CS1102: Introduction to Macros

Kathi Fisler, WPI
September 24, 2004

1 The Need to Improve Our Slideshow Language

Last we looked at our slideshow package, we were left with asetiled feeling that we hadn't really created a
language. We created a collection of data definitions fogrmms and an interpreter to process those definitions, but
the structures didn’t give us something that looked like aveational programming language. Recall that at the end
of the last lecture | explained that we actually HAVE creadddnguage (the hard part, that is), we just hadn’t put the
cleaner notation on top of it. Today, we want to see what wel beeo to handle this final step.

As a starting point, let’s recall what our current talk prags look like:

(definetalkl
(let ([intro-slide (lambda () (make-slide . .))]
[arith-eg-slide
(lambda ()
(make-slide
(format" Example "a" example-index
(make-pointlis(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12") false))]
[func-eg-slidglambda () (make-slide. .))]
[summary-slidélambda () (make-slide . .))])
(make-talk
(list (make-display intro-slide
(make-timecon@ambda (time) (> 10 time))
(list (make-display arith-eg-slidg
empty
(make-display func-eg-slijle
(make-display summary-sligg

If we wanted to clean up this syntax, what might we want to do?

1. We probably want to get rid of parts of the code that are tcweSie-specificlémbda, make-from define-
structs etc).

2. We want to get rid of details that the implementation neéds that don’t contribute information about the
computation that the programmer wants to perform.

For example:

e The (ambda () ...) around each slide is annoying. Tlanbda is definitely Scheme-specific. Furthermore,
someone who is writing talks shouldn’t have to remember @pnalambda around every slide.

o All of the list commands are annoying. We have to write them even if we hayeooie item to put in the list.
Also, these expose the language implementation to the gnuger.

e The program really isn't self-contained. We use Schéhto specify the slides, then use the slide names in the
actual body of the talk. This isn't a big deal, but it is sonieghwe would ideally like to address.

e Having to writetrue andfalsein each pointlist isn’t as annoying as the other issues, thaterror-prone and
mildly irksome. If someone is writing a program in this laage, they have to keep recalling whettrere
yields a numbered or a bulleted list.

In general, details that are extraneous to the program segngants to write are problematic for two reasons:

e The programmer might forget to write them down, leading tmgpam errors.

e The whole point of creating a new language is to give programmonstructs that make it easier to write certain
kinds of programs. The more a language has extraneoussjetailharder programs are to write, and the less
useful the language becomes.

With this in mind, let's work on improving our programminguiguage.

1.1 Fixing Pointlist Specifications

How might we augment the language to save programmers froramdbering the correspondence betwiag/false
and the numbering scheme? We can easily address this bygasdire functions to our program that set the numbered?
field for us:

;; pointlist-numbered : list[string}- pointlist

;; create numbered pointlist with given points

(define (pointlist-numbered poinjs
(make-pointlist points trug

;; pointlist-bulleted : list[string]}— pointlist
;; create non-numbered pointlist with given points
(define (pointlist-bulleted points

(make-pointlist points falge

Using these functions, we could rewrite our talk program as:

(definetalkl
(let ([intro-slide (lambda () (make-slide . .))]
[arith-eg-slide
(lambda ()
(make-slide
(format" Example "a" example-index
(pointlist-bulleted(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12"))))]
[func-eg-slidglambda () (make-slide. .))]
[summary-slidélambda () (make-slide . .))])
(make-talk
(list (make-display intro-slide
(make-timecon@lambda (time) (> 10 time))
(list (make-display arith-eg-slidg
empty
(make-display func-eg-slijle
(make-display summary-sligg

This example demonstrates one easy way to make a progrationatere readablantroduce functions to supply
data that the programmer might otherwise forget how to dgeci

1.2 Removing Lambdas on Slide Specifications

Let's use a similar approach to clean up how we write dowreslidnstead of having the programmer write down the
lambdas, let’s write a function that takes the data for a slide amarns the appropriatambda. I'll call the function
myslideso that we don’t create a conflict with our current use of thaeslidein the define-struct

;; myslide : string slide-body- (— slide)
;; return a function to make a slide
(define (myslide title body
(lambda ()
(make-slide title body)

