
CS1102: The State Machine Simulation Language

Kathi Fisler, WPI

September 26, 2012

1 Introduction: What’s a State Machine Simulator?

1.1 Example 1: Traffic Lights
Imagine that an engineering firm is designing new software for controlling the sequence of lights
displayed by a traffic light. Given that a malfunctioning light could result in accidents, they want
to monitor whether the new design is producing an expected (and acceptable) sequence of light
colors. Suppose they sampled the current light color at short, regular intervals. A sequence that
cycled through the colors in order, such as

red red green green yellow red red green yellow ...

matches the expected behavior of a traffic light. If, however, the monitor detected an out-of-order
sequence, such as

red yellow red yellow yellow red ...

then the monitor should report that the design contains an error.
Our goal in this lecture is to create programs for defining and running monitors. First, how

might we define a monitor (forget how to run it for the moment)? Here’s a common graphical
notation (known as a state machine—you may have heard the equivalent term finite automaton):

red green

yellow

green
yellow

red

is-yellow is-green

is-red

1



What does this notation mean?

• The circles are known as states: they name the different valid configurations that a monitor
could be in. For the traffic light, the monitor can be seeing one of the three light colors (red,
yellow, or green); the states indicate the color of the light at the last sampling.

• The arrows are known as transitions (or sometimes edges): they show relationships between
valid configurations. Notice that each arrow has a label on it. That label is known as a guard.
A transition indicates the conditions under which the monitor can change configurations.

For example, the transition from is-red to is-green has a guard green. This indicates that if
the monitor is in the is-red configuration and sees a green light on the next sampling, then the
monitor enters the is-green configuration. Notice, however, that there is no transition leaving
is-red with the guard yellow. That means that if the monitor is in the is-red configuration and
the light sampling shows yellow, then the monitor should report an error (because something
unexpected happened). The lack of a transition matching the current sample always indicates
an error.

• The stubby arrow with nothing at its source marks the starting configuration. This example
says that all traffic lights start displaying a red light.

This example shows how we can use state machines to write down monitors. Given a monitor
as a state machine, how do we run it to watch for errors? In addition to the monitor, we need a list
of the data sampled at each time. Assume we had a way to remember the current configuration. We
take the first sample off the list, change configurations by matching the sample against the guards,
and repeat on the rest of the list. For example, assume we had the state machine shown above and
the sample list (list ’red ’green ’green ’yellow). Then we would progress through the samples
and configurations as shown in the following table (in each line other than the first, the current
configuration is the next configuration from the previous line):

Sample list Current Configuration Next Configuration
(list ’red ’green ’green ’yellow) is-red is-red
(list ’green ’green ’yellow) is-red is-green
(list ’green ’yellow) is-green is-green
(list ’yellow) is-green is-yellow
empty is-yellow OKAY (stop monitor)

Here’s an example of how the monitor progresses on an erroneous sequence of samples:

Sample list Current Configuration Next Configuration
(list ’red ’red ’yellow ’green) is-red is-red
(list ’red ’yellow ’green) is-red is-red
(list ’yellow ’green) is-red ERROR

Our task is to come up with a language for describing state machine monitors and to write an
interpreter that runs the monitors against a list of samples, mimicing the tables above. The result
of each run is either okay or error, accordingly.

2



1.2 Example 2: A Train-Safety Protocol
As a second monitor example, consider a simple messaging protocol for a railway signalman (hu-
man). The signalman stands at one end of a very long tunnel. His input samples contain three kinds
of messages: one from the operator at the other end of the tunnel saying that a train has entered
the tunnel (train-entered), an observation that the train exits the tunnel on his end (see-train-exit),
and a message none if neither of other two messages are active. The operator should flag an error
if he ever gets a train-entered message while he is still waiting for a train to exit the tunnel. The
following state machine shows the monitor for this operator’s protocol:

no-train train-in

see-train-exit

train-entered

nonenone

(Note: This example is part of a slightly larger example of a real protocol that people believed
was working until it resulted in a massive train crash in England back in the 1860’s—look for
details on the Clayton Tunnel accident if you’re interested. Protocol validation remains an impor-
tant area of research in Computer Science, as a means of detecting flaws before accidents occur in
practice.)

