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Problem 

 What do you do if:– 
 … the size of an array is not known until run time? 

OR 
 … a function must return an array that it creates? 

 

 How can we manipulate variable-length arrays 
and pass them around our programs? 

 

 Answer:– 
 Use dynamically allocated storage in The Heap! 
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Definition — The Heap 

 A region of memory provided by most operating 
systems for allocating storage not in Last in, First 
out discipline 

 I.e., not a stack 
 

 Must be explicitly allocated and released 
 May be accessed only with pointers 

 Remember, an array is equivalent to a pointer 
 

 Many hazards to the C programmer 

Dynamic Memory Allocation CS-2303, A-Term 2012 3 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

Dynamic Data Allocation 
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Allocating Memory in The Heap 
 See <stdlib.h> 
void *malloc(size_t size); 
void free(void *ptr); 
void *calloc(size_t nmemb, size_t size); 
void *realloc(void *ptr, size_t size); 
   
 malloc() — allocates size bytes of memory from the heap 

and returns a pointer to it. 
 NULL pointer if allocation fails for any reason 

 free() — returns the chunk of memory pointed to by ptr 
back to the heap 

 Must have been allocated by malloc() or calloc() 
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Notes 
 calloc() is just a variant of malloc() 

 

 malloc() is analogous to new in C++ and Java 
 new in C++ actually calls malloc() 

 

 free() is analogous to delete in C++ 
 delete in C++ actually calls free() 
 Java does not have delete — uses garbage collection to recover 

memory no longer in use 
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Example usage of malloc() and free() 
#include <stdlib.h> 
int PlayGame(int board[], int arraySize); 

   
int main(){ 

int s, t; 
int A[]; 

 s = …; /* determine size of array from input */ 
 A = malloc(s * sizeof(int)); 
 …; 
 t = PlayGame(A, s); 

… 
 free(A); 

return t; 
} 
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Alternate version of malloc() and free() 
#include <stdlib.h> 
int PlayGame(int *board, int arraySize); 

   
int main(){ 

int s, t; 
int *A; 

 s = …; /* determine size of array from input */ 
 A = malloc(s * sizeof(int)); 
 …; 
 t = PlayGame(A, s); 

… 
 free(A); 

return t; 
} 
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Generalization 

 malloc() and free() are used … 
 whenever you need a dynamically sized array 
 whenever you need an array that does not follow last 

in, first out rule of The Stack 
 

 Valid in all versions of C 
 See p. 167 of K&R (§7.8.5) 
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malloc vs. calloc 

 void *malloc(size_t #ofBytes) 
 Takes number of bytes as argument 
 Aligned to largest basic data type of machine 

» Usually long int 
 Does not initialize memory 
 Returns pointer to void 

 void *calloc(size_t #ofItems, size_t sizeOfItem) 
 Takes number of # of items and size as argument 
 Initializes memory to zeros; returns pointer to void 

 calloc(n, itemSize) ≡ malloc(n * itemSize) 
 Plus initialization to zero 
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realloc() 

void *realloc(void *p, size_t newSize) 
 Changes the size of a malloc’ed piece of memory by 

allocating new area (or changing size of old area) 

 May increase or decrease size 
 Data copied from old area to new area 

 If larger, extra space is uninitialized 

 free(p) – i.e., frees old area (if new area different from old) 

 Returns pointer to void of new area 
 See p. 252 of K&R 
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Definition – Memory Leak 

 The steady loss of available memory in Heap due 
to program forgetting to free everything that was 
malloc’ed. 
 Bug-a-boo of most large C and C++ programs 

 

 If you overwrite or lose the value of a pointer to a 
piece of malloc’ed memory, there is no way to 
find it again! 
 Automatically creating a memory leak 

 
 Killing the program frees all memory! 
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Multi-Dimensional Arrays 

 int D[10][20] 
 A one-dimensional array with 10 elements, each of 

which is an array with 20 elements 

 I.e., int D[10][20]  /*[row][col]*/ 
 Last subscript varies the fastest 
 I.e., elements of last subscript are stored contiguously 

in memory 
 

 Also, three or more dimensions 
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Limitations of 
Multi-Dimensional Arrays 
 C supports only fixed size multi-dimensional arrays 
 Rows stored contiguously in memory ⇒ 
 Compiler must know how many elements in a row 
 Cannot pass an array to a function with open-ended number 

of elements per row 
 

 void f(int A[][20], int nRows);  /*okay*/ 
 void f(int A[10][], int nCols);   /*NOT okay */ 
 void f(int A[][], int nRows, int nCols); 

  /*also NOT okay */ 
 Same for three or more dimensions! 
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Dynamic Two-Dimensional Arrays 
 Array of pointers, one per row 

 Each row is a one-dimensional array 
 

 int x, y; /* x = #rows, y = #columns */  
int **B = calloc(x, sizeof(int *)); 
for (i = 0; i < x; i++) 
 B[i] = calloc(y, sizeof(int)); 
… 
/* to access element of row i, column j */ 
 B[i][j] 

Dynamic Memory Allocation CS-2303, A-Term 2012 16 



Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute 

Why does this work? 

 int **B means the same as 
int *B[]; 

 I.e., B is an array of pointers to int 
 Therefore, B[i] is a pointer to int 

 
 But if A is a pointer to int, 

then A[j] is the jth integer of the array A 
 

 Substitute B[i] for A 
 Therefore, B[i][j] is the jth integer of the ith row 

of B 
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Why does this work? (continued) 

 When expression contains B[i][j], compiler 
generates code resembling 

 int *temp = B + i; 
 *(temp + j); 

 … in order to access this element 
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Alternative Method 

 int x, y; /* x = #rows, y = #columns */  
int **B = calloc(x, sizeof(int *)); 
int elements[] = calloc(x*y, sizeof(int)); 
for (i = 0; i < x; i++) 
 B[i] = &elements[i*y]; 
… 
/* to access element of row i, column j */ 
 B[i][j] 
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Arrays as Function Parameters 
(again) 
 void init(float A[], int arraySize); 

void init(float *A, int arraySize); 
 

 Are identical function prototypes! 
 Pointer is passed by value 
 I.e. caller copies the value of a pointer of the 

appropriate type into the parameter A 
 Called function can reference through that 

pointer to reach thing pointed to 
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Arrays as Function Parameters 
(continued) 
 void init(float A[][], int rows, int columns); 

void init(float **A, int rows, int columns); 
 

 Not Identical! 
 Compiler complains that A[][] in header is 

incompletely specified 
 Needs to know number of columns 
 As if constant! 

 Must use pointer notation in header or 
declaration 

 In body of init, A[i][j] is still acceptable 
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