Using this function, our slide program would look like:

(definetalkl
(let ([intro-slide (myslide. . .)]
[arith-eg-slide
(myslide
(format" Example "a" example-index
(pointlist-bulleted(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12")))]
[func-eg-slidgmyslide. . .)]
[summary-slidémyslide. . .)])
(make-talk
(list (make-display intro-slide
(make-timecon@ambda (time) (> 10 time))
(list (make-display arith-eg-slidg
empty
(make-display func-eg-slijle
(make-display summary-sligg

If we made this change, we would notice an odd behavior — camgie numbering is offt Somehow, both example
slides have the title "Example 0”. What happened?

Think about this before reading further.

Why did we add théambda in the first place? We needed to prevent Scheme from gettangatue ofexample-
indexuntil run-time. In the call tanyslide we removed that protection. Scheme evaluates all argent@finctions
before calling the functions. Scheme therefore gets theevalexample-indexpasses that value tayslide and then
buries thevaluein the lambda. We don’t want to bury the value, though, we w@bury theexpression that computes
the value Ourmyslidefunction therefore defeats the entire purpose of addindpttndda in the first place.

In short, functions won't work here because Scheme alwagkiates arguments to functions. In this instance, we
need something that adds cadighout evaluating its arguments. In other words, we need macros.

2 What's A Macro?
Think of macros like special rules or patterns that take gression and rewrite it into another expressigthout
evaluating any of the piece$his is exactly what we want in thayslidecase. We want to be able to write

(myslide
(format" Example "a" example-indéex
(pointlist-bulleted(list " (4 (x 2 3) 6)" " (+ 6 6)" " 12")))

and have Scheme convert it into
(lambda ()

(make-slide
(format" Example "a" example-indéex
(pointlist-bulleted(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12"))))

without evaluating the subexpressions.

How do we do this in Scheme? Let’s get the code down first, agidl éimalyze it:

(define-syntax myslide
(syntax-rules()
[(myslide title body)
(lambda ()
(make-slide title body]))

First, look at the last three lines: we see a pair of squarekita surrounding two expressions. The first expression
is the myslide expression that we tried to implement using a function; #eoed expression is the translation that
we’'d like to have for the first expression. Above that are timed that introduce new Scheme keywords. The first line
says that expressions starting wittyslide should not be evaluated. The second line is required syotaddfining

the translation rules. Never mind the () for now — we’'ll explevhat that’s for in due time. For now, just make sure it
follows thesyntax-rules

This kind of expression that transforms one expressiondntither is called emacra We'll be learning a lot about
macros and how to use them effectively as we continue ounexgbn of languages.

How do macros work? When you hit Execute, Scheme does a figstqeer your code translating all the macros
into their corresponding expressions (this is catteatro-expansion During macro expansion, Scheme will translate
all expressions of the formm{yslide <title-expression <body-expression) with the correspondinglgmbda ()
(make-slide ..)) expression without evaluating theitle-expression- or the <body-expression. It's that simple.
After the macro-expansion pass, Scheme will load your anogand Execute it as you are used to so far.

Put more visually, the following diagram shows the stagastiappen when going from a program to its execution.
A full-fledged language implementation takes the top patii;li02, we will follow the lower path, basically bypassing
the parser (take a compilers course if you want to undergtenchissing stage better).

Source macro parser interpreter
———— | Data Structures—— Resullt
Program | expandef Raw Program

7

macro expander

Returning to Slideshow

If we add themyslide macro definition to the slideshow package, we can now writdalll as we wanted to before,
without introducing errors in the example numbering:

(definetalkl
(let ([intro-slide (myslide. . .)]
[arith-eg-slide
(myslide
(format" Example "a" example-index
(pointlist-bulleted(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12")))]
[func-eg-slidgmyslide....)]
[summary-slidémyslide. . .)])
(make-talk
(list (make-display intro-slide
(make-timecon@lambda (time) (> 10 time))
(list (make-display arith-eg-slide
empty
(make-display func-eg-slijle
(make-display summary-slige

To finish the slideshow example, we have to see how many of ttier annoyances we listed at the beginning of
the lecture can be removed either using functions or using@sa Before we do that, though, let's get a better

understanding of, and practice with, macros.

