Worcester Polytechnic Institute

Dynamic Memory Allocation
(and Multi-Dimensional Arrays)

Professor Hugh C. Lauer
CS-2303, System Programming Concepts

(Slides include materials from The C Programming Language, 2™ edition, by Kernighan and Ritchie,
Absolute C++, by Walter Savitch, The C++ Programming Language, Special Edition, by Bjarne Stroustrup,
and from C: How to Program, 5t and 6" editions, by Deitel and Deitel)

CS-2303, A-Term 2012 Dynamic Memory Allocation

Worcester Polytechnic Institute

Problem

m What do you do if:—

= ..thesize of an array is not known until run time?
OR
= .. afunction must return an array that it creates?

m How can we manipulate variable-length arrays
and pass them around our programs?

m Answer:—

= Use dynamically allocated storage in The Heap!

CS-2303, A-Term 2012 Dynamic Memory Allocation 2

Worcester Polytechnic Institute

Definition — The Heap

m A region of memory provided by most operating

systems for allocating storage not in Last in, First
out discipline
= |.e., not a stack

m Must be explicitly allocated and released

m May be accessed only with pointers
= Remember, an array is equivalent to a pointer

m Many hazards to the C programmer

CS-2303, A-Term 2012 Dynamic Memory Allocation 3

Worcester Polytechnic Institute

Dynamic Data Allocation

OXFFFFFFFF stack

(dynamically allocated)

T

address heap
space (dynamically allocated)

global and static
data

program code
0x00000000 (text)

— PC

CS-2303, A-Term 2012 Arrays and Pointers 4

Worcester Polytechnic Institute

Allocating Memory in The Heap

m See <stdlib.h>

void *malloc(size_t size); free() knows size of chunk
void free(void *ptr); <«— allocated by malloc() or
void *calloc(size_t nmemb, size_q calloc()

void *realloc(void *ptr, size_t size);

m malloc() — allocates size by ¢eg eap

and returns a pointer to it.

= NULL pointer if allocati

m free() — returns the chunk of inemory pointed to by ptr
back to the heap

= Must have been allocated by malloc() or calloc()

CS-2303, A-Term 2012 Dynamic Memory Allocation 5

Worcester Polytechnic Institute

Notes

m calloc() is just a variant of malloc()

m malloc() is analogous to new in C++ and Java

= new in C++ actually calls malloc()

m free() is analogous to delete in C++
= delete in C++ actually calls free()

= Java does not have delete — uses garbage collection to recover
memory no longer in use

CS-2303, A-Term 2012 Dynamic Memory Allocation 6

Worcester Polytechnic Institute

Example usage of malloc() and free()

#include <stdlib.h>
int PlayGame(int board]], int arraySize);

int main(){
ints, t;
int A[];
s=..; /* determine size of array from input */
A = malloc(s * sizeof(int));

L]
.-.,

= PlayGame(A, s);
free(A);

return t;

}

CS-2303, A-Term 2012 Dynamic Memory Allocation

Worcester Polytechnic Institute

Alternate version of malloc() and free()

#include <stdlib.h>
int PlayGame(int *board, int arraySize);
int main(){
ints, t;
int *A;
s=..; /* determine size of array from input */

A = malloc(s * sizeof(int));

= PlayGame(A, s);

free(A);
return t;

}

CS-2303, A-Term 2012 Dynamic Memory Allocation

Generalization

m malloc() and free() are used ...
= whenever you need a dynamically sized array

= whenever you need an array that does not follow last
in, first out rule of The Stack

m Valid in all versions of C
= See p. 167 of K&R (8§7.8.5)

CS-2303, A-Term 2012 Dynamic Memory Allocation 9

Worcester Polytechnic Institute

malloc vs. calloc

m void *malloc(size t #ofBytes)
= Takes number of bytes as argument

= Aligned to largest basic data type of machine
» Usually long int

= Does not initialize memory
= Returns pointer to void

m void *calloc(size _t #ofltems, size t sizeOfitem)

= Takes number of # of items and size as argument
= |nitializes memory to zeros; returns pointer to void

m calloc(n, itemSize) =malloc(n * itemSize)
= Plus initialization to zero

CS-2303, A-Term 2012 Dynamic Memory Allocation 10

Worcester Polytechnic Institute

realloc()

void *realloc(void *p, size_t newSize)

" Changes the size of a malloc’ed piece of memory by
aIIocating NeW area (or changing size of old area)

" May increase or decrease size

= Data copied from old area to new area

= |f larger, extra space is uninitialized
= free(p)—i.e., frees old area (if new area different from old)
= Returns pointer to void of new area
= See p. 252 of K&R

Rarely used in C programming!

