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Abstract—Technological advancement has decreased network
latencies while simultaneously increasing local latencies. This
may impact exergames—video games that incorporate exercise—
the most since exergames tend to have complicated platforms
to capture player actions. This paper presents a study using a
custom desktop-based exergame that controls for local latency
and measures player performance and Quality of Experience
(QoE). Analysis of the results from a 37-person user study
shows that while player performance and quality of experience
degrades with latency, exergame actions are fairly tolerant of
even hundreds of milliseconds of latency. Our data point towards
a crucial tipping point at latency values of approximately 400
milliseconds.

Index Terms—latency, performance, quality of experience,
exergaming, threshold

I. INTRODUCTION

COMPUTER games are becoming a tool for improving
health behaviors such as beneficial lifestyle habits and self-

management of illness and chronic conditions [1]. Exergames—
computer games that incorporate exercise into the game—have
the potential to promote health by requiring physical activity
in players as they play [2–4]. In addition to entertaining and
helping socialization, exergames also have benefits to weight
management, cardiovascular and physiological conditioning,
and improving cognition [5].

However, imagine playing tennis where your body only
responds to commands from your brain after a noticeable
delay. Apart from ruining your chances of scoring a golden set,
this handicap is also bound to be frustrating and ruin your fun.
For computer game players, this phenomenon is known as lag
or latency—that is, the temporal delay between player input
and its perceived effect. For interactive applications, latency has
two main sources. First, the computer platform on which the
application is executed requires time to process the input and
generate appropriate—usually visual—results. This is called
input lag or local latency. Second, if the application needs to
send data over a network before displaying results, this adds
additional delay, called network latency.

Whereas local latency was often seen as a mere shortcoming
in the computer’s processing power, network latency was
viewed as more difficult to mitigate. Consequently, a significant
portion of prior research has focused on the relationship
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between network latency and measures of user-related out-
comes, such as player performance [6] and the overall player
experience [7]. In recent years, technological advancement has
seen to a steady decrease in network latencies, in part due to
increased bandwidth as reflected by Nielsen’s law stating that
a high-end user’s network connection grows in capacity by
50% per year [8]. Local latency, conversely, may in fact be
increasing [9] as wireless peripherals, high-latency displays,
and next-generation input devices add more software layers
and put more strain on local computer platforms.

Many exergames rely on motion-sensing interfaces that
are specifically developed to quantify physical movement
as well as maintain the game world. This often strains
local computing platforms, yielding comparatively high local
latencies. For example, the average local latency of the Sony
PlayStation Move was 115 milliseconds, while the average
local latency of the first generation Microsoft Kinect was 218
milliseconds [10]. Local latencies as low as 41 milliseconds
have been shown to negatively affect performance in 2D mouse-
and-keyboard tasks [9]. This raises the research question: how
does local latency impact player performance and experience
in exergaming?

Prior research on the effects of latency on games has largely
dealt with commercial entertainment games [11–15], which
typically use mice and keyboards or game controllers and do
not require the physical movements by players as do exergames.
In addition, prior research on the effects of latency on game
actions [16, 17] and user input [18–23] has primarily dealt
with a traditional input device, such as a mouse and keyboard,
and has not incorporated motion-sensing input devices.

While it is inviting to assume that the effects of latency on
motion-sensing exergames can be derived from parallel research
on entertainment games played with traditional controllers, such
an approach would disregard the limitations of the human visual
system. Specifically, it is more demanding for a person moving
(e.g., exercising) to process visual input—an aptitude referred
to as static-object dynamic visual acuity [24]. This may in
turn interfere with a user’s ability to detect visual aberrations,
such as latency, potentially curtailing the impact of latency on
quality of the experience and user performance.

The aim of the present study is to analyze the effects of
local latency on an actively moving user in the context of an
exergame. To this end, we conducted an experiment in which
participants played a custom-made exergame called Spaz! using
the Microsoft Kinect motion-sensing input device for the Xbox
One. Players grabbed moving targets with their hands as fast as
they could using an onscreen projection of their own silhouette
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produced by the Kinect. The game added different amounts
of artificial latency at different sections of the game. Player
performance was measured by recording reaction time—the
time to see the target and select it by covering it with a hand
silhouette. Quality of Experience (QoE), in turn, was measured
using the ‘flow’ construct. First coined by Csikszentmihalyi in
1975 [25], flow can be understood as “a psychological state
in which the person feels simultaneously cognitively efficient,
motivated, and happy” [26]. Flow is often used to measure
a player’s experience while playing video games [27], and
the ‘flow’ construct has been used as a quality measure in
exergaming, as well [28].

