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Problem 1 – Packing Coffee 

Choosing a Selection Criterion 

Greedy Selection by Weight: 

(1)  (T5:50, T4:40, T3:10):  60+40+2.2*10=122. 

Greedy Selection by Cost: 

(2) (T3:30, T5:50, T4:20):  66+60+1*20=146. 

Greedy Selection by Cost per Pound: 

(3) (T3:30, T1:10, T2:20, T5:40):  66+20+30+1.2*40=164. 

Best of the three selection criteria : 

(4) Cost per pound produces the best result. As we will show in the proof of correctness of the 

algorithm below, a greedy approach based on cost-per-pound yields optimal solutions in general, 

not just in this example.   

Pseudo Code (part a) 

High level description: 

Take as much of the most expensive coffee as you can until you fill up the truck.   
 
This will require: 
Determining the most expensive coffee will use the priority queue. 
Need to keep track of either how much room is left or how full the truck is. 

Input: 

W: Maximum number of coffee pounds that the delivery van can carry. 
n: Number of different types of coffee that can be shipped.  
weight: a 1-dimensional array of size n of integers with  
cost_per_pound: a 1-dimensional array of size n of reals 

such that for each i, 1 ≤ i ≤ n: 
weight[i] = maximum number of pounds of coffee type Ti that can be shipped 
cost_per_pound[i] = cost of one pound of type Ti coffee  
 

Output: 
ship: 1-dimensional array of size n of reals such that for each i, 1 ≤ i ≤ n: 
   ship[i]= amount in pounds of coffee type Ti included in the shipping              
   satisfying: 
   ship[i] ≤ weight[i], 
   Σ

n
i=1 ship[i]≤ W, and 

   Σn
i=1 ship[i]*cost_per_pound[i] is as large as possible 
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Algorithm Pseudo Code: 

ship[] represents the fraction of coffee pounds to load in the van. 
Set ship[i] = 0 for 1 < i <= n (no coffee loaded yet) 
 
Initialize a priority queue PQ of size n for storing the coffee types, with the cost_per_pound[i] as the 
keys.  The most expensive coffee type will be kept at the front of the queue. 
 
For each type of coffee t, 1 < t <= n 
 Insert t into PQ with key value cost_per_pound[t] 
EndFor 
 
Extract the most expensive coffee type from PQ and store it in a variable t 
While weight[t] <= W and PQ is not empty 
 Set ship[t] = weight[t] 
 Decrease the van’s capacity W by weight[t] 
 Extract the most expensive coffee type from PQ and store it in a variable t 
EndWhile 
 
Set ship[t] = W, the remaining room in the truck (that is less than the total weight of type t coffee that 
we have) 
EndAlgorithm  
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More Java-Like Algorithm Pseudo Code: 

real ship[n];   //fraction of coffee pounds to ship 
 
for (i = 1; i <= n+1; i++) 

ship[i] = 0; // initially there is no coffee in the van 
 
// Initialize a priority queue PQ of size n for storing the coffee types, with 
// the weights as the keys, with the most expensive coffee on top. 
CoffeePriorityQueue pq = new CoffeePriorityQueue (n); 
for (int t = 1; t <= n+1; i++) 
 pq.insert(t, cost_per_pound[t]);   // add the coffee types, with weights as keys 
 
int t = pq.extractMax(); // get the most expensive coffee 
while(weight[t] <= W && !(pq.isEmpty())) { 
 ship[t] = weight[t] 
 W -= weight[t] 
 int t = pq.extractMax(); 
} 
 
ship[t] = W 
// the remaining room in the truck (that is less than the total weight of type t coffee that we have) 
} 

Alternative Using Sorting 

ship[] represents the fraction of coffee pounds to load in the van. 
Set ship[i] = 0 for 1 < i <= n (no coffee loaded yet) 
 
type[] represents the coffee types. 
Initialize type[i] = i for 1 < i <=n 
 
Sort type[] in decreasing order by cost_per_pound[i] 
 
Let t be the current coffee type to load 
t = 1 
While weight[t] <= W and PQ is not empty 
 Set ship[t] = weight[t] 
 Decrease the van’s capacity W by weight[t] 
 t = t+1 
EndWhile 
 
Set ship[t] = W, the remaining room in the truck (that is less than the total weight of type t coffee that 
we have) 
EndAlgorithm 
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Proof of Correctness (part b) 

Intuition 

This algorithm puts all the most expensive coffees into the truck. If we do anything else, we will 
decrease the value of the payload. 

Proof 

Consider a solution ship[] that does not have as much of the most expensive coffees as it can.  We can 
always improve such a shipment by replacing an amount of a cheaper type of coffee by the same 
amount of more expensive coffee.  If the cheaper coffee type has a price c per pound, and the more 
expensive coffee has a price e per pound, replacing w pounds of c priced coffee with w pounds of e 
priced coffee will make the payload e*w – c*w = (e-c)*w more expensive.  Since e > c, this improves the 
payload.   Therefore, any payload that does not have as much of the most expensive coffees as it can 
cannot be as good as one that does, thus proving the optimality of the algorithm. 

Complexity Analysis (part c) 
The analysis is parameterized on n, the number of coffee types. 

Priority Queue 

Initializing the shipment array takes O(n). 

Performing n insertions a priority queue takes O(n log n), since each insertion takes O(log n) and 
insertions are performed n times. 