CS-2303, A-Term 2012 Dynamic Memory Allocation 11

Worcester Polytechnic Institute

Definition — Memory Leak

m The steady loss of available memory in Heap due

to program forgetting to free everything that was
malloc’ed.

" Bug-a-boo of most large C and C++ programs

m If you overwrite or lose the value of a pointer to a
piece of malloc’ed memory, there is no way to
find it again!

= Automatically creating a memory leak

m Killing the program frees all memory!

CS-2303, A-Term 2012 Dynamic Memory Allocation 12

Worcester Polytechnic Institute

Questions?

CS-2303, A-Term 2012 Dynamic Memory Allocation 13

Worcester Polytechnic Institute

Multi-Dimensional Arrays

m int D[10][20]

" A one-dimensional array with 10 elements, each of
which is an array with 20 elements

m l.e., int D[10][20] /*[row][col]*/
m Last subscript varies the fastest

= |.e., elements of last subscript are stored contiguously
In memory

m Also, three or more dimensions

CS-2303, A-Term 2012 Dynamic Memory Allocation 14

Limitations of

Multi-Dimensional Arrays

m Csupports only fixed size multi-dimensional arrays
m Rows stored contiguously in memory =

= Compiler must know how many elements in a row

= Cannot pass an array to a function with open-ended number
of elements per row

m void f(int A[][20], int nRows); /*okay*/
m void f(int A[10][], int nCols); /*NOT okay */

m void f(int A[][], int nRows, int nCols);
/*also NOT okay */

m Same for three or more dimensions!

CS-2303, A-Term 2012 Dynamic Memory Allocation 15

Worcester Polytechnic Institute

Dynamic Two-Dimensional Arrays

m Array of pointers, one per row
= Each row is a one-dimensional array

intx,y; /*x-=#rows,y =#columns */
int **B = calloc(x, sizeof(int *));
for (i=0;i<x; i++)

Bli] = calloc(y, sizeof(int));

/* to access element of row i, column j */

Bli]lj]

CS-2303, A-Term 2012 Dynamic Memory Allocation 16

Why does this work?

m int **B means the same as
int *B[];
= |.e., Bis an array of pointers to int
= Therefore, BJi] is a pointer to int

m But if A is a pointer to int,
then A[j] is the jth integer of the array A

m Substitute BJi] for A

m Therefore, B[i][j] is the jth integer of the ith row
of B

CS-2303, A-Term 2012 Dynamic Memory Allocation 17

Worcester Polytechnic Institute

Why does this work? (continued)

m When expression contains B[i][j], compiler
generates code resembling
= int *temp =B +i;
= *(temp + j);
m ... in order to access this element

CS-2303, A-Term 2012 Dynamic Memory Allocation 18

Worcester Polytechnic Institute

Alternative Method

intx,y; /*x-=#rows,y =#columns */
int **B = calloc(x, sizeof(int *));
int elements[] = calloc(x*y, sizeof(int));
for (i=0;i<x; i++)

Bli] = &elements[i*y];

/* to access element of row i, column j */
Blillj] Why does this work?

Exercise for the student!

CS-2303, A-Term 2012 Dynamic Memory Allocation 19

Worcester Polytechnic Institute

Arrays as Function Parameters
(again)

m void init(float A[], int arraySize);
void init(float *A, int arraySize);

m l.e. caller copies the value of a pointer of the
appropriate type into the parameter A

m Called function can reference through that
pointer to reach thing pointed to

CS-2303, A-Term 2012 Dynamic Memory Allocation 20

Worcester Polytechnic Institute

Arrays as Function Parameters

(continued)

m void init(float A[][], int rows, int columns);
void init(float **A, int rows, int columns);

m Not Identical!

m Compiler complains that A[][] in header is
incompletely specified
= Needs to know number of columns
= As if constant!
m Must use pointer notation in header or
declaration

m In body of init, A[i][j] is still acceptable

CS-2303, A-Term 2012 21
Dynamic Memory Allocation

Worcester Polytechnic Institute

Questions?

CS-2303, A-Term 2012 Dynamic Memory Allocation 22

	Dynamic Memory Allocation�(and Multi-Dimensional Arrays)
	Problem
	Definition — The Heap
	Dynamic Data Allocation
	Allocating Memory in The Heap
	Notes
	Example usage of malloc() and free()
	Alternate version of malloc() and free()
	Generalization
	malloc vs. calloc
	realloc()
	Definition – Memory Leak
	Questions?
	Multi-Dimensional Arrays
	Limitations of�Multi-Dimensional Arrays
	Dynamic Two-Dimensional Arrays
	Why does this work?
	Why does this work? (continued)
	Alternative Method
	Arrays as Function Parameters�(again)
	Arrays as Function Parameters�(continued)
	Questions?

