Worcester Polytechnic Institute

Operator Overloading

Professor Hugh C. Lauer
CS-2303, System Programming Concepts

(Slides include materials from The C Programming Language, 2™ edition, by Kernighan and Ritchie,
Absolute C++, by Walter Savitch, The C++ Programming Language, Special Edition, by Bjarne Stroustrup,
and from C: How to Program, 5t and 6" editions, by Deitel and Deitel)

CS-2303, A-Term 2012 Operator Overloading 1

Why Operator Overloading?

m Readable code

m Extension of language to include user-defined
types

= |.e., classes

m Make operators sensitive to context

m Generalization of function overloading

CS-2303, A-Term 2012 Operator Overloading 2

Worcester Polytechnic Institute

Simple Example

class complex {
double real, imag;

public:
complex(double r, double i) :

real(r), imag(i) {}

m Would like to write:—

complex a = complex(1, 3.0); l.e., ordinary arithmetic
complex b = complex(1.2, 2); expressions for this user-

complex ¢ = b; defined class.

a=b+c
b=>b+c*a;
c=a*b + complex(1, 2);

CS-2303, A-Term 2012 Operator Overloading 3

Operator Overloading

class complex {
double real, imag;

public:
complex(double r, double i) :

real(r), imag(i) {}

complex operator +(complex a, complex b);
complex operator *(complex a, complex b);
complex& operator =(complex a, complex b);

}

CS-2303, A-Term 2012 Operator Overloading 4

General Format

returnType operator*(parameters);

T T 1

any type keyword operator symbol

m Return type may be whatever the operator
returns

" Including a reference to the object of the operand

m Operator symbol may be any overloadable
operator — i.e., all except

= ::(scope resolution), . (member selection), .*(selection through
pointer to member), ?: (conditional expression)

CS-2303, A-Term 2012 Operator Overloading 5

Worcester Polytechnic Institute

Operators that Can and Cannot be Overloaded

Operators that can be overloaded

+ - * / % n & |

~ 1 = < > += -= =

/= 0= o= &= = << >> >>=
<<= == 1= <= >= && 11 ++

— —>% , ->] O new delete

new[] delete[]

Deitel & Deitel, Figure 22.1

Operators that cannot be overloaded
- * - - 2=

Deitel & Deitel, Figure 22.2

CS-2303, A-Term 2012 Operator Overloading 6

Worcester Polytechnic Institute

C++ Philosophy

m All operators have context
= Even the simple “built-in” operators of basic types
= E.g., '+ 0 Y/ for numerical types

= Compiler generators different code depending upon
type of operands

m Operator overloading is a generalization of this
feature to non-built-in types

= E.g., '<<', '>>"for bit-shift operations and also for
stream operations

No counterpart
in Java!

CS-2303, A-Term 2012 Operator Overloading 7

Worcester Polytechnic Institute

C++ Philosophy (continued)

m Operators retain their precedence and
associativity, even when overloaded

m Operators retain their number of operands

m Cannot to define new operators
= Only (a subset of) the built-in C++ operators can be overloaded

m Cannot redefine operators on built-in types

CS-2303, A-Term 2012 Operator Overloading 8

[]
Outline

m Fundamentals of Operator Overloading
m Restrictions on Operator Overloading

m Operator Functions as Class Members vs. Global
Functions

m Overloading Stream Insertion and Stream
Extraction Operators

CS-2303, A-Term 2012 Operator Overloading 9

Worcester Polytechnic Institute

Operator Overload Function

m Either

® 3 non-static member function definition
or

" 3 global function definition
— Usually a friend of the class

m Function “name” is keyword operator followed
by the symbol for the operation being overloaded

= E.g., operator+, operator=, operator->, operator()

CS-2303, A-Term 2012 Operator Overloading 10

Operator Overload Function (continued)

m Operator overload function is a function just like
any other

m Can be called like any other — e.g.,

a.operator+(b)

m C++ provides the following short-hand
a+b

CS-2303, A-Term 2012 Operator Overloading 11

Operator Overload Function (continued)

m If operator overload function is declared as a
global or friend, then

operator+(a, b)

m also reduces to the following short-hand
a+b

CS-2303, A-Term 2012 Operator Overloading 12

Worcester Polytechnic Institute

Operator Overloading (continued)

m To use any operators on a class object, ...
" The operator must be overloaded for that class.

m Three Exceptions: {overloading allowed but not required}
= Assignment operator (=)
= Memberwise assignment between objects
= Dangerous for classes with pointer members!!
= Address operator (&)
= Returns address of the object in memory.
= Comma operator (,)

= Evaluates expression to its left then the expression to its
right.

= Returns the value of the expression to its right.

CS-2303, A-Term 2012 Operator Overloading 13

Worcester Polytechnic Institute

Questions?

CS-2303, A-Term 2012 Operator Overloading 14

Operator Functions as Class Members

m Leftmost operand must be of same class as
operator function.

m Use this keyword to implicitly get left operand
argument.

m Operators (), [], -> or any assighment operator
must be overloaded as a class member function.

m Called when
= | eft operand of binary operator is of this class
= Single operand of unary operator is of this class

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 15

Worcester Polytechnic Institute

Operator Functions as Global Members

m Need parameters for both operands.
m Can have object of different class than operator.
m Can be made a friend to access private or protected data.

