
Overview of Web Programming

Kathi Fisler, WPI

October 5, 2011

1 The Problem of Web Programming
This lecture looks at programming for web scripts and some of the challenges it raises. Web
sites (such as travel sites and onine stores) are often notoriously buggy, even when developed by
reputable companies. This suggests that interesting web scripts are somehow complicated to get
right. In this lecture, we’re going to try to draw analogies between web programs and the non-web
programs that you write to try to understand what’s difficult about writing web scripts.

• Boxes on forms correspond to requesting inputs (like read in Racket).

• Web pages/scripts are like functions: they request a number of inputs from a user and per-
form some operations on the input, possibly calling other functions (pages/scripts) for addi-
tional processing.

• Pressing buttons on web pages calls functions.

Where does this analogy break down? Unlike functions, web scripts terminate as soon as they
have passed their form inputs to the next script. The user must press a (submit) button to continue
the computation. Furthermore, one script never “returns” a computation to a previous script; in
contrast, you rely on one function returning data to another all the time. The implication then is
that you have to change how you write programs when you implement web programs.

Let’s illustrate this with a simple example. Suppose you wanted to write a program that asks
a user to input their age, then displays some information about their ability to vote. Keeping with
the idea that we need one page to request input, then another to display the output, we might write
a Racket version of this program as follows:1

;; request-age-page :→ void
;; prompts user to input their age
(define (request-age-page)

(begin (printf "Enter your age: ")
(read)))

1we will write our web programs in Racket because not everyone in the class knows CGI or PHP programming.
It’s not hard to translate these programs into equivalent ones in your favorite web programming language.

1



;; age-page-nonweb :→ void
;; displays ability to vote based on user’s age
(define (age-page-nonweb)

(local ((define age (request-age-page)))
(cond [(>= age 18) (printf "Don’t forget to vote!")]

[else (printf "You’ll be able to vote in ˜a years" (− 18 age))])))

If this were a real web program, the user would get a page with a box in which to enter their age
and a submit button. Pressing submit would bring up a new page with the appropriate message
from the cond statement. Running it in Racket would yield the following interaction:

> (age-page-nonweb)
Enter your age: 16
You’ll be able to vote in 2 years

This program has functions that correspond to pages in a web program. Those functions don’t
follow the termination behavior of web scripts though. We said that web scripts print out pages,
read inputs, and then terminate. The request-age-page appears to do that (since nothing happens
after the read). Terminate is a stronger condition though: web programs don’t even return control
flow back to the programs that called them!

In order to study web programs through Racket, we need a way to define scripts that look
like Racket functions, but abort when they are done, rather than returning to the programs that
called them. This is a change to the way Racket usually handles functions, so we need a macro
for defining scripts. The following code achieves this task. I do not expect you to understand
how this macro works — just copy it into your Racket file when you are experimenting with
scripts. (Of course, if you want to know how it works, stop by my office sometime.)

(define abort #f)
(let/cc grab-abort

(set! abort grab-abort))

(define-syntax define-script
(syntax-rules ()

[(define-script (script-name arg . . . ) body)
(define (script-name arg . . . )

(abort body))]))

Let’s use the new macro to define our age program as scripts instead of scheme functions. To do
this, change define to define-script on both functions (I also edited the name of the main function
so we can tell them apart).

;; request-age-page-script :→ void
;; prompts user to input their age
(define-script (request-age-page-script)

(begin (printf "Enter your age: ")
(read)))

2



;; age-page :→ void
;; displays ability to vote based on user’s age
(define-script (age-page-web)

(local ((define age (request-age-page-script)))
(cond [(>= age 18) (printf "Don’t forget to vote!")]

[else (printf "You’ll be able to vote in ˜a years" (− 18 age))])))

Now, let’s run the program again. The script version should yield the same answers as the original
version:

> (age-page)
Enter your age:

What happened? The request-age-page-script program aborted as soon as it finished, rather than
return control to the age-page program. The local in age-page-web never finished, because the
program aborted at the end of request-age-page-script.

This is the problem of programming on the web. Perhaps this looks bizarre to you, but this
really is how web scripts work in practice. Over the next three classes, we will show you how to
program in this style, and a step-by-step process you can follow to convert programs to ones that
will work as scripts.

