
Carnegie Mellon Worcester Polytechnic Institute

Derived Classes in C++

Professor Hugh C. Lauer
CS-2303, System Programming Concepts

(Slides include materials from The C Programming Language, 2nd edition, by Kernighan and Ritchie,
Absolute C++, by Walter Savitch, The C++ Programming Language, Special Edition, by Bjarne Stroustrup,
 and from C: How to Program, 5th and 6th editions, by Deitel and Deitel)

Derived Classes in C++ CS-2303, A-Term 2012 1

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Outline

 Introduction

 Base Classes and Derived Classes

 Some Examples of Base Class and Derived Class
Relationships

 Constructors and Destructors in Derived Classes

 Accessing Members of Base and Derived Classes

Derived Classes in C++ CS-2303, A-Term 2012 2

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Reading Assignment

 Absolute C++, Chapter 14

 A lot of similarities to Java

 Some differences

Derived Classes in C++ CS-2303, A-Term 2012 3

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

History

 The whole notion of classes, subclasses, and
inheritance came from Simula 67

 A generalization of notion of records (now known as
structs) from Algol- and Pascal-like languages in 1960s
and early 70s

 A (very nice) programming language developed in
Norway for implementing large simulation applications

Derived Classes in C++ CS-2303, A-Term 2012 4

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Terminology

 Inheritance is a form of software reuse where a
new class is created to
 absorb an existing class’s data and behaviors, and

 enhance them with new capabilities

 The new class, the derived class, inherits the
members of the existing class, known as the base
class

Derived Classes in C++ CS-2303, A-Term 2012 5

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Terminology (continued)

 C++

 Derived Class

 Base Class

 Abstract Class

 Virtual Function

Derived Classes in C++ CS-2303, A-Term 2012 6

 Java

 Subclass

 Superclass

 Abstract Class

 Abstract Method

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Terminology (continued)

 A direct base class is the base class from which a
derived class explicitly inherits.

 An indirect base class is inherited from two or
more levels up in the class hierarchy.

 In single inheritance, a class is derived from one
base class.

 With multiple inheritance, a derived class inherits
from multiple base classes.

Derived Classes in C++ CS-2303, A-Term 2012 7

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Class Hierarchy

Derived Classes in C++ CS-2303, A-Term 2012 8

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Another Class Hierarchy

Derived Classes in C++ CS-2303, A-Term 2012 9

Note two separate
base classes

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Types of Inheritance in C++

 public: every object of a derived class is also an
object of its base class

 Note, base-class objects are NOT objects of their
derived classes.

 private: is essentially an alternative to
composition

 I.e., derived class members not accessible from
outside

 protected: not frequently used

Derived Classes in C++ CS-2303, A-Term 2012 10

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Example — public class

class Employee {
string givenName, familyName;
date hiringDate;
short department;
...

};

class Manager: public Employee {
set <Employee *> group;
short level;
...

}

Derived Classes in C++ CS-2303, A-Term 2012 11

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Example — public class

class Employee {
string givenName, familyName;
date hiringDate;
short department;
...

};

class Manager: public Employee {
set <Employee *> group;
short level;
...

}

Derived Classes in C++ CS-2303, A-Term 2012 12

Note: this is an example of
the use of a container
class from Standard
Template Library

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Important Note

 Member functions of derived class cannot
directly access private members of base class

 Example:–

 Manager member functions in previous example
cannot read manager’s own name!

 Because data members of a class are by default private

Derived Classes in C++ CS-2303, A-Term 2012 13

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

protected: Access Specifier

class Employee {

protected:
string givenName, familyName;
date hiringDate;
short department;
...

};

class Manager: public Employee {
set <Employee *> group;
short level;
...

}

Derived Classes in C++ CS-2303, A-Term 2012 14

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

protected (continued)

 A base class’s protected members can be
accessed by

 members and friends of the base class, and

 members and friends of any class derived from the base
class.

 Derived-class member functions can refer to
public and protected members of the base class.