© 2007 Pearson Ed -All rights reserved.

CS-2303, A-Term 2012 Operator Overloading 16

Worcester Polytechnic Institute

Stream Insertion/Extraction Operators

m Typically global or friend functions

m Overload << operator used where

= | eft operand of type ostream &
= Such as cout object in cout << classObject

m Overload >> has left operand of istream &

= | eft operand of type istream &
= Such as cin object in cout >> classObject

m Reason:—

" These operators are associated with class of right
operand

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 17

Worcester Polytechnic Institute

Commutative Operators

m May need '+' (and others) to be commutative
= So both “a + b” and “b + a” work as expected.

m Suppose we have two different classes

" QOverloaded operator can only be member function
when its class is on left.

— HugelntClass + long int
= May be member function

" For the other way, you need a global overloaded friend
function

— long int + HugelntClass

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 18

Worcester Polytechnic Institute

Digression

friends and this

CS-2303, A-Term 2012 Operator Overloading 19

Worcester Polytechnic Institute

Ordinary Member Functions

m Function can access the private members of the
class

m Function is in the scope of the class

m Function must be invoked on a specific object of
the class — e.g.,

= ptr->func()
= obj.func()

CS-2303, A-Term 2012 Operator Overloading 20

Worcester Polytechnic Institute

static Member Function

m Can access only the static members
= Members that exist independently of any objects

CS-2303, A-Term 2012 Operator Overloading 21

Worcester Polytechnic Institute

friend Function

m Function can access the private members of the
class

CS-2303, A-Term 2012 Operator Overloading 22

Absolute C++, §88.2

friend Function of a Class
m Defined outside of class’s scope
m Not a member function of that class

m Has right to access non-public and public
members of that class

m Often appropriate when a member function
cannot be used for certain operations

m Can enhance performance

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 23

Worcester Polytechnic Institute

friend Functions and friend Classes

m To declare a function as a friend of a class:—

" Provide the function prototype in the class definition
preceded by keyword friend

m To declare a class as a friend of another class:
" Place declaration of the form

friend class ClassTwo;
in definition of class ClassOne

= All member functions of class ClassTwo become friends
of class ClassOne

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 24

Worcester Polytechnic Institute

friend Functions and friend Classes (continued)

m Friendship is granted, not taken

" For class B to be a friend of class A, class A must
explicitly declare class B as a friend

m Friendship relation is neither symmetric nor
transitive

" |f class A is a friend of class B, and class B is a friend of
class C, cannot infer that
! class B is a friend of class A
! class Cis a friend of class B
! class A is a friend of class C

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 25

Worcester Polytechnic Institute

friend Functions and friend Classes (continued)

] e
m Itis possible to specify overloaded functions as
friends of a class.

" Fach overloaded function intended to be a friend must
be explicitly declared as a friend of the class.

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 26

Worcester Polytechnic Institute

friend Function Example

// Fig. 21.15: fig21_15.cpp

// Friends can access private members of a class.
#include <iostream>

using std::cout;

using std::endl; . 0 .
friend function declaration (can

appear anywhere in the class)

// Count class definition

class Count

{

© 00 N O OB~ W NP

[EEN
o

friend void setX(Count &, int); // friend declaration
public:

=
N

// constructor
Count(Q
: xC0) // initialize x to O

el
g b w

{

[EEY
D

// empty body

[EEN
\l

} 7/ end constructor Count

ol
©

// output x
void print() const

{

N N DN
N B O

cout << x << endl;

N
w

} // end function print

N
i

private:
25 int x; // data member
26 }; // end class Count

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 27

Worcester Polytechnic Institute

Tri1end Function Example (continued)

27

28 // fTunction setX can modify private data of Count

29 // because setX is declared as a friend of Count (line 10)
30 void setX(Count &c, int val)

31 {

32 c.x = val; // allowed because setX is a friend of Count

33 } // end function setX ‘\\\\\

34 friend function can modify Count’s private data
35 int mainQ

36 {

37 Count counter; // create Count object

38

39 cout << "counter.x after instantiation: ";| Calling a friend function; note that we
40 counter.printQ; pass the Count object to the function
41

42 setX(counter, 8); // set x using a friend function

43 cout << "counter.x after call to setX friend function: ";

44 counter.print(Q);
45 return 0O;
46 } // end main

counter.x after instantiation: O
counter.x after call to setX friend function: 8

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 28

Worcester Polytechnic Institute

Questions about friends?

CS-2303, A-Term 2012 Operator Overloading 29

Worcester Polytechnic Institute

Example

m << and >> operators

= Already overloaded by STL to process each built-in type
(pointers and strings)

" Can also process a user-defined class
= Overload using global, friend functions

m Example program
= class PhoneNumber (on next slide)
= Holds a telephone number

" Prints out formatted number automatically.
= (312) 456-7890

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 30

Worcester Polytechnic Institute

Example (continued)

// Fig. 22.3: PhoneNumber_.h

// PhoneNumber class definition
#ifndef PHONENUMBER_H

#define PHONENUMBER_H

#include <iostream>
using std::ostream;

using std::istream;

© 00 N O o A WO DN P

Note also: reference results!