2.1 Some Other Macro Examples

As a rule of thumb, we use macros whenever we want to writeesgons thalook like functions, but that don’t
evaluate in the same way (eval the args first, then eval a bé&dyacro is just a rule for rewriting one pattern into
another. Let’s look at two other macro examples, one of whalive been using all term.

211 Or

Let's pretend thabr was not a built-in operator, and that you wanted to defineetief$ an attempt using a function (|
give it the nameny-orto avoid conflicts with the built-iror operator).

;; or : boolean boolear> boolean
;; return true if and only if one of the inputs is true
(define(my-or el e?
(cond[el trug
[elsee?))

What would be some good test casesrforor? Let's try a few and see how this looks:

> (my-or(=33) (> 33))
true

> (my-or(> 3 4) (=4 4))
true

> (my-or(=34) (> 34))
false

Looks good, right? Let’s try one more examplmy-or (= 3 3) (= 3 'a)). What answer should you get on this? You
should get true, since the first argument evalutes to trueat\th you get? You get an error, since you can’t use = on
a symbol argument. If you tried this same expression usihg®e’sor instead ofmy-or, you'd gettrue.

From other languages, many of you know tbat‘short-circuits” — as soon as it finds an argument that evalu-
ates to true, it returns trugithout evaluating the remaining argumentthis requirement tells you that can’t be
implemented as a regular function. It has to be somethingaipét is; it's a macro.

(define-syntax my-or
(syntax-rules()
[(my-or el el
(cond[el trug
[elsee2)]))

How does this macro solve our short-circuit problem? If yecall how Scheme evaluates conditionals, it will only
evaluatee? if el (the first test) was false. We relied on our knowledge of holwe®te evaluates expressions to
implement this macro properly.

2.1.2 Time

Often, we want to determine how long a particular computatmok to complete (for performance analysis, for
example). For this, it's useful to havedime operator that takes an expression and prints out the amétintespent
executing that expression. Given a particular expressioch as run-talk talkl), we could compute the execution
time using the following expression:

(let ([start-time(current-second$)
(let ([result(run-talk talk)])

(begin (printf " Time used: "a™n" (— (current-secondsstart-time)
resuld))

Since we might want to time any number of expressions, we teaparameterize this expression over the com-
putation to time. We have two options: functions and macvékich should we use and why? If we used a function,
we’d write something like:

(define (time exp)
(let ([start-time(current-second$)
(let ([result expt)
(begin (printf " Time used: "a™n" (— (current-secondsstart-timg)

resuld)))

(time (run-talk talk))

This would have the same problem we encountered earlieerBehvould evaluaten-talk talkl) before calling
the time function. That's bad in this case because we doart steasuring the execution time until we get into the
body oftime, after which the expression has already been evaluated{anthance to measure the time lost).

Let's write this as a macro then:

(define-syntax time
(syntax-rules()
[(time expm)
(let ([start-time(current-second$)
(let ([result expi)
(begin (printf " Time used: "a™n" (— (current-secondsstart-time)

resul))]))

(time (run-talk talk1))

Again, this works because we don't start evaluagrgr until after we've saved thstart-timeand are actually timing
the computation. The difference between macro-expangiendnd run-time saves us here.

But wait — couldn’t we have written time as a function if we'dadlambda to delay when we evaluate the
expression? For example, why wouldn’t the following nonensesolution have worked?

(define (time expr-fung
(let ([start-time(current-second$)
(let ([result(expr-fung])
(begin (printf " Time used: "a™n" (— (current-secondsstart-time)

resuld)))

(time (lambda () (run-talk talk))

What do you think? Would this work?

This approach would indeed let us measure the evaluatian @@performance purist would note that we add a
bit of extra time to our measurement though, because we theutost of calling thexpr-funcexpression inside the
body). It sort of misses the point, however, because weteratot have to remember to wrap fhenbda around the
function before timing it. If you forget thlambda, it's not like the programmer gets an error message, theyggeis
an inaccurate time measurement! Our goal is always to stifpprogramming task, and thereby programmers, as
best we can.

