term 2012 2

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Handling in C++ CS-2303, A-Term 2012 3

http://www.amazon.com/gp/product/images/B001GE91TK/ref=dp_image_0?ie=UTF8&n=284507&s=kitchen

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Introduction

 Exceptions
 Indicate problems that occur during a program’s

execution
 Occur infrequently

 Exception handling
 Can resolve exceptions

 Allow a program to continue executing or
 Notify the user of the problem and
 Terminate the program in a controlled manner

 Makes programs robust and fault-tolerant

Exception Handling in C++ CS-2303, A-Term 2012 4

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Handling in C++

 A standard mechanism for processing errors
 Especially important when working on a project with a

large team of programmers

 C++ exception handling is much like Java’s

 Java’s exception handling is much like C++

Exception Handling in C++ CS-2303, A-Term 2012 5

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Fundamental Philosophy

 Mechanism for sending an exception signal up
the call stack

 Regardless of intervening calls

 Note: there is a mechanism based on same
philosophy in C

 setjmp(), longjmp()
 See man pages

Exception Handling in C++ CS-2303, A-Term 2012 6

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Traditional Exception Handling

 Intermixing program and error-handling logic
 Pseudocode outline

 Perform a task
 If the preceding task did not execute correctly
 Perform error processing
 Perform next task
 If the preceding task did not execute correctly
 Perform error processing
 …

 Makes the program difficult to read, modify,
maintain and debug

 Impacts performance

Exception Handling in C++ CS-2303, A-Term 2012 7

Note:– In most large systems, code to
handle errors and exceptions represents
>80% of the total code of the system

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Fundamental Philosophy (continued)

 Remove error-handling code from the program
execution’s “main line”

 Programmers can handle any exceptions they
choose
 All exceptions
 All exceptions of a certain type
 All exceptions of a group of related types

Exception Handling in C++ CS-2303, A-Term 2012 8

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Fundamental Philosophy (continued)

 Programs can
 Recover from exceptions
 Hide exceptions
 Pass exceptions up the “chain of command”
 Ignore certain exceptions and let someone else handle

them

Exception Handling in C++ CS-2303, A-Term 2012 9

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Fundamental Philosophy (continued)

 An exception is a class
 Usually derived from one of the system’s exception

base classes
 If an exceptional or error situation occurs,

program throws an object of that class
 Object crawls up the call stack

 A calling program can choose to catch exceptions
of certain classes

 Take action based on the exception object

Exception Handling in C++ CS-2303, A-Term 2012 10

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Class exception

 The standard C++ base class for all exceptions
 Provides derived classes with virtual function

what()
 Returns the exception’s stored error message

Exception Handling in C++ CS-2303, A-Term 2012 11

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Example — Divide by Zero

Exception Handling in C++ CS-2303, A-Term 2012 12

 1 // Fig. 27.1: DivideByZeroException.h

 2 // Class DivideByZeroException definition.

 3 #include <stdexcept> // stdexcept header file contains runtime_error

 4 using std::runtime_error; // standard C++ library class runtime_error

 5
 6 // DivideByZeroException objects should be thrown by functions

 7 // upon detecting division-by-zero exceptions

 8 class DivideByZeroException : public runtime_error

 9 {

10 public:
11 // constructor specifies default error message
12 DivideByZeroException::DivideByZeroException()
13 : runtime_error("attempted to divide by zero") {}
14 }; // end class DivideByZeroException

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Handling in C++ CS-2303, A-Term 2012 13

 1 // Fig. 27.2: Fig27_02.cpp

 2 // A simple exception-handling example that checks for

 3 // divide-by-zero exceptions.

 4 #include <iostream>

 5 using std::cin;

 6 using std::cout;

 7 using std::endl;

 8
 9 #include "DivideByZeroException.h" // DivideByZeroException class

10
11 // perform division and throw DivideByZeroException object if
12 // divide-by-zero exception occurs
13 double quotient(int numerator, int denominator)
14 {
15 // throw DivideByZeroException if trying to divide by zero
16 if (denominator == 0)
17 throw DivideByZeroException(); // terminate function
18
19 // return division result
20 return static_cast< double >(numerator) / denominator;
21 } // end function quotient
22
23 int main()
24 {
25 int number1; // user-specified numerator
26 int number2; // user-specified denominator
27 double result; // result of division
28
29 cout << "Enter two integers (end-of-file to end): ";

• Zero-divide
example
– (1 of 2)

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Handling in C++ CS-2303, A-Term 2012 14

30
31 // enable user to enter two integers to divide
32 while (cin >> number1 >> number2)
33 {
34 // try block contains code that might throw exception
35 // and code that should not execute if an exception occurs
36 try
37 {
38 result = quotient(number1, number2);
39 cout << "The quotient is: " << result << endl;
40 } // end try
41
42 // exception handler handles a divide-by-zero exception
43 catch (DivideByZeroException ÷ByZeroException)
44 {
45 cout << "Exception occurred: "
46 << divideByZeroException.what() << endl;
47 } // end catch
48
49 cout << "\nEnter two integers (end-of-file to end): ";
50 } // end while
51
52 cout << endl;
53 return 0; // terminate normally
54 } // end main

• Zero-divide
example
– (2 of 2)

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Exception Handling in C++ CS-2303, A-Term 2012 15

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

try Blocks

 Keyword try followed by curly braces "{}“

 Should enclose
 Statements that might cause exceptions
 Statements that should be skipped in case of an

exception

Exception Handling in C++ CS-2303, A-Term 2012 16

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Software Engineering Observation

 Exceptions may surface
 through explicitly mentioned code in a try block,
 through calls to other functions and
 through deeply nested function calls initiated by code in

a try block.