 By simply using their names

Derived Classes in C++ CS-2303, A-Term 2012 15

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Difference between Inheritance
and Composition

 is-a relationship:– inheritance
 e.g., derived class object, car, is an object of the base

class vehicle

 e.g., derived class object, Manager, is an object of the
base class Employee

 has-a relationship:– composition
 e.g., a TreeNode object has (i.e., contains) a member

object of type string

Derived Classes in C++ CS-2303, A-Term 2012 16

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Base Classes and Derived Classes

 Base classes typically represent larger sets of
objects than derived classes

 Example

 Base class: vehicle

 Includes cars, trucks, boats, bicycles, etc.

 Derived class: car

 a smaller, more-specific subset of vehicles

Derived Classes in C++ CS-2303, A-Term 2012 17

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Base Classes and Derived Classes
(continued)

 I.e., base classes have more objects

 But fewer data and function members

 Derived classes have only subsets of the objects

 Hence the term subclass

 But a derived class may have more members — both
data and function members

Derived Classes in C++ CS-2303, A-Term 2012 18

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Derived Classes in C++ CS-2303, A-Term 2012 19

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Digression – Code Re-use

 Fundamental principle of software engineering

 A body of code is a living, evolving thing

 As a practical matter, copies of code cannot keep
up with each other

 If you really want your hard work to support
multiple purposes, applications, requirements,
etc.
 You really need a way for those purposes to inherit your

code rather than copy it.

Derived Classes in C++ CS-2303, A-Term 2012 20

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Constructors and Destructors

 Constructor:–
 Derived class constructor is called to create derived

class object

 Invokes base class constructor first

 Before derived class initializer list & constructor body

 … and so on up class hierarchy

 Destructor:–
 Derived class destructor body is executed first

 Then destructors of derived class members

 And then destructor of base class

 … and so on up class hierarchy

Derived Classes in C++ CS-2303, A-Term 2012 21

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Instantiating a Derived-class Object

 Derived-class constructor invokes base class
constructor either

 implicitly (via a base-class member initializer) or

 explicitly (by calling the base classes default
constructor)

 Base of inheritance hierarchy

 Last constructor called in inheritance chain is at base of
hierarchy

 Last constructor is first constructor body to finish
executing

Derived Classes in C++ CS-2303, A-Term 2012 22

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Example

class Employee {
string name;
int dept;

public:
Employee(const string s, int d);

}

class Manager: public Employee {
int level;

public:
Manager(const string s, int d,
 int lvl);

}

Employee::Employee (const string
s, int d):
 name(s), dept(d)
{
 …
}

Manager::Manager (const string s,
int d, int lvl):
 Employee(s, d), level(lvl)
{
 …
}

Derived Classes in C++ CS-2303, A-Term 2012 23

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Recap

 When creating a derived-class object:–
 Derived-class constructor immediately calls base-class

constructor

 Base-class constructor executes

 Derived class member initializers execute

 (Finally) derived-class constructor body executes

 If your constructor does not invoke the base class
constructor explicitly, …

 … the compiler will generate code to invoke the
base class default constructor as first step in
initialization

Derived Classes in C++ CS-2303, A-Term 2012 24

Absolute C++, §14.1

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Recap

 When creating a derived-class object:–

 Derived-class constructor immediately calls base-class
constructor

 Base-class constructor executes

 Derived class member initializers execute

 (Finally) derived-class constructor body executes

 This process cascades up the hierarchy if the
hierarchy contains more than two levels.

Derived Classes in C++ CS-2303, A-Term 2012 25

Absolute C++, §14.1

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

 Constructors and Destructors in
Derived Classes

 Destroying derived-class objects
 Reverse order of constructor chain

 Destructor of derived-class called first

 Destructor of next base class up hierarchy is called next

 This continues up hierarchy until the final base class is
reached.
 After final base-class destructor, the object is removed from

memory

 Base-class constructors, destructors, and
overloaded assignment operators are not
inherited by derived classes.

Derived Classes in C++ CS-2303, A-Term 2012 26

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Remember

 When a class contains members of other
classes …

 … contructors of those members are called
before class contructor body

 Either in initializer list

 … or by default

 Apply same rule to members of base class!

Derived Classes in C++ CS-2303, A-Term 2012 27

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Remember

 Destructors for derived-class objects are
called

 … in reverse order from which

 … corresponding constructors were
called.

