

CS2223: Algorithms, D-Term 2008

Homework 4
Written Solutions
Prepared by Andrey Sklyar with some help from Yaobin Tang

Worcester Polytechnic Institute
4/8/2008

2

Table of Contents
Pseudo Code (part a) ... 3

High level description: .. 3

Input: ... 3

Algorithm Pseudo Code: ... 4

More Java-Like Algorithm Pseudo Code: ... 5

Alternative Using Sorting ... 5

Proof of Correctness (part b) ... 6

Intuition ... 6

Proof.. 6

Complexity Analysis (part c) ... 6

Priority Queue .. 6

Sorting ... 6

Generating an Encoding (part a) .. 7

A Particular Encoding (part b) .. 9

Encoded Length (part c) ... 10

Table of Figures
Figure 1: Making Meta-Letters... 7

Figure 2: Building Huffman Trees ... 8

Figure 3: Alphabet Encoding .. 9

Figure 4: Encoding of a Particular Word ... 9

Figure 5: Decoding Huffman Codes .. 9

Figure 6: Encoded Lengths ... 10

file:///R:\Grad\cs2223-ta\hw4\Solutions.docx%23_Toc195440932

3

Problem 1 – Packing Coffee

Choosing a Selection Criterion

Greedy Selection by Weight:

(1) (T5:50, T4:40, T3:10): 60+40+2.2*10=122.

Greedy Selection by Cost:

(2) (T3:30, T5:50, T4:20): 66+60+1*20=146.

Greedy Selection by Cost per Pound:

(3) (T3:30, T1:10, T2:20, T5:40): 66+20+30+1.2*40=164.

Best of the three selection criteria :

(4) Cost per pound produces the best result. As we will show in the proof of correctness of the

algorithm below, a greedy approach based on cost-per-pound yields optimal solutions in general,

not just in this example.

Pseudo Code (part a)

High level description:

Take as much of the most expensive coffee as you can until you fill up the truck.

This will require:
Determining the most expensive coffee will use the priority queue.
Need to keep track of either how much room is left or how full the truck is.

Input:

W: Maximum number of coffee pounds that the delivery van can carry.
n: Number of different types of coffee that can be shipped.
weight: a 1-dimensional array of size n of integers with
cost_per_pound: a 1-dimensional array of size n of reals

such that for each i, 1 ≤ i ≤ n:
weight[i] = maximum number of pounds of coffee type Ti that can be shipped
cost_per_pound[i] = cost of one pound of type Ti coffee

Output:
ship: 1-dimensional array of size n of reals such that for each i, 1 ≤ i ≤ n:
 ship[i]= amount in pounds of coffee type Ti included in the shipping
 satisfying:
 ship[i] ≤ weight[i],
 Σ

n
i=1 ship[i]≤ W, and

 Σn
i=1 ship[i]*cost_per_pound[i] is as large as possible

4

Algorithm Pseudo Code:

ship[] represents the fraction of coffee pounds to load in the van.
Set ship[i] = 0 for 1 < i <= n (no coffee loaded yet)

Initialize a priority queue PQ of size n for storing the coffee types, with the cost_per_pound[i] as the
keys. The most expensive coffee type will be kept at the front of the queue.

For each type of coffee t, 1 < t <= n
 Insert t into PQ with key value cost_per_pound[t]
EndFor

Extract the most expensive coffee type from PQ and store it in a variable t
While weight[t] <= W and PQ is not empty
 Set ship[t] = weight[t]
 Decrease the van’s capacity W by weight[t]
 Extract the most expensive coffee type from PQ and store it in a variable t
EndWhile

Set ship[t] = W, the remaining room in the truck (that is less than the total weight of type t coffee that
we have)
EndAlgorithm

5

More Java-Like Algorithm Pseudo Code:

real ship[n]; //fraction of coffee pounds to ship

for (i = 1; i <= n+1; i++)

ship[i] = 0; // initially there is no coffee in the van

// Initialize a priority queue PQ of size n for storing the coffee types, with
// the weights as the keys, with the most expensive coffee on top.
CoffeePriorityQueue pq = new CoffeePriorityQueue (n);
for (int t = 1; t <= n+1; i++)
 pq.insert(t, cost_per_pound[t]); // add the coffee types, with weights as keys

int t = pq.extractMax(); // get the most expensive coffee
while(weight[t] <= W && !(pq.isEmpty())) {
 ship[t] = weight[t]
 W -= weight[t]
 int t = pq.extractMax();
}

ship[t] = W
// the remaining room in the truck (that is less than the total weight of type t coffee that we have)
}

Alternative Using Sorting

ship[] represents the fraction of coffee pounds to load in the van.
Set ship[i] = 0 for 1 < i <= n (no coffee loaded yet)

type[] represents the coffee types.
Initialize type[i] = i for 1 < i <=n

Sort type[] in decreasing order by cost_per_pound[i]

Let t be the current coffee type to load
t = 1
While weight[t] <= W and PQ is not empty
 Set ship[t] = weight[t]
 Decrease the van’s capacity W by weight[t]
 t = t+1
EndWhile

Set ship[t] = W, the remaining room in the truck (that is less than the total weight of type t coffee that
we have)
EndAlgorithm

6

Proof of Correctness (part b)

Intuition

This algorithm puts all the most expensive coffees into the truck. If we do anything else, we will
decrease the value of the payload.

Proof

Consider a solution ship[] that does not have as much of the most expensive coffees as it can. We can
always improve such a shipment by replacing an amount of a cheaper type of coffee by the same
amount of more expensive coffee. If the cheaper coffee type has a price c per pound, and the more
expensive coffee has a price e per pound, replacing w pounds of c priced coffee with w pounds of e
priced coffee will make the payload e*w – c*w = (e-c)*w more expensive. Since e > c, this improves the
payload. Therefore, any payload that does not have as much of the most expensive coffees as it can
cannot be as good as one that does, thus proving the optimality of the algorithm.