Exception Handling in C++ CS-2303, A-Term 2012 17

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Catch Handlers
 Immediately follow a try block
 One or more catch handlers for each try block

 Keyword catch
 Exception parameter enclosed in parentheses
 Represents the type of exception to process
 Can provide an optional parameter name to interact

with the caught exception object
 Executes if exception parameter type matches

the exception thrown in the try block
 Could be a base class of the thrown exception’s class

Exception Handling in C++ CS-2303, A-Term 2012 18

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Catch Handlers (continued)

try {
// code to try

}
catch (exceptionClass1 &name1) {

// handle exceptions of exceptionClass1
}
catch (exceptionClass2 &name2) {

// handle exceptions of exceptionClass2
}
catch (exceptionClass3 &name3) {

// handle exceptions of exceptionClass3
}
...
/* code to execute if no exception or

if catch handler successfully handled exception*/

Exception Handling in C++ CS-2303, A-Term 2012 19

Other classes of exceptions
are not handled here

catch clauses attempted
in order; first match wins!

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Common Programming Errors

 Syntax error to place code between a try block
and its corresponding catch handlers

 Each catch handler can have only a single
parameter

 Specifying a comma-separated list of exception
parameters is a syntax error

 Logic error to catch same type in two different
catch handlers following a single try block

Exception Handling in C++ CS-2303, A-Term 2012 20

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Fundamental Philosophy (continued)

 Termination model of exception handling
 try block expires when an exception occurs

 Local variables in try block go out of scope
 Code within the matching catch handler executes
 Control resumes with the first statement after the last

catch handler following the try block

 Stack unwinding
 Occurs if no matching catch handler is found
 Program attempts to locate another enclosing try block

in the calling function

Exception Handling in C++ CS-2303, A-Term 2012 21

Control does not return to throw point

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Stack “Unwinding”

 Occurs when a thrown exception is not caught in
a particular scope

 Unwinding a Function terminates that function
 All local variables of the function are destroyed

 Invokes destructors
 Control returns to point where function was invoked

 Attempts are made to catch the exception in
outer try…catch blocks

 If the exception is never caught, the function
terminate() is called

Exception Handling in C++ CS-2303, A-Term 2012 22

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Observations

 With exception handling, program can continue
executing after dealing with a problem

 rather than terminating

 Helps to support robust applications that
contribute to mission-critical computing or
business-critical computing

 When no exceptions occur, there is no
performance penalty

Exception Handling in C++ CS-2303, A-Term 2012 23

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Throwing an Exception

 Use keyword throw followed by an operand
representing the type of exception
 The throw operand can be of any type
 If the throw operand is an object, it is called an

exception object

 The throw operand initializes the exception
parameter in the matching catch handler, if one
is found

Exception Handling in C++ CS-2303, A-Term 2012 24

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Notes

 Catching an exception object by reference
eliminates the overhead of copying the object
that represents the thrown exception

 Associating each type of runtime error with an
appropriately named exception object improves
program clarity.

Exception Handling in C++ CS-2303, A-Term 2012 25

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

When to Use Exception Handling
 To process synchronous errors
 Occur when a statement executes

 Not to process asynchronous errors
 Occur concurrently with, and independent of, program

execution
 To process problems arising in predefined

software elements
 Such as predefined functions and classes
 Error handling can be performed by customized

program code based on the application needs

Exception Handling in C++ CS-2303, A-Term 2012 26

Don’t use for routine stuff
such as end-of-file or null
string checking

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Software Engineering Notes

 Incorporate exception-handling strategy into system
design from the start

 Very difficult to retrofit after the system has been implemented!

 Exception handling provides uniform technique for
processing problems

 Helps with understandability of each other’s error handling code

 Avoid using exception handling as an alternate form
of flow of control

 These “additional” exceptions can “get in the way” of genuine
error handling

Exception Handling in C++ CS-2303, A-Term 2012 27

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Re-throwing an Exception

 Empty throw; statement

 Use when a catch handler cannot or can only
partially process an exception

 Next enclosing try block attempts to match the
exception with one of its catch handlers

Exception Handling in C++ CS-2303, A-Term 2012 28

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Common Programming Error

 Executing an empty throw statement outside a
catch handler causes a function call to terminate

 Abandons exception processing and terminates the
program immediately

Exception Handling in C++ CS-2303, A-Term 2012 29

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Specifications

 Also called throw lists
 Keyword throw
 Comma-separated list of exception classes in

parentheses
 Example
 int someFunction(double value)

 throw (ExceptionA, ExceptionB,
 ExceptionC)
{
 ...
}
 Indicates someFunction can throw types ExceptionA,

ExceptionB and ExceptionC

Exception Handling in C++ CS-2303, A-Term 2012 30

Optional!