2 A Language for Monitors
Now that you’ve seen two examples of monitors, let’s develop a (non-graphical) language for
writing them down and an interpreter for running them. We’ll use the traffic light as the running
example throughout these notes. Take a few minutes, and try to develop the data definitions that
you need for monitors. Do this before reading on (when I’ll present two different languages you
might have proposed):

2.1 Language 1: The Structures Approach
As in the past, we can start by identifying the pieces that go into describing a monitor, then write
data definitions for those pieces. What pieces do we have here? When we introduced the state
machine notation, we identified two kinds of information: states and transitions (with guards).
How might we turn these into data definitions?

;; A state is a (make-state symbol list[transition])
(define-struct state (name trans-out))

;; A transition is a (make-trans symbol symbol)
(define-struct trans (guard next-state))

;; A monitor is a (make-monitor symbol list[state])
(define-struct monitor (init-state states))

3



Using this approach, our traffic light would look like:

(define TL-monitor
(make-monitor ’is-red

(list (make-state ’is-red (list (make-trans ’red ’is-red)
(make-trans ’green ’is-green)))

(make-state ’is-green (list (make-trans ’green ’is-green)
(make-trans ’yellow ’is-yellow)))

(make-state ’is-yellow (list (make-trans ’yellow ’is-yellow)
(make-trans ’red ’is-red))))))

How would the interpreter work? It would take the monitor and the list of samples as input. Given
the monitor’s initial state and the first sample, it would determine the next state (using a series of
filters) and call the interpreter recursively with the rest of the sample and the the next-state. In
other words, the code skeleton would look like:

;; interp-monitor : monitor list[symbol]→ symbol
;; run monitor on samples, returning ’okay or ’error
(define (interp-monitor a-monitor samples)

(run-monitor (monitor-init-state a-monitor)
samples
(monitor-states a-monitor)))

;; run-monitor : symbol list[symbol] list[states]→ symbol
;; run monitor on samples from current state, returning ’okay or ’error
(define (run-monitor curr-state samples all-states)

(cond [(empty? samples) ’okay]
[(cons? samples)
(let ([next-state (find-next-state curr-state (first samples) all-states)])

(cond [(boolean? next-state) ’error]
[else (run-monitor next-state (rest samples) all-states)]))]))

;; find-next-state : symbol symbol list[state]→ symbol or false
;; finds name of next-state in transition from given state (first arg) on given input/guard (second arg)

Exercise: Write find-next-state (hint: use filter)

2.2 Language 2: The Functions Approach
We can also capture monitors using functions to represent states. Why might this make sense? We
can view each state as a delayed computation that’s just waiting for an input (the current sample).
Each state waits for an input (the sample), then calls the next state (a function) on the rest of the
samples.

What might the language definition look like in this framework?

;; A run-output is either ’error or ’okay

4



;; A state is a function (list[symbol]→ run-output)
;; (where the input is a list of samples)

;; A monitor is a state (the initial state)

Using this approach, we could define our traffic light as:

(define TL-monitor
(local [(define (is-red samples)

(cond [(empty? samples) ’okay]
[(cons? samples)
(cond [(symbol=? (first samples) ’red) (is-red (rest samples))]

[(symbol=? (first samples) ’green) (is-green (rest samples))]
[else ’error])]))

(define (is-yellow samples)
(cond [(empty? samples) ’okay]

[(cons? samples)
(cond [(symbol=? (first samples) ’yellow) (is-yellow (rest samples))]

[(symbol=? (first samples) ’red) (is-red (rest samples))]
[else ’error])]))

(define (is-green samples)
(cond [(empty? samples) ’okay]

[(cons? samples)
(cond [(symbol=? (first samples) ’green) (is-green (rest samples))]

[(symbol=? (first samples) ’yellow) (is-yellow (rest samples))]
[else ’error])]))]

is-red))

How would we write the interpreter for the second definition? The monitor is now just a function
that expects to receive a list of samples. Given a list of samples, we simply pass them to the monitor
function (the initial function), which in turn calls all the other functions for the other states until
the list of samples becomes empty.