The rest of this paper is organized as follows: Section II
describes related work on exergames, latency and games, local
latency, and measuring player experience; Section III details our
methodology to measure the effects of latency on an exergame
action; Section IV analyzes the results from our 37 person user
study; Section V discusses the implications of our methods
and findings; and Section VI summarizes our conclusions.

II. RELATED WORK

A. Exergames

An exergame is a computer game that also provides the
game player with some physical activity. As such, exergames
have the potential to subvert a sedentary lifestyle of playing
computer games with one involving physical activity. Since
the popularity boost given to exergames by the Nintendo Wii
console, exergames have been expanding to other consoles (e.g.,
Microsoft xBox) as well as other platforms (e.g., smartphones),
and have evolved into different subgenres: a) location based
games that require players to traverse the real world; b) dancing
games that require players to match onscreen prompts as they
dance, and c) running games that require players to follow the
game’s instructions while running [29].

Prior research studies have supported the idea that playing
exergames can promote good health. Wang and Perry [2]
showed an increase in heart rate, oxygen rate and respiratory
rate in 7-10 year olds that were playing exergames. However,
since the observed changes were less than the national
recommendations and also less than the changes observed
during regular exercise, they concluded the exergames could
not substitute for regular exercise. Kretschmann [3] measured
physiological benefits of an exergame on college students—
their measurements of average energy expenditure for some
Nintendo Wii games showed comparable kcal/hour to that of
bicycling and swimming laps [4].

Our work builds upon the motivating exergame work by
studying a fundamental exergame action for console-based
exergames—moving a limb to a specific destination in response
to an on-screen prompt.

B. Effects of Latency

Broadly, there two different approaches to research in
understanding the impact of latency on computer games: top-
down and bottom up.

a) Top-down: Studies using specific games are a top-down
approach, extending knowledge of latency and games one game
at a time. Researchers have attempted to generalize the effects
of latency to game genres (e.g., first person shooters) [11–
15, 30–32], typically by using a commercial game system
and adding controlled amounts of latency as part of a user
study. However, game design and game engines may obfuscate
important system details [33], making it difficult for measured
results to pertain to other games and to analytic modeling.
Moreover, most prior top-down studies have dealt with online
computer games where user input may be delayed by the round-
trip time to the server, unlike exergames where all latency may
be local to the player’s system only.

b) Bottom-up: An alternate approach is bottom-up, study-
ing fundamental game input (e.g., target selection), refined (e.g.,
moving target selection) and differentiated by hardware (e.g.,
mouse). Research contributions to user input and latency has the
potential to generalize to many games and even other interactive
applications and allows for building analytic models that can
explain and predict the effects of delay for a wide-range of
games and delay conditions. Foundational studies of user input
[18–22, 34] have shown promise in modeling user interaction
for computer systems, including PC games [16], console
games [35] and VR games [36]. However, such studies have
not focused on exergame actions (e.g., full-body movement
for target selection) nor have they focused on local latencies.
Ideally, exergame designers and system developers would have
a better understanding and perhaps models for the time it takes
for an exergame player to select a moving target in order to
better design the gaming experience.

For latency and full-body avatars, Waltemate et al. [37] study
the effects of latency on users in a virtual CAVE environment,
measuring motor performance and perception. They show
latency above 75 ms can affect performance, albeit only slightly,
and some measures of perception (agency and ownership) are
resilient to much higher latencies. Participants’ perceptions
of latency are inferred by the task errors, suggesting latency
perception may depend more upon performance than the actual
delay. Caserman et al. [38] analyze the effects of latency in an
immersive virtual reality environment, measuring the effects
of latency on user performance in a reaching task and user
perception in an embodiment task. They find latencies above
69 ms affect the time to reach an object, but agency or presence
is resilient up to 250 ms. Our results provide complementary
measurements to this environment, where we find a tipping
point to performance and user experience at higher latencies.

C. Measuring player experience

The construct of ‘flow’ is often used to measure a player’s
experience while playing video games [27]. First coined by
Csikszentmihalyi in 1975 [25], flow can be understood as “a
psychological state in which the person feels simultaneously
cognitively efficient, motivated, and happy” [26]. Apart from
its use in the evaluation of ‘tradition’ computer games [39, 40],
flow has also been used as a quality measure in exergaming [28,
41, 42]. A similar concept exists in sports psychology, where
flow is referred to as ‘the zone’ [43]—a state in which sports
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players are extremely focused and are performing at the peak
of their potential.

In Csikszentmihalyi’s framework, flow experiences are
described as the composition of several elements, all of
which contribute towards an engaging, joyful and optimal
experience [44]. One of these components is ‘agency’, or the
sense of control over one’s actions. Previous research has
shown that increasing amounts of latency can be harmful to a
user’s sense of agency [45]. As such, we expect our latency
manipulation will have a measurable negative impact on the
players’ self-reported flow state.