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Specifications (continued)

 A function can throw only exceptions of types in
its specification (or derived types)
 If a function throws a non-specification exception,

function unexpected is called
 This usually terminates the program

 Absence of exception specification indicates that
the function can throw any exception

 An empty exception specification, throw(),
indicates the function cannot throw any
exceptions

Exception Handling in C++ CS-2303, A-Term 2012 31

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Error Note

 Compiler will not generate compilation error if
 Function contains a throw expression for an exception

not listed in exception specification

 Error occurs only when that function attempts to
throw that exception
 At run time

 To avoid surprises at execution time, carefully
check your code to ensure that functions do not
throw exceptions not listed in their exception
specifications

Exception Handling in C++ CS-2303, A-Term 2012 32

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Exception Handling in C++ CS-2303, A-Term 2012 33

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Constructors and Destructors

 Exceptions and constructors
 Exceptions enable constructors to report errors

 Unable to return values

 Exceptions thrown by constructors cause any already-
constructed component objects to call their destructors
 Only objects that have already been constructed will be destroyed

 Exceptions and destructors
 Destructors are called for all automatic objects in the

terminated try block when an exception is thrown
 Acquired resources can be placed in local objects to automatically

release the resources when an exception occurs

 If a destructor invoked by stack unwinding throws an
exception, function terminate() is called

Exception Handling in C++ CS-2303, A-Term 2012 34

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Note

 When an exception is thrown from the
constructor for an object that is created in a new
expression, …

 … the dynamically allocated memory for that
object is released.

Exception Handling in C++ CS-2303, A-Term 2012 35

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exceptions and Inheritance

 New exception classes can be defined to inherit
from existing exception classes

 A catch handler for a particular exception class
can also catch exceptions of classes derived from
that class

 Enables catching related errors with a concise
notation

Exception Handling in C++ CS-2303, A-Term 2012 36

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Failure of calls to new

 Some compilers throw a bad_alloc exception
 Compliant with the C++ standard specification

 Some compilers return 0
 C++ standard-compliant compilers also have a version

of new that returns 0
 Use expression new(nothrow), where nothrow is of type

nothrow_t

 Some compilers throw bad_alloc if <new> is
included

Exception Handling in C++ CS-2303, A-Term 2012 37

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Handling in C++ CS-2303, A-Term 2012 38

Standard Library exception classes

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Standard Library Exception Hierarchy

 Base-class exception
 Contains virtual function what() for storing error

messages

 Exception classes derived from exception
 bad_alloc – thrown by new
 bad_cast – thrown by dynamic_cast
 bad_typeid – thrown by typeid
 bad_exception – thrown by unexpected

 Instead of terminating the program or calling the function
specified by set_unexpected

 Used only if bad_exception is in function’s throw list

Exception Handling in C++ CS-2303, A-Term 2012 39

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Handling Summary

 Exceptions are derived from class exception
 Exceptional or error condition is indicated by

throwing an object of that class
 Created by constructor in throw statement

 Calling programs can check for exceptions with
try...catch construct

 Unified method of handling exceptions
 Far superior to coding exception handling in long hand

 No performance impact when no exceptions

Exception Handling in C++ CS-2303, A-Term 2012 40

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Exception Handling Summary (continued)

 Many more details — see
 Absolute C++, Chapter 18
 Any other textbook
 C++ standard

Exception Handling in C++ CS-2303, A-Term 2012 41

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Exception Handling in C++ CS-2303, A-Term 2012 42

	Exception Handling in C++
	Outline
	Slide Number 3
	Introduction
	Exception Handling in C++
	Fundamental Philosophy
	Traditional Exception Handling
	Fundamental Philosophy (continued)
	Fundamental Philosophy (continued)
	Fundamental Philosophy (continued)
	Class exception
	Example — Divide by Zero
	Slide Number 13
	Slide Number 14
	Questions?
	try Blocks
	Software Engineering Observation
	Catch Handlers
	Catch Handlers (continued)
	Common Programming Errors
	Fundamental Philosophy (continued)
	Stack “Unwinding”
	Observations
	Throwing an Exception
	Notes
	When to Use Exception Handling
	Software Engineering Notes
	Re-throwing an Exception
	Common Programming Error
	Exception Specifications
	Exception Specifications (continued)
	Error Note
	Questions?
	Constructors and Destructors
	Note
	Exceptions and Inheritance
	Failure of calls to new
	Standard Library exception classes
	Standard Library Exception Hierarchy
	Exception Handling Summary
	Exception Handling Summary (continued)
	Questions?