=
o

#include <string>

=
=

using std::string;

=
N

class PhoneNumber

e o
g N w
P

friend ostream &operator<<(ostream &, const PhogeNumber &);

=
(o]

friend istream &operator>>(istream &, PhoneNumber

=
\I

private:

=
(o]

string areaCode; // 3-

string exchange; 77 3-¢ Notice function prototypes for overloaded operators
string line; // 4-digi >> and << (must be global friend functions)

}; 7/ end class PhoneNumber

N
o ©

N NN
w N P

#endi f

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 31

Worcester Polytechnic Institute

Example (continued)

// Fig. 22_4: PhoneNumber.cpp
// Overloaded stream insertion and stream extraction operators
// for class PhoneNumber.
#include <iomanip>

using std::setw;

Allows cout << phone; to be interpreted as:
operator<<(cout, phone);

#include ""PhoneNumber.h™

© 00 N o 0o~ W N P

// overloaded stream insertion operator; cannot be
invoke

=
o

// a member function if we would like to

=
=

// cout << somePhoneNumber ;

12 ostream &operator<<(ostream &output, const PhoneNumber &number)
13 {

14 output << (" << number.areaCode << ") ™

15 << number.exchange << "-" << number.line;

16 return output; // enables cout << a << << C;

17 } // end function operator<<

Display formatted phone number

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 32

Worcester Polytechnic Institute

Example (continued)

18
19 // overloaded stream extraction operator; cannot be

20 // a member function if we would like to invoke it with
21 // cin >> somePhoneNumber ;

22 istream &operator>>(istream &input, Phone| ignore skips specified number of
23 4 «—— |characters from input (1 by default)
24 input.ignore(); 7/ skip (
25 input >> setw(3) >> number.areaCode; // input area code
26 input.ignore(2); // skip) and space

27 input >> setw(3) >> number._.exchange;_// input exchange
28 input.ignore(); // skip dash (-)
29 input >> setw(4) >> number.line; // input ling InPUt eaCh pOftiOn Of

30 return input; // enables cin >> a >> b >> c; phone number separately

31 } // end function operator>>

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 33

Worcester Polytechnic Institute

Example (concluded)

1 // Fig. 22.5: fig22_05.cpp

2 // Demonstrating class PhoneNumber®s overloaded stream insertion

3 // and stream extraction operators.

4 #include <iostream>

5 using std::cout;

6 using std::cin;

7 wusing std::endl;

8

9 #include "PhoneNumber.h™

10

11 int mainQ

12 {

13 PhoneNumber phone; // create object phone

14

15 cout << "Enter phone number in the form (123) 456-7890:" << endl;

16

17 // cin >> phone invokes operator>> by implicitly issuing

18 // the global function call operator>>(cin, phone)

19 cin >> phone;

20 Invoke overloaded >> and <<
21 cout << "The phone number entered was: "; .

22 operators to input and output
23 // cout << phone invokeSW a PhoneNumber Object
24 // the global function c erator<<(cout, phoné—

25 cout << phone << endl;

26 return O;

27 } // end main

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 34

Worcester Polytechnic Institute

Questions?

CS-2303, A-Term 2012 Operator Overloading 35

Worcester Polytechnic Institute

Unary Operators

m Can overload as
" Non-static member function with no arguments
" As a global function with one argument

= Argument must be class object or reference to class
object

m Why non-static?

= static functions only access static data
" Not what is needed for operator functions

CS-2303, A-Term 2012 Operator Overloading 36

Worcester Polytechnic Institute

Another Example

m Overload "!' to test for empty string — e.g.,
while (!s) ...
if (Is) ...

compiler generates call to
s.operator!()

m Implemented as:—

class String {
public:
bool operator!() const;

}

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 37

Worcester Polytechnic Institute

Overloading Binary Operators

m Non-static member function with one argument.
or
m Global function with two arguments:

" One argument must be class object or reference to a
class object.

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 38

Worcester Polytechnic Institute

Overloading Binary Operators (continued)

m If a non-static member function, it needs one
argument.

class String {
public:
String & operator+=(const String &);

s
m By shorthand rule

y += z becomes y.operator+=(z)

CS-2303, A-Term 2012 Operator Overloading 39

Worcester Polytechnic Institute

Overloading Binary Operators (continued)

m Global (friend) function needs two arguments

class String {
public:
String & operator+=(String &, const String &);

}
m By short-hand rule
y += z becomes operator+=(y, z)

CS-2303, A-Term 2012 Operator Overloading © 2007 Pearson Ed -All rights reserved. 40

Worcester Polytechnic Institute

Overloading Operators

m On the previous slide, y and z are assumed to be
String-class objects or references to String-class
objects.

m Two ways to pass arguments to global function:—
= An object (requires a copy of object)

= Areference to an object (function operates on object
directly!)

CS-2303, A-Term 2012 Operator Overloading 41