Okay, so we still want the macro to make the code cleaner, bt could have used tHambda version though,
couldn’t we? As in, couldn’t we have writtdime with a combination of the function and the macro, as:

(define (time-as-func expr-func

(let ([start-time(current-second$)
(let ([result(expr-fung])
(begin (printf " Time used: "a™n" (— (current-secondsstart-timg)

resuld)))

(define-syntax time
(syntax-rules()
[(time expr)
(time-as-fun¢lambda () expn)]))

(time (run-talk talkl))

Could you do this, yes. Does it make sense? No. The macrovashike same thing as titembda, and notice
we needed a bit more code infrastructure to make this worke mhcro version is smaller, cleaner, and therefore
preferable in this case.

3 Using Macros to Fix More of the Slideshow Language

Now that we have a better idea of how macros work, let’s retarcieaning up the slideshow language. We wanted
to clean up several parts of the code. We've already gotteofrihelambdas around slides with theyslide macro

we wrote earlier. We fixed the problem with specifying the leaas in the pointlists by adding some helper functions.
That leaves us with two main issues to address: the liststhaniét statement for defining the slides.

Note: at this point I'm going to switch over to the version of thektidnguage that includes the section
structures, as shown in the posted code. This is for consigieith those files, so we can type in and try
these macros with the existing body of code.

3.1 Cleaning Up the Talk Specification

Here’s the current talk program, using the format of the gobsbde:

(definetalk2
(let ([intro-slide (myslide. . .)]
[arith-eg-slide
(myslide
(format" Example "a" example-index
(pointlist-bulleted(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12")))]
[func-eg-slidgmyslide...)]
[summary-slidémyslide. ..)])
(make-talk
(list
(make-section
(list (make-display make-intro-slijie
(make-timecon@@ambda (time-in-talk (> 5 time-in-talk)
(make-sectiofflist (make-display make-arith-eg-sligg
(make-section emply
(make-display make-func-eg-sl)de
(make-display make-summary-shyg))

First, let's clean up the talk specification to hide the detaif the lists and the sections. We want to write a macro
mytalkthat takes a sequence of commands as arguments and adéwaitehlist and section structure. The following
macro achieves this:

(define-syntax mytalk

(syntax-rules()
[(mytalk cmd1...)
(make-talk
(list
(make-section
(list cmdl...)))D)

This introduces a new feature of macros: the ellipses. Whighely mean and let us do? The ellipses say “there can be
any number of the pattern immediately preceding me”. In¢hise, they say “there can be any number of commands
following themytalk”. Down in the macro body, we can use the ellipses again totsdg all the remaining commands
and drop them into the list”. We can now rewrite the talk bodingmytalk, and Scheme will convert it into the same
talk (talk2) that we had previously.

(definetalk3
(let ([intro-slide (myslide. . .)]
[arith-eg-slide
(myslide
(format" Example "a" example-index
(pointlist-bulleted(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12")))]
[func-eg-slidgmyslide...)]
[summary-slidémyslide. ..)])
(mytalk
(make-display make-intro-slijle
(make-timecon@@ambda (time-in-talk (> 5 time-in-talk)
(make-sectiofflist (make-display make-arith-eg-sligg
(make-section emply
(make-display make-func-eg-sl)de
(make-display make-summary-shye

[Note that the ellipses italk3 areNOT macro ellipses — they are informal shorthands for the retheslide spec-
ifications that I've left out of the notes for sake of spaceh&ne can only process ellipses when they occur inside
macro definitions.]

3.2 Moving Slides Into the Talk

This leaves one last major change to make: we want to makdédieespecifications part of the talk, rather than relying
on Scheme let in the program text. Here, I'm going to show ymudesired program syntax first, then we’ll work on
the macro to get us there.

