Practice Examination #3 Solutions

Note: This practice examination contains more problems than would typically be found on a real examination.

PROBLEM 1
Let a finite set \(S \) have \(n \) elements. How many different relations are there on \(S \)? Justify your answer.

Hint: Consider the entries of the possible relation matrices.

The relation matrix has \(N^2 \) entries, each of which can be 0 or 1. Therefore, there are \(2^{N^2} \) possible relations.

PROBLEM 2
Part A
Let relation \(r \) on set \(A = \{a, b, c, d, e\} \) have the following adjacency matrix:

\[
R = \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Draw the Hasse diagram for \(r \).

\[a \quad d \quad b \quad e \quad c\]

Part B
Find another relation \(s \) on \(A \) such that \(r \subset s \) and \(s \) also has a Hasse diagram. Draw the Hasse diagram for \(s \). Note: If there is more than one such \(s \), you need to draw only one.

\[a \quad a \quad d \quad d \quad b \quad e \quad e \quad b \quad c \quad c\]
PROBLEM 3
Draw the Hasse diagram for all partial orders on $S = \{a, b\}$. There are only a few.

\[
\begin{array}{ccc}
 a & b & a \\
 \| & \| \\
 b & a
\end{array}
\]

PROBLEM 4
Let function $f: A \to A$ be a symmetric relation.

Part A
Prove that $f^{-1} = f$.

Let $f(a) = b$. There are 2 cases to consider: $a = b$ and $a \neq b$. If $a = b$, then $f(a) = a$, and $f(f(a)) = f(a) = a$. If $a \neq b$, then by symmetry, $f(b) = a$ and $f(f(a)) = f(b) = a$. In either case, $f \circ f = id$ and so $f = f^{-1}$.

Part B
Must f be reflexive? Why or why not?

No. consider $f(n) = 1 - n$ on the set $\{0, 1\}$. It is not reflexive, yet it satisfies $f^{-1} = f$.

PROBLEM 5
Let $[V, E]$ be an undirected simple graph with vertices V and edges E. Define relation r on V by v_1rv_2 iff there is a path (sequence of edges) connecting v_1 to v_2. Assume that every vertex is connected to itself. Prove that r is an equivalence relation on V.

Hint: What 3 things must hold for an equivalence relation?

Reflexive: It is assumed that every vertex connects to itself.

Symmetric: If v_1rv_2 then there is a sequence of edges e_1, e_2, \ldots, e_j from v_1 to v_2. Because we are dealing with undirected graphs, the sequence of edges e_j, \ldots, e_2, e_1 connects v_2 to v_1. Therefore v_2rv_1 and the relation is symmetric.

Transitive: If v_1rv_2 and v_2rv_3 then v_1rv_3 simply by putting together the edge sequences (paths) from v_1 to v_2 and from v_2 to v_3.

PROBLEM 6
A relation R on set S is anti-transitive if $\forall a, b, c, \in S, (aRb) \land (bRc) \rightarrow \neg(aRc)$.

Part A
Prove that if relation R is anti-transitive, then R is anti-reflexive. Hint: Try an indirect proof.

Suppose that R is not anti-reflexive. Then there exists $a \in S$ such that aRa. If R were anti-transitive, then $(aRa) \land (aRa) \rightarrow \neg(aRa)$. This cannot be, so the relation cannot be anti-transitive. Therefore, if R is anti-transitive, it must be anti-reflexive.
Part B
Find an anti-transitive relation. You may use a graph, relation matrix or other *unambiguous*
means to describe the relation. Be sure to specify the set.

Let the set be \(\{a, b, c\} \) with relation \(R = \{(a, b), (b, c)\} \).

PROBLEM 7
In this problem, a partition is considered to be a set of subsets. Consequently, the following
partitions of set \(\{a, b, c\} \) are considered to be the same partition:

\[
\{\{a\}, \{b, c\}\}, \ \{\{a\}, \{c, b\}\}, \ \{\{b, c\}, \{a\}\}, \ \{\{c, b\}, \{a\}\}
\]

How many distinct ways can a set with \(N \) elements be partitioned into \(N-1 \) *non-empty* subsets?
Explain.

There must be \(N - 2 \) subsets with a single element and 1 subset with 2 elements. We need only
pick 2 elements from the set—this defines the doubleton subset and the other subsets are the
singletons. We can pick the 2 elements in \(\binom{N}{2} \) ways.