2 Fixing the Age-Page Program
Let’s try to figure out how to fix the script versions of the age-page program so that they behave
the same way as the original program. If we want the local to execute, we have to make sure it
gets invoked before request-age-page-script terminates. One obvious way to do this is to move the
local inside request-age-page-script, as follows:

;; request-age-page-script :→ void
;; prompts user to input their age
(define-script (request-age-page-script)

(begin (printf "Enter your age: ")
(local ((define age (read)))

(cond [(>= age 18) (printf "Don’t forget to vote!")]
[else (printf "You’ll be able to vote in ˜a years" (− 18 age))]))))

;; age-page :→ void
;; displays ability to vote based on user’s age
(define-script (age-page)

(request-age-page-script))

This violates the spirit of web scripts though, because scripts are only supposed to request inputs
or display messages based on information entered in previous pages. Put another way, by putting
the local in the same function as the request for input, we’ve taken out the “submit” button from
the web page. We need another way to do this.

3



We said earlier that submit buttons resemble calling functions. Let’s capture this in the code
my moving the local into another script that gets called after we ask the user for input:

;; submit-age :→ void
;; reads the age the user entered and displays the voting status
(define-script (submit-age age)

(cond [(>= age 18) (printf "Don’t forget to vote!")]
[else (printf "You’ll be able to vote in ˜a years" (− 18 age))]))

;; request-age-page-script :→ void
;; prompts user to input their age
(define-script (request-age-page-script)

(begin (printf "Enter your age: ")
(submit-age (read))))

;; age-page :→ void
;; displays ability to vote based on user’s age
(define-script (age-page)

(request-age-page-script))

Running this version yields the desired interaction:

> (age-page)
Enter your age: 16
You’ll be able to vote in 2 years

Why did this version work? Notice that before request-age-page-script can terminate, it must call
submit-age, which continues the computation. The submit-age script displays the voting informa-
tion to the user, then aborts. Control never gets back to request-age-page-script, but that’s okay,
because it didn’t have more work to do anyway! This example illustrates how to program for the
web: each script calls another script to continue the computation just before it would otherwise
terminate. No other computation can depend on the answer from a script.

3 Adding Numbers
Imagine that we wanted to write a web program to request two numbers, one on each of two web
pages, and produce their sum on a third web page. Let’s try to write sufficient scripts for this
example. We’ll start with a conventional version of the program.

;; request-num1-page :→ number
;; requests the first number
(define (request-num1-page)

(begin (printf "Enter first number: ")
(read)))

;; request-num2-page :→ number

4



;; requests the second number
(define (request-num2-page)

(begin (printf "Enter second number: ")
(read)))

;; adder-page :→ void
;; requests two numbers from user and displays their sum
(define (adder-page)

(local ((define n1 (request-num1-page)))
(local ((define n2 (request-num2-page)))

(printf "sum: ˜a˜n" (+ n1 n2)))))

To convert this to a web program, we need to make sure that each request page starts the next stage
of the computation before it finishes, and we need to change each define to define-script. In the
age program, we sent each read to a submit function that continued the computation. Let’s do the
same here:

;; request-num1-page :→ number
;; requests the first number
(define-script (request-num1-page)

(begin (printf "Enter first number: ")
(submit1 (read))))

What should submit1 do? If we look at the original adder-page function, after we request the first
number we request the second number (and send it off to a script as well)

(define (submit1 n1)
(begin (printf "Enter second number: ")

(submit2 (read))))

What should submit2 do? Since both numbers have been requested, it can now print the sum:

(define-script (submit2 n2)
(printf "sum: ˜a˜n" (+ n1 n2)))

Running this version yields the following interaction:

> (adder-page-web)
Enter first number: 5
Enter second number: 8

[BUG] reference to undefined identifier: n1

Where’s the problem? Notice that submit2 tries to print the sum of n1 and n2, but it doesn’t
have n1 (which was read in as part of submit1). To fix this, we pass n1 along as a parameter to
submit2:

;; adder-page-web :→ void
;; requests the first number

5



(define (adder-page-web)
(begin (printf "Enter first number: ")

(submit1 (read))))

;; submit1 : number→ void
;; requests the second number
(define (submit1 n1)

(begin (printf "Enter second number: ")
(submit2 n1 (read))))

;; submit2 : number number→ void
;; get second number from user and display sum
(define-script (submit2 n1 n2)

(printf "sum: ˜a˜n" (+ n1 n2)))

This version runs as expected.
For those of you with web programming experience, n1 would be handled as a hidden variable.

HTML supports hidden variables for precisely this reason: breaking programs into web scripts
requires a way to pass values between scripts.

4 Onward
We’ve seen a couple of simple examples of converting programs to the web. The problem gets
harder when the programs involve more conditionals, recursive functions, and other features.
You’ll see how to address these problems systematically as we continue with this topic.

6