;; interp-monitor : monitor list[symbol]→ run-output
;; run monitor on samples, returning ’okay or ’error
(define (interp-monitor a-monitor samples)

(a-monitor samples))

This example illustrates how your choice of data definition for a language can dramatically change
the amount of work needed to run programs in the language.

2.3 Which Language Design is Better?
We’ve now seen two rather different language definitions: one based on structures and one based
on functions. The two different definitions of interp-monitor suggest that these give rise to rather
different language implementations, but let’s try to characterize the differences more clearly:

5



Differences in Design Style
• The structure-based definition is purely syntactic – it captured the information in the monitor

(states and transitions) as explicit structures, then left the interpreter to figure out what those
structures mean (that’s why it’s called an interpreter). This is the same style that we used to
capture slides (in class) and animations (in lab).

• The function-based definition exploits some knowledge about what a monitor does – it goes
beyond what the notation looks like and also considers what the notation will be used for (in
other words, it takes the semantics of the monitors into account, rather than just the syntax).
This style leaves less work for interp-monitor, because much of the work gets buried in the
definition of the monitor itself—the monitor IS already a (Scheme) program that runs itself!

This is a substantial distinction, one that you can see clearly in the different definitions of interp-
monitor. For the function-based approach, interp-monitor doesn’t really have much work to do,
while that work is substantial in the structure-based approach.

Differences in Flexibility
What if we wanted to write additional software over monitors, such as a tool that uses a monitor to
generate (acceptable or erroneous) sequences (test cases) rather than check them? We could write
such a program over the structure-based definition. The function-based definition, on the other
hand, is customized to the original problem, so it supports fewer new applications over monitors.
Given the importance of flexibility in software design, why would anyone choose the function-
based approach?

Differences in Performance
The function-based version will execute much faster than the structure-based version on a large ex-
ample. Why? Because the interpreter for the structures has to do all the work of filtering through
the states to find the next states and the transitions. In the function-based version, the only compu-
tational work lies in the cond, which will be much cheaper than the filters. In real-world practice,
speed is of utmost importance in monitoring and testing software, so that makes a strong case for
the function-based approach.

2.4 Summary of Comparison
There is no clear answer to the question of which design is better. It depends on the constraints of
the real application you are building. In general, the structure-based version gives you flexibility
at a cost penalty, while the function-based version gives you performance with a loss of reuse. You
simply need to understand the requirements of your particular application to make this decision.

6



3 A Technical Note: Interpreters Versus Compilers
Technically, we can summarize the differences between the two styles as follows:

• The structure-based approach implements the monitor language through an interpreter. As
a reminder, an interpreter is a program that consumes a program (in this case, in the monitor
language) as input and returns the result of running that program (the ’error or ’okay).

• The function-based approach implements the monitor language through a compiler. A com-
piler is a program that consumes a program (in some language) and produces a program
in another language; the produced (output) program is run to yield the result of running the
original program. In this case, we served as the compiler: we manually represented the mon-
itor language as a program in Scheme, then ran the Scheme program to get the result (the
’error or ’okay). If we’d designed a custom notation for writing down monitor programs,
instead of relying on the graphical notation, the program that took that notation and produced
the Scheme program would be called the compiler.

For those of you who have heard that compilation is faster than interpretation, our discussion of
the differences in performance between the two approaches supports this claim.

Warning
Some of you have no doubt heard the phrase “X is a compiled language” or “Y is an interpreted
language”. These phrases are non-sensical, and show a certain gap in your training. “Interpreted”
or “compiled” are attributes of the implementation, not of the language. ANY language can be
interpreted or compiled (we’ve seen one example here). It’s certainly true that some languages are
more often implemented via interpreters as opposed to compilers, and vice-versa, but that decision
is not intrinsic to the language (rather, it arises from the application for which the language was
defined). Don’t make the mistake of using these phrases (unless of course you recant your WPI
degree first ...).

7