(definetalk4
(talk-with-slides
((slide intro-slide
" Hand Evals in DrScheme"
" Hand evaluation helps you learn how Scheme reduces programs to values")
(slide arith-eg-slide
(make-next-example-tijle
(pointlist-bulleted(list " (+ (x 2 3) 6)" " (+ 6 6)" "12")))
(slide func-eg-slide
(make-next-example-tile
(pointlist-bulleted(list * (define (foo x) (+ x 3))" " (x (foo 5) 4)"
"(x(+53)4)" "(x84)" "32")))
(slide summary-slide
" Summary: How to Hand Eval"
(pointlist-numberedlist " Find the innermost expression”

" Evaluate one step”
" Repeat until have a value"))))
(make-display intro-slide
(make-timecon@lambda (time-in-talk (> 5 time-in-talk)
(make-sectiofllist (make-display arith-eg-slig¥
(make-section emply
(make-display func-eg-slijle
(make-display summary-sligg

If we compare this version of the talk to our earlier versjombat will the newtalk-with-slidesmacro need to do in
order to transforntalk4 into talk3?

e It needs to introduce a let where the slide names become thedb@riables and the other slide data is passed
into myslide.

e It needs to usenytalk around the commands after the slide specification.
¢ It needs to handle an arbitrary number of slides and commands

Let's develop the macro. First, let's write down the parthaf thacro that defines the input pattern:

(define-syntax talk-with-slides
(syntax-rules()
[(talk-with-slides ((slide namel titlel body1..)
cmdl...)
<TRANSLATION PATTERN GOES HERp

Notice here that we have two sets of ellipses: one to let usifyn arbitrary number of slides and another to specify
an arbitrary number of commands. It's important that theéeslibe wrapped in a pair of parens (or some other syntax)
so that the first set of ellipses knows when to stop matching eoin other words, the set of parens around the slides
separates the slide specifications from the command syizifis.

What goes into the output pattern? Again, lookadk3 and write down what you need to reproduce the pattern.
At the outermost level, we needet statement and mytalk statement in théet body.

(define-syntax talk-with-slides
(syntax-rules()
[(talk-with-slides ((slide namel title1l body1..)
cmdl...)
(let (<FILL IN HERE>)
(mytalk cmd1...))])

Next, ask yourself what goes into the let. The variable namatsh the variable “namel” in the input pattern:

(define-syntax talk-with-slides
(syntax-rules()
[(talk-with-slides ((slide namel titlel body1..)
cmdl...)
(let (([namel<FILL IN HERE>])
(mytalk cmdl...))]))

What does the expression corresponding to each name laskllikalk3, its amyslide pattern.

(define-syntax talk-with-slides
(syntax-rules()
[(talk-with-slides ((slide namel titlel body1..)
cmdl...)
(let ((namel(myslide <FILL IN HERE>)])
(mytalk cmdl...))]))

10

What are the arguments tayslide? The title and body, both of which have names in our inputepaitt

(define-syntax talk-with-slides
(syntax-rules()
[(talk-with-slides ((slide namel titlel body1..)
cmdl...)
(let ([namel(myslide titlel bodyJ])
(mytalk cmdl...))]))

Is that all? Not quite. We've put the first slide into the outpattern, but we haven't used the ellipses for the slides
(to allow us to specify an arbitrary number of slides. We ihtee ellipses at the point in the output pattern where we
want to repeat how we handle the slide inputs. Since eachiawialislide introduces a nelet variable, we put the
slide ellipses inside the let variable declaration area:

(define-syntax talk-with-slides
(syntax-rules()
[(talk-with-slides ((slide namel title1l body1..)
cmdl...)
(let ([namel(myslide titlel bodyJ]
)

(mytalk cmd1. ..))]))

With this, we can write and rutalk4 with our existing interpreter.

3.3 Cleaning Up Timecond

How does our current language look? A lot better. There’sroaee thing to fix (that will, handily enough, finish our
introduction to macros). Thémecondis still a little clumsy. We have to remember to put in gectioncommands.
Let’s introduce a macrome-brancho handle the section commands for us:

(define-syntax time-branch
(syntax-rules()
[(time-branch test cmdlistl cmdlis)2
(make-timecond te¢take-section cmdlisfImake-section cmdlistR))

With this, | can write thégimecondexpression as

(time-branch (lambda (time-in-talk (> 5 time-in-talk)
(list (disp-slide arith-eg-slidg
empty