Complexity Analysis (part c)
The analysis is parameterized on n, the number of coffee types.

Priority Queue

Initializing the shipment array takes O(n).

Performing n insertions a priority queue takes O(n log n), since each insertion takes O(log n) and
insertions are performed n times.

The while loop can iterate at most n times (until we run out of coffee types). Setting the shipment
weight and decreasing the capacity both take constant time. Extracting the maximum element out of a
priority queue, on the other hand, takes O(log n) time. Since this extraction is done inside the while
loop, the whole loop has complexity O(n log n).

The final assignment takes constant time.

The total running time of the algorithm is then:

T(n) = [Initialize Ship] + [Initialize PQ] + [Fill Truck] + [Final assign.] = O(n) + O(n log n) + O(n log n) + O(1)
T(n) = O(n log n)

Sorting

An alternate way to solve this problem would be to use a sorted array of the coffee types instead of a
priority queue. Using Merge Sort (to studied in class soon) or Heap Sort, the sort can be done in
O(n log n). Then the packing stage becomes O(n), since looking at an element in an array takes constant
time. This leads to a total running time of:

T(n) = [Initialize Ship] + [Initialize Types] + [Sort Types] + [Fill Truck] + [Final assign.]
T(n) = O(n) + O(n) + O(n log n) + O(n) + O(1)
T(n) = O(n log n)

This is exactly the same complexity as using a priority queue.

7

Problem 2 – Huffman Codes

Generating an Encoding (part a)

The algorithm for generating Huffman codes repeatedly merges the two least frequently occurring
letters in the alphabet together into one meta-letter. After repeating this merge n-1 times, where n is
the number of letters, all that is left is one large meta-letter. This process is represented in the table
below.

Figure 1: Making Meta-Letters

Lowest Frequencies (will be merged)

 Intial Configuration
 alphabet a e i o u
 frequency 0.5 0.25 0.125 0.0625 0.0625

 Step 1
 alphabet a e i ou
 frequency 0.5 0.25 0.125 0.125

 Step 2
 alphabet a e iou
 frequency 0.5 0.25 0.25

 Step 3
 alphabet a eiou
 frequency 0.5 0.5

 Step 4
 alphabet aeiou
 frequency 1

8

This merging process builds a tree, beginning with all nodes being in their own separate trees. As nodes

get merged, they form small trees, which get merged to form bigger trees. The final tree that results

provides the Huffman Encoding for the letters in the given alphabet.

a e i o u

ou

o u

a e i

iou

i ou

o u

a e

eiou

e

a

iou

i ou

o u

Key
Current Alphabet

Lowest Probability (get merged)

No longer in alphabet

a

`

i

eiou

e iou

i ou

o u

a

aeiou

Figure 2: Building Huffman Trees

9

To get the code of each letter in the alphabet, traverse the tree from the root to the leaves. Each time
you go left, put down a 1. Each time you go right, put down a 0. For the above graph, the resulting
encoding is:

a e i o u

0 10 110 1110 1111
Figure 3: Alphabet Encoding

Since the encodings traverse the tree all the way to the leaves, there is no possible way that any
encoding could be the prefix of any other encoding. The next section provides an example of this
decoding process.

A Particular Encoding (part b)

The encoding of “auuoi” using the above tree is

a u u o i

0 1111 1111 1110 110
Figure 4: Encoding of a Particular Word

This will actually just come in one long string:
0111111111110110

In order to reconstruct the original word from this long string, start at the beginning of the string and at
the beginning of the Huffman Encoding Tree. For each number (0 or 1) you read from the encoded
string, take that branch in the tree. When you hit a leaf in the tree, you know you found a letter! Write
it down and start back at the root with the next number on the input string.

Figure 5: Decoding Huffman Codes

Input
String

Accumulated
Encoding Letter

0 0 a

1 1

1 11
1 111

1 1111 u

1 1

1 11
1 111

1 1111 u

1 1
1 11

1 111

0 1110 o
1 1

1 11

0 110 i

10

Encoded Length (part c)

The length of all of the encoded versions of a letter L is going to be the length of the encoded letter
times the total number of its occurrences in the string. The number of occurrences can be calculated
using the frequency.

In a string of length m, with each letter having frequency F[i] and encoded length E[i], the number of bits
used to write those letters is m*F[i]*E[i]. The total number of bits used is then the sum over all the
letters. If there are n letters, then

𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑡𝑡𝑒𝑟𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝑓, 𝑒 = 𝑚 ∗ 𝑓 ∗ 𝑒

𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝐹 ,𝐸 = 𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑡𝑡𝑒𝑟𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝐹 𝑖 , 𝐸 𝑖

𝑛

𝑖=1

= 𝑚 ∗ 𝐹 𝑖 ∗ 𝐸 𝑖

𝑛

𝑖=1

This can be simplified one step further to get:

𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡𝑕 𝑚, 𝐹 ,𝐸 = 𝑚 ∗ 𝐹 𝑖 ∗ 𝐸 𝑖

𝑛

𝑖=1

Figure 6: Encoded Lengths

Plain Text Length Letter Frequency Encoding
Encoding
Length

Encoded Text Letter
Length ASCII Encoding*

1000000 a 0.5 0 1 500000 3500000

1000000 e 0.25 10 2 500000 1750000

1000000 i 0.125 110 3 375000 875000

1000000 o 0.0625 1110 4 250000 437500

1000000 u 0.0625 1111 4 250000 437500

Total
Length 1875000 7000000

 Compression 0.2678

* 7 bits per Letter

