
Carnegie Mellon Worcester Polytechnic Institute

Dynamic Memory Allocation
(and Multi-Dimensional Arrays)

Professor Hugh C. Lauer
CS-2303, System Programming Concepts
(Slides include materials from The C Programming Language, 2nd edition, by Kernighan and Ritchie,
Absolute C++, by Walter Savitch, The C++ Programming Language, Special Edition, by Bjarne Stroustrup,
 and from C: How to Program, 5th and 6th editions, by Deitel and Deitel)

Dynamic Memory Allocation CS-2303, A-Term 2012 1

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Problem

 What do you do if:–
 … the size of an array is not known until run time?

OR
 … a function must return an array that it creates?

 How can we manipulate variable-length arrays
and pass them around our programs?

 Answer:–
 Use dynamically allocated storage in The Heap!

Dynamic Memory Allocation CS-2303, A-Term 2012 2

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Definition — The Heap

 A region of memory provided by most operating
systems for allocating storage not in Last in, First
out discipline

 I.e., not a stack

 Must be explicitly allocated and released
 May be accessed only with pointers

 Remember, an array is equivalent to a pointer

 Many hazards to the C programmer

Dynamic Memory Allocation CS-2303, A-Term 2012 3

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Dynamic Data Allocation

Arrays and Pointers CS-2303, A-Term 2012 4

0x00000000

0xFFFFFFFF

address
space

program code
(text)

global and static
data

heap
(dynamically allocated)

stack
(dynamically allocated)

PC

SP

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Allocating Memory in The Heap
 See <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

 malloc() — allocates size bytes of memory from the heap

and returns a pointer to it.
 NULL pointer if allocation fails for any reason

 free() — returns the chunk of memory pointed to by ptr
back to the heap

 Must have been allocated by malloc() or calloc()

Dynamic Memory Allocation CS-2303, A-Term 2012 5

free() knows size of chunk
allocated by malloc() or
calloc()

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Notes
 calloc() is just a variant of malloc()

 malloc() is analogous to new in C++ and Java
 new in C++ actually calls malloc()

 free() is analogous to delete in C++
 delete in C++ actually calls free()
 Java does not have delete — uses garbage collection to recover

memory no longer in use

Dynamic Memory Allocation CS-2303, A-Term 2012 6

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Example usage of malloc() and free()
#include <stdlib.h>
int PlayGame(int board[], int arraySize);

int main(){

int s, t;
int A[];

 s = …; /* determine size of array from input */
 A = malloc(s * sizeof(int));
 …;
 t = PlayGame(A, s);

…
 free(A);

return t;
}

Dynamic Memory Allocation CS-2303, A-Term 2012 7

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Alternate version of malloc() and free()
#include <stdlib.h>
int PlayGame(int *board, int arraySize);

int main(){

int s, t;
int *A;

 s = …; /* determine size of array from input */
 A = malloc(s * sizeof(int));
 …;
 t = PlayGame(A, s);

…
 free(A);

return t;
}

Dynamic Memory Allocation CS-2303, A-Term 2012 8

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Generalization

 malloc() and free() are used …
 whenever you need a dynamically sized array
 whenever you need an array that does not follow last

in, first out rule of The Stack

 Valid in all versions of C
 See p. 167 of K&R (§7.8.5)

Dynamic Memory Allocation CS-2303, A-Term 2012 9

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

malloc vs. calloc

 void *malloc(size_t #ofBytes)
 Takes number of bytes as argument
 Aligned to largest basic data type of machine

» Usually long int
 Does not initialize memory
 Returns pointer to void

 void *calloc(size_t #ofItems, size_t sizeOfItem)
 Takes number of # of items and size as argument
 Initializes memory to zeros; returns pointer to void

 calloc(n, itemSize) ≡ malloc(n * itemSize)
 Plus initialization to zero

Dynamic Memory Allocation CS-2303, A-Term 2012 10

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

realloc()

void *realloc(void *p, size_t newSize)
 Changes the size of a malloc’ed piece of memory by

allocating new area (or changing size of old area)

 May increase or decrease size
 Data copied from old area to new area

 If larger, extra space is uninitialized

 free(p) – i.e., frees old area (if new area different from old)

 Returns pointer to void of new area
 See p. 252 of K&R

Dynamic Memory Allocation CS-2303, A-Term 2012 11

Rarely used in C programming!