Derived Classes in C++ CS-2303, A-Term 2012 28

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Derived Classes in C++ CS-2303, A-Term 2012 29

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Redefinition of Base Class Members

 Suppose that base class has a member
 E.g. void print()

 Knows only how to print information from base class

 Define same member in derived class
 E.g. void print()

 Knows how to print info for derived class

 Needs to call base class print() function to print base class info

Derived Classes in C++ CS-2303, A-Term 2012 30

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Redefinition of Base Class Members (continued)

 Derived class
void print() {

// print derived class info

BaseClass::print(); //prints base info

// more derived class stuff

}

 See Absolute C++, §14.1

Derived Classes in C++ CS-2303, A-Term 2012 31

General principle:– when in derived class
scope, if you need to access anything
in base class with a naming conflict,
use '::' scope resolution operator

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Accessing Members of Base and
Derived Classes

 Let B be a base class with public members m and n

 Let D be a derived class with public members m and p

 I.e., D redefines member m

 E.g., print() function of previous example

 Consider the following:–

B objB;

D objD;

B *ptrB;

D *ptrD;

Derived Classes in C++ CS-2303, A-Term 2012 32

Copy to white board!

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Accessing Members (continued)

objB.m and objB.n are both legal
 access members of base class

objD.m and objD.p are both legal
 access members of derived class

objD.n is also legal
 accesses member of base class!

objB.p is not legal
 Class B has no member named p!

Derived Classes in C++ CS-2303, A-Term 2012 33

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Accessing Members (continued)

ptrB = new B();

ptrB -> m and ptrB -> n are both legal

 access members of base class

ptrD = new D();

ptrD -> m and ptrD -> p are both legal

 access members of derived class

Derived Classes in C++ CS-2303, A-Term 2012 34

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Accessing Members (continued)

ptrB = ptrD;

 ptrB now points to an object of the derived class

 which by definition is an object of the base class!

ptrB -> m and ptrB -> n are both legal

 access members of base class object

 Even though object pointed to is an object of derived
class, with its own redefined member m!

Derived Classes in C++ CS-2303, A-Term 2012 35

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Accessing Members (continued)

ptrB = ptrD;

ptrB -> p is not legal
 Because ptrB only knows about B’s members!

 Rule:–
 So far, which member to access depends entirely on the

type of the accessing pointer (or accessing object)

 To bend that rule, need polymorphism and virtual
members.

Derived Classes in C++ CS-2303, A-Term 2012 36

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Derived Classes in C++ CS-2303, A-Term 2012 37

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Loose End:– Three Types of Inheritance in
C++

 public: every object of a derived class is also an
object of its base class

 Note, base-class objects are NOT objects of their
derived classes.

 private: is essentially an alternative to
composition

 I.e., derived class members not accessible from
outside

 protected: not often used

Derived Classes in C++ CS-2303, A-Term 2012 38

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Let D be derived from B

 If B is a private base class:–
 I.e., class D: private B {}

 Public and protected members of B can only be used by member
and friend functions of D.

 Only members and friends of D can convert D* into B*

 Outside of member and friend functions of D
 Dptr -> p is not allowed (where p is a member of B)

 Bptr = Dptr is not allowed

Derived Classes in C++ CS-2303, A-Term 2012 39

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Let D be derived from B (continued)

 If B is a protected base:–
 I.e., class D: protected B {}

 Public and protected members of B can only be used by
member and friend functions of D and also by member and
friend functions of classes derived from D

 Only members and friends of D and its derived classes can
convert D* into B*

 I.e., outside of member and friend functions of D
or its derived classes

 Dptr -> p is not allowed (where p is a member of B)

 Bptr = Dptr is not allowed

Derived Classes in C++ CS-2303, A-Term 2012 40

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Let D be derived from B (continued)

 If B is a public base:–
 I.e., class D: public B {}

 Public members of B can be used by any function

 Protected members of B can be used by member and friend
functions of D and also by member and friend functions of classes
derived from D

 Any function can convert D* into B*

 I.e.,
 Dptr -> p is allowed (where p is a member of B)

 Bptr = Dptr is allowed

Derived Classes in C++ CS-2303, A-Term 2012 41

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Summary – Inheritance

 This topic covered the basics of inheritance in C++

 There is much, much more to say about
inheritance after we cover polymorphism

Derived Classes in C++ CS-2303, A-Term 2012 43

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Next Topic

Derived Classes in C++ CS-2303, A-Term 2012 44

