
Carnegie Mellon Worcester Polytechnic Institute

Linked Lists in C and C++

Professor Hugh C. Lauer
CS-2303, System Programming Concepts
(Slides include materials from The C Programming Language, 2nd edition, by Kernighan and Ritchie,
Absolute C++, by Walter Savitch, The C++ Programming Language, Special Edition, by Bjarne Stroustrup,
 and from C: How to Program, 5th and 6th editions, by Deitel and Deitel)

Linked Lists CS-2303, A-Term 2010 1

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Common Data Structures in C and C++

 Linked lists – Nothing specific in K&R
 One-way
 Doubly-linked
 Circular

 Trees –K&R §6.5
 Binary
 Multiple branches

 Hash Tables – K&R §6.6
 Combine arrays and linked list
 Especially for searching for objects by value

Linked Lists in C and C++ CS-2303, A-Term 2010 2

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Definitions

 Linked List
 A data structure in which each element is dynamically allocated

and in which elements point to each other to define a linear
relationship

 Singly- or doubly-linked
 Variations: stack, queue, circular list

 Tree
 A data structure in which each element is dynamically allocated

and in which each element has more than one potential
successor

 Defines a partial order

Linked Lists in C and C++ CS-2303, A-Term 2010 3

Note: elements are usually the
same type (but not always).

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Linked List

Linked Lists in C and C++ CS-2303, A-Term 2010 4

struct listItem {
type payload;
struct listItem *next;

};

payload
next

payload
next

payload
next

payload
next

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Linked List (continued)

 Items of list are usually same type
 Generally obtained from malloc()

 Each item points to next item
 Last item points to null
 Need “head” to point to first item!

 “Payload” of item may be almost anything
 A single member or multiple members
 Any type of object whose size is known at compile time
 Including struct, union, char * or other pointers
 Also arrays of fixed size at compile time (see p. 214)

Linked Lists in C and C++ CS-2303, A-Term 2010 5

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Usage of Linked Lists
 Not massive numbers of items

 Linear search is okay
 Sorting not usually necessary

 or sometimes not possible
 Need to add and delete data “on the fly”

 Even from middle of list
 Items often need to be added to or deleted from the

“ends”

Linked Lists in C and C++ CS-2303, A-Term 2010 6

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Linked List (continued)

struct listItem {
type payload;
struct listItem *next;

};
struct listItem *head;

Linked Lists in C and C++ CS-2303, A-Term 2010 7

payload
next

payload
next

payload
next

payload
next

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Adding an Item to a List
struct listItem *p, *q;
 Add an item pointed to by q after item pointed to by p
 Neither p nor q is NULL

Linked Lists in C and C++ CS-2303, A-Term 2010 8

payload
next

payload
next

payload
next

payload
next

payload
next

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Adding an Item to a List
listItem *addAfter(listItem *p, listItem *q){

q -> next = p -> next;
p -> next = q;
return p;

}

Linked Lists in C and C++ CS-2303, A-Term 2010 9

payload
next

payload
next

payload
next

payload
next

payload
next

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Adding an Item to a List
listItem *addAfter(listItem *p, listItem *q){

q -> next = p -> next;
p -> next = q;
return p;

}

Linked Lists in C and C++ CS-2303, A-Term 2010 10

payload
next

payload
next

payload
next

payload
next

payload
next

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Adding an Item to a List
listItem *addAfter(listItem *p, listItem *q){

q -> next = p -> next;
p -> next = q;
return p;

}

Linked Lists in C and C++ CS-2303, A-Term 2010 11

payload
next

next
payload

payload
next

payload
next

payload
next

Question: What to do if we cannot
guarantee that p and q are non-NULL?

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Adding an Item to a List
listItem *addAfter(listItem *p, listItem *q){

if (p && q) {
 q -> next = p -> next;
 p -> next = q;
}
return p;

}

Linked Lists in C and C++ CS-2303, A-Term 2010 12 Linked Lists in C and C++ CS-2303, A-Term 2010 12

payload
next

next
payload

payload
next

payload
next

payload
next

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

What about Adding an Item
before another Item?

struct listItem *p;
 Add an item before item pointed to by p (p != NULL)

Linked Lists in C and C++ CS-2303, A-Term 2010 13

payload
next

payload
next

payload
next

payload
next

payload
next

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

What about Adding an Item
before another Item?
 Answer:–
 Need to search list from beginning to find previous item
 Add new item after previous item

Linked Lists in C and C++ CS-2303, A-Term 2010 14

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Doubly-Linked List
struct listItem {

type payload;
listItem *prev;
listItem *next;

};
struct listItem *head, *tail;

Linked Lists in C and C++ CS-2303, A-Term 2010 15

prev next

payload
prev next

payload
prev next

payload

prev next

payload

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Other Kinds of List Structures

 Queue — FIFO (First In, First Out)
 Items added at end
 Items removed from beginning

 Stack — LIFO (Last In, First Out)
 Items added at beginning, removed from beginning

 Circular list
 Last item points to first item
 Head may point to first or last item
 Items added to end, removed from beginning

Linked Lists in C and C++ CS-2303, A-Term 2010 16

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Circular List

listItem *addToTail (listItem *p, listItem *tail){
if (p && tail) {
 p -> next = tail -> next;
 tail = tail -> next = p;
} else if (p) {
 tail = p -> next = p;
}

 return tail;
}

Linked Lists in C and C++ CS-2303, A-Term 2010 17

payload
next

payload
next

payload
next

payload
next

struct listItem *tail;

Optional:–
struct listItem *head;

Carnegie Mellon Worcester Polytechnic Institute

Questions?

Linked Lists in C and C++ CS-2303, A-Term 2010 18

	Linked Lists in C and C++
	Common Data Structures in C and C++
	Definitions
	Linked List
	Linked List (continued)
	Usage of Linked Lists
	Linked List (continued)
	Adding an Item to a List
	Adding an Item to a List
	Adding an Item to a List
	Adding an Item to a List
	Adding an Item to a List
	What about Adding an Item�before another Item?
	What about Adding an Item�before another Item?
	Doubly-Linked List
	Other Kinds of List Structures
	Circular List
	Questions?