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Definition – Memory Leak

 The steady loss of available memory in Heap due
to program forgetting to free everything that was
malloc’ed.
 Bug-a-boo of most large C and C++ programs

 If you overwrite or lose the value of a pointer to a
piece of malloc’ed memory, there is no way to
find it again!
 Automatically creating a memory leak

 Killing the program frees all memory!

Dynamic Memory Allocation CS-2303, A-Term 2012 12

Carnegie Mellon Worcester Polytechnic Institute

CS-2303, A-Term 2012 Dynamic Memory Allocation 13

Questions?

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Multi-Dimensional Arrays

 int D[10][20]
 A one-dimensional array with 10 elements, each of

which is an array with 20 elements

 I.e., int D[10][20] /*[row][col]*/
 Last subscript varies the fastest
 I.e., elements of last subscript are stored contiguously

in memory

 Also, three or more dimensions

Dynamic Memory Allocation CS-2303, A-Term 2012 14

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Limitations of
Multi-Dimensional Arrays
 C supports only fixed size multi-dimensional arrays
 Rows stored contiguously in memory ⇒
 Compiler must know how many elements in a row
 Cannot pass an array to a function with open-ended number

of elements per row

 void f(int A[][20], int nRows); /*okay*/
 void f(int A[10][], int nCols); /*NOT okay */
 void f(int A[][], int nRows, int nCols);

 /*also NOT okay */
 Same for three or more dimensions!

Dynamic Memory Allocation CS-2303, A-Term 2012 15

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Dynamic Two-Dimensional Arrays
 Array of pointers, one per row

 Each row is a one-dimensional array

 int x, y; /* x = #rows, y = #columns */
int **B = calloc(x, sizeof(int *));
for (i = 0; i < x; i++)
 B[i] = calloc(y, sizeof(int));
…
/* to access element of row i, column j */
 B[i][j]

Dynamic Memory Allocation CS-2303, A-Term 2012 16

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Why does this work?

 int **B means the same as
int *B[];

 I.e., B is an array of pointers to int
 Therefore, B[i] is a pointer to int

 But if A is a pointer to int,

then A[j] is the jth integer of the array A

 Substitute B[i] for A
 Therefore, B[i][j] is the jth integer of the ith row

of B

Dynamic Memory Allocation CS-2303, A-Term 2012 17

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Why does this work? (continued)

 When expression contains B[i][j], compiler
generates code resembling

 int *temp = B + i;
 *(temp + j);

 … in order to access this element

Dynamic Memory Allocation CS-2303, A-Term 2012 18

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Alternative Method

 int x, y; /* x = #rows, y = #columns */
int **B = calloc(x, sizeof(int *));
int elements[] = calloc(x*y, sizeof(int));
for (i = 0; i < x; i++)
 B[i] = &elements[i*y];
…
/* to access element of row i, column j */
 B[i][j]

Dynamic Memory Allocation CS-2303, A-Term 2012 19

Why does this work?

Exercise for the student!

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Arrays as Function Parameters
(again)
 void init(float A[], int arraySize);

void init(float *A, int arraySize);

 Are identical function prototypes!
 Pointer is passed by value
 I.e. caller copies the value of a pointer of the

appropriate type into the parameter A
 Called function can reference through that

pointer to reach thing pointed to

Dynamic Memory Allocation CS-2303, A-Term 2012 20

Carnegie Mellon Worcester Polytechnic Institute Worcester Polytechnic Institute

Dynamic Memory Allocation
21 CS-2303, A-Term 2012

Arrays as Function Parameters
(continued)
 void init(float A[][], int rows, int columns);

void init(float **A, int rows, int columns);

 Not Identical!
 Compiler complains that A[][] in header is

incompletely specified
 Needs to know number of columns
 As if constant!

 Must use pointer notation in header or
declaration

 In body of init, A[i][j] is still acceptable

Carnegie Mellon Worcester Polytechnic Institute

CS-2303, A-Term 2012 Dynamic Memory Allocation 22

Questions?

	Dynamic Memory Allocation�(and Multi-Dimensional Arrays)
	Problem
	Definition — The Heap
	Dynamic Data Allocation
	Allocating Memory in The Heap
	Notes
	Example usage of malloc() and free()
	Alternate version of malloc() and free()
	Generalization
	malloc vs. calloc
	realloc()
	Definition – Memory Leak
	Questions?
	Multi-Dimensional Arrays
	Limitations of�Multi-Dimensional Arrays
	Dynamic Two-Dimensional Arrays
	Why does this work?
	Why does this work? (continued)
	Alternative Method
	Arrays as Function Parameters�(again)
	Arrays as Function Parameters�(continued)
	Questions?