The while loop can iterate at most n times (until we run out of coffee types).  Setting the shipment 
weight and decreasing the capacity both take constant time.  Extracting the maximum element out of a 
priority queue, on the other hand, takes O(log n) time.  Since this extraction is done inside the while 
loop, the whole loop has complexity O(n log n). 

The final assignment takes constant time. 

The total running time of the algorithm is then: 

T(n) = [Initialize Ship] + [Initialize PQ] + [Fill Truck] + [Final assign.] = O(n) + O(n log n) + O(n log n) + O(1)  
T(n) = O(n log n) 

Sorting 

An alternate way to solve this problem would be to use a sorted array of the coffee types instead of a 
priority queue.  Using Merge Sort (to studied in class soon) or Heap Sort, the sort can be done in          
O(n log n).  Then the packing stage becomes O(n), since looking at an element in an array takes constant 
time.  This leads to a total running time of: 
 
T(n) = [Initialize Ship] + [Initialize Types] + [Sort Types] + [Fill Truck] + [Final assign.] 
T(n) = O(n) + O(n) + O(n log n) + O(n) + O(1) 
T(n) = O(n log n) 
 
This is exactly the same complexity as using a priority queue. 
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Problem 2 – Huffman Codes 

Generating an Encoding (part a) 

The algorithm for generating Huffman codes repeatedly merges the two least frequently occurring 
letters in the alphabet together into one meta-letter.  After repeating this merge n-1 times, where n is 
the number of letters, all that is left is one large meta-letter. This process is represented in the table 
below. 
 

Figure 1: Making Meta-Letters 

       

 
Lowest Frequencies (will be merged) 

       Intial Configuration 
 alphabet a e i o u 
 frequency 0.5 0.25 0.125 0.0625 0.0625 
 

       Step 1 
  alphabet a e i ou 
  frequency 0.5 0.25 0.125 0.125 
  

       Step 2 
   alphabet a e iou 
   frequency 0.5 0.25 0.25 
   

       Step 3 
    alphabet a eiou 
    frequency 0.5 0.5 
    

       Step 4 
     alphabet aeiou 
     frequency 1 
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This merging process builds a tree, beginning with all nodes being in their own separate trees.  As nodes 

get merged, they form small trees, which get merged to form bigger trees.  The final tree that results 

provides the Huffman Encoding for the letters in the given alphabet.   
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Figure 2: Building Huffman Trees 
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To get the code of each letter in the alphabet, traverse the tree from the root to the leaves.  Each time 
you go left, put down a 1.  Each time you go right, put down a 0.  For the above graph, the resulting 
encoding is: 
 

a e i o u 

0 10 110 1110 1111 
Figure 3: Alphabet Encoding 

Since the encodings traverse the tree all the way to the leaves, there is no possible way that any 
encoding could be the prefix of any other encoding.  The next section provides an example of this 
decoding process. 

A Particular Encoding (part b) 

The encoding of “auuoi” using the above tree is 

a u u o i 

0 1111 1111 1110 110 
Figure 4: Encoding of a Particular Word 

This will actually just come in one long string: 
0111111111110110 
 
In order to reconstruct the original word from this long string, start at the beginning of the string and at 
the beginning of the Huffman Encoding Tree.  For each number (0 or 1) you read from the encoded 
string, take that branch in the tree.  When you hit a leaf in the tree, you know you found a letter!  Write 
it down and start back at the root with the next number on the input string. 
 
Figure 5: Decoding Huffman Codes 

Input 
String 

Accumulated 
Encoding Letter 

0 0 a 

1 1   

1 11   
1 111   

1 1111 u 

1 1   

1 11   
1 111   

1 1111 u 

1 1   
1 11   

1 111   

0 1110 o 
1 1   

1 11   

0 110 i 
  



10 
 

Encoded Length (part c) 

The length of all of the encoded versions of a letter L is going to be the length of the encoded letter 
times the total number of its occurrences in the string.  The number of occurrences can be calculated 
using the frequency. 
 
In a string of length m, with each letter having frequency F[i] and encoded length E[i], the number of bits 
used to write those letters is m*F[i]*E[i].  The total number of bits used is then the sum over all the 
letters.  If there are n letters, then 
 

𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑡𝑡𝑒𝑟𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝑓, 𝑒 = 𝑚 ∗ 𝑓 ∗ 𝑒 
 

𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝐹   ,𝐸    =  𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑡𝑡𝑒𝑟𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝐹 𝑖 , 𝐸 𝑖  

𝑛

𝑖=1

=   𝑚 ∗ 𝐹 𝑖 ∗ 𝐸 𝑖 

𝑛

𝑖=1

 

 
This can be simplified one step further to get: 
 

𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝐹   ,𝐸    =  𝑚 ∗  𝐹 𝑖 ∗ 𝐸 𝑖 

𝑛

𝑖=1

  

 

Figure 6: Encoded Lengths 

Plain Text Length Letter Frequency Encoding 
Encoding 
Length 

Encoded Text Letter 
Length ASCII Encoding* 

1000000 a 0.5 0 1 500000 3500000 

1000000 e 0.25 10 2 500000 1750000 

1000000 i 0.125 110 3 375000 875000 

1000000 o 0.0625 1110 4 250000 437500 

1000000 u 0.0625 1111 4 250000 437500 

        
Total 
Length 1875000 7000000 

    
  Compression 0.2678 

* 7 bits per Letter 
       