This is a bit cleaner, but wouldn't it be nice if we could juste off the empty case entirely, and héwneebranch
automatically insert themptyif we only provide one list of commands? We can do this by gjwnultiple input
patterns tdime-branch with different numbers of arguments. The macro expanddrusé the first transformation
that matches the input pattern. Here’s how the macro looks:

(define-syntax time-branch
(syntax-rules()
[(time-branch test cmdlist
(make-timecond teg¢tmake-section cmdlis{make-section empiy
[(time-branch test cmdlistl cmdlis)2
(make-timecond te¢tmake-section cmdlisfImake-section cmdlistR))

This gives us yet another revised version of the talk progthia version, available in the posted code, also introduce
a function definition to renanmake-displayo display-slide since the latter sounds more like a command than a data
structure).

(definetalk5

11

(talk-with-slides
((slide intro-slide
" Hand Evals in DrScheme"
" Hand evaluation helps you learn how Scheme reduces programs to values")
(slide arith-eg-slide
(make-next-example-tile
(pointlist-bulleted(list " (4 (x 2 3) 6)" " (+ 6 6)" " 12")))
(slide func-eg-slide
(make-next-example-tijle
(pointlist-bulleted(list " (define (foo x) (+ x 3))" " (x (foo 5) 4)"
"(x(+53)4)" "(x84)" "32")))
(slide summary-slide
" Summary: How to Hand Eval"
(pointlist-numberedlist " Find the innermost expression”
" Evaluate one step”
" Repeat until have a value"))))
(disp-slide intro-slidg
(time-branch (lambda (time-in-talk (> 5 time-in-talk)
(list (disp-slide arith-eg-slidg)
(disp-slide func-eg-slide
(disp-slide summary-sligp

3.4 What's Left?

We've made a lot of progress on the language siatie (and it didn’t take that much work, once you understand how
to write macros)! A couple of minor issues lurktigk5, such as the remaining list commands andliémebda in the
time-branch. You could eliminate the lists with some additional macrosageaks to our current macros.

Thelambda is harder to get rid of. It's tempting to leave the lambda b#f time-branch test and let the macro
insert the lambda, as follows:

(define-syntax time-branch
(syntax-rules()
[(time-branch test cmdlist
(make-timecon@ambda (time-in-talk) tes) (make-section cmdlis{make-section empiy
[(time-branch test cmdlistl cmdlis)2
(make-timecon@ambda (time-in-talk) tes) (make-section
cmdlist]) (make-section cmdlist}]))

(time-branch (> 5 time-in-talk
(list (disp-slide arith-eg-slidg)

Unfortunately, this won't work due to a technical issue wittacros. You can’t have the source code use an
undefined identifier and have thiefine-syntaxmacro introduce that name as a parameter (or a let/locadblaji
This is by design, and it's a good idea, because otherwisegold have clashes between names introduced in code
and names introduced in macros (getting this feature of asatght was an unsolved research problem for a long time
in the languages community). It is possible to write macha tlo capture names, but that requires another, more
complicated, style of macros that isn’t worth going into liistcourse. If you're interested, I'd be glad to point you
towards more information on this topic.

4 Recap

These notes introduced you to macros and showed you how therseto put a cleaner syntax/interface on your data
definitions for a language. Here’s a summary of the main pgiati need to take away from this presentation:

12

e Macros are different from functions. When Scheme evaluafesction call, it evaluates the arguments before
evaluating the body. When Scheme expands a macro, it jusitesvene pattern of code into anothefthout
evaluating anything

e Whenever you want a construct that needs to delay evaluigiagguments (such &g or time, you must use a
macro.

e We define macros usindefine-syntax and a macro specification consists of pairs of input pasterrd the
output patterns to translate them into.

e Ellipses are used in macros to handle arbitrarily many ircs#a of input patterns.

e Macros can handle multiple forms of the same notation (asameis time-branch, but each form must start
with the same macro name and be distinguishable based orattezrpof the syntax (i.e., you can'’t rely on
number?r symbol?o tell one pattern from another in a multi-armed macro.

In terms of skills for the course, | will expect that you aréeato:
¢ |dentify when you need a macro to implement a particular tans
e Write your own macros of similar complexity to the ones idinoed here.

We will gain more practice with macros as we go through theaiaing language exercises in the course.

13

