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Common Data Structures in C and C++ 

 Linked lists – Nothing specific in K&R 
 One-way 
 Doubly-linked 
 Circular 

 Trees –K&R §6.5  
 Binary 
 Multiple branches 

 Hash Tables – K&R §6.6 
 Combine arrays and linked list 
 Especially for searching for objects by value 
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Definitions 

 Linked List 
 A data structure in which each element is dynamically allocated 

and in which elements point to each other to define a linear 
relationship 

 Singly- or doubly-linked 
 Variations: stack, queue, circular list 

 Tree 
 A data structure in which each element is dynamically allocated 

and in which each element has more than one potential 
successor 

 Defines a partial order 
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Note: elements are usually the 
same type (but not always). 
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Linked List 
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Linked List (continued) 

 Items of list are usually same type 
 Generally obtained from malloc() 

 Each item points to next item 
 Last item points to null 
 Need “head” to point to first item! 

 

 “Payload” of item may be almost anything 
 A single member or multiple members 
 Any type of object whose size is known at compile time 
 Including struct, union, char * or other pointers 
 Also arrays of fixed size at compile time (see p. 214) 
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Usage of Linked Lists 
 Not massive numbers of items 

 Linear search is okay 
 Sorting not usually necessary 

 or sometimes not possible 
 Need to add and delete data “on the fly” 

 Even from middle of list 
 Items often need to be added to or deleted from the 

“ends” 
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Linked List (continued) 

struct listItem { 
type payload; 
struct listItem *next; 

}; 
struct listItem *head; 
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Adding an Item to a List 
struct listItem *p, *q; 
 Add an item pointed to by q after item pointed to by p 
 Neither p nor q is NULL 
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Adding an Item to a List 
listItem *addAfter(listItem *p, listItem *q){ 

q -> next = p -> next; 
p -> next = q; 
return p; 

} 
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Adding an Item to a List 
listItem *addAfter(listItem *p, listItem *q){ 

q -> next = p -> next; 
p -> next = q; 
return p; 

} 
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Adding an Item to a List 
listItem *addAfter(listItem *p, listItem *q){ 

q -> next = p -> next; 
p -> next = q; 
return p; 

} 
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Question: What to do if we cannot 
guarantee that p and q are non-NULL? 
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Adding an Item to a List 
listItem *addAfter(listItem *p, listItem *q){ 

if (p && q) { 
 q -> next = p -> next; 
 p -> next = q; 
} 
return p; 

} 
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What about Adding an Item 
before another Item? 

struct listItem *p; 
 Add an item before item pointed to by p (p != NULL) 
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What about Adding an Item 
before another Item? 
 Answer:– 
 Need to search list from beginning to find previous item 
 Add new item after previous item 
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Doubly-Linked List 
struct listItem { 

type payload; 
listItem *prev; 
listItem *next; 

}; 
struct listItem *head, *tail; 
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Other Kinds of List Structures 

 Queue — FIFO (First In, First Out) 
 Items added at end 
 Items removed from beginning 

 Stack — LIFO (Last In, First Out) 
 Items added at beginning, removed from beginning 

 Circular list 
 Last item points to first item 
 Head may point to first or last item 
 Items added to end, removed from beginning 
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Circular List 

listItem *addToTail (listItem *p, listItem *tail){ 
if (p && tail) { 
 p -> next = tail -> next; 
 tail = tail -> next = p; 
} else if (p) { 
 tail  = p -> next = p; 
} 

 return tail; 
} 
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struct listItem *tail; 

Optional:– 
struct listItem *head; 
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Questions? 
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