III. METHOD

A. Participants

Thirty-seven people participated in this study, of which
twenty-three were female. Their mean age was 28.19 years (SD
6.09). Twenty-eight participants indicated they had sometimes
played video games on a daily basis, suggesting a degree
of familiarity with gaming. Only three participants reported
to have never played video games. Almost all participants
were physically active to some degree in daily life (activity
levels [46] were 16 high, 19 moderate, 2 low).

B. Stimulus material and apparatus

For the purpose of this experiment, a custom-made exergame
(‘Spaz!’) was programmed using Unity (fig. 1). In the game,
players saw their silhouettes on a television screen (a Samsung
UE55D6750) that moved in unison with their own actions, save
with some degree of —-experimentally induced—- latency. The
screen was positioned 1.8 m in front of the participants. The
silhouette was captured by a Microsoft Kinect for Xbox One,
which was positioned behind the players. Players were asked to
stay on a line that was taped to the floor, parallel to the screen,
so their onscreen silhouettes would remain approximately the
same size for the duration of the game.

The goal of the game was to ‘grab’ moving targets by
covering the target with the hand of the silhouette. Targets
moved with constant velocity away from the player initially,
and then continued straight, bouncing off of the edges of the
play field. Per trial, this velocity was randomly sampled from
a uniform distribution, with lower bound 0.128 m/s and upper
bound 0.642 m/s1. These boundaries were determined while
piloting the game with no added latency in an effort to create
a balanced game with a sufficiently diverse difficulty range.
The target only disappeared after it was covered by either the
silhouette’s hands for 500 continuous milliseconds to encourage
participants to be accurate and steady. After a successful ‘grab’,
participants were required to reset to the middle of the play
area with their hands next to their bodies before the next trial
would commence.

For each trial, the game recorded the reaction time as the
time between when the target appeared and the participant
successfully grabbed it, minus 500 milliseconds (the time a

1These values are calculated using this formula: real target speed =
1/5 × game target speed × player distance to screen × tan(35.3◦), where
game target speed is measured in Unity units, and real target speed and player
distance to screen in meters.

Fig. 1. Participant playing ‘Spaz!’.

target had to be ‘held’ for it to disappear), minus the trial
latency (see below). The game encouraged players to grab
targets as quickly as possible by gradually changing the color
of the target to indicate how many points could still be gathered
by successfully grabbing it—that is, fast responses yielded more
points. The score was shown on screen, behind the silhouette.

Fig. 2. Experiment design.

The game was divided into one practice block (10 trials) and
six experiment blocks (40 trials each). In the practice block,
no artificial latency was added. In each experiment block, a
random amount of artificial latency was added to each trial,
sampled from a uniform distribution defined separately for
each (fig. 2). These ranges were determined based on a pilot
run of the experiment. The order of the experiment blocks was
counterbalanced.

After each experiment block, participants were asked to
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fill in a short survey. First, the survey gauged for latency
awareness (“Indicate how large the delay was between what
you did and what you saw.”), sense of adaptability (“Indicate
to what degree you could adapt to the delay.”), sense of
efficiency (“Indicate how efficiently you could play the game.”),
and disturbance (“Indicate how disturbing you found the
latency.”). These items have been used in a study on latency
before [47]. In the present study, however, these items were
rated using an anchored visual analogue scale. This approach
does away with some of the typical problems with labeled
Likert scales [48], providing linear data instead [49, 50].
Anchors were taken from the original items. Next, we measured
flow, for which we used the Flow Short scale [51]. The last
three items on the scale (measuring perceived importance) were
dropped, leaving 10 items. Each item was scored on a visual
analogue scale, retaining the original scale’s anchors. Finally,
we measured perceived competence and interest and enjoyment
using the corresponding subscales of the Intrinsic Motivation
Inventory (IMI) [52]. Again, responses were gathered using an
anchored visual analogue scale response format. For statistical
analysis and visualization, ratings and subscale sum scores
were normalized (i.e., transformed to values between 0 and 1).

C. Local Latency Measurements

Ivkovic and colleagues measured local latency in a sample
of PCs and gaming consoles connected to various displays [9].
Using an external high frame rate camera (240 f/s), they film
from when input is applied (e.g., the mouse is moved) until the
result is rendered on the display (e.g., the player’s first-person
view changes). By manually examining the individual video
frames from input to result, they compute the local latency (in
this case, with a granularity of 4 milliseconds). They found
a wide range of latencies from 23 ms for a commercial first-
person shooter game on a PC with an ultra-fast gaming monitor,
up to 243 ms for a popular third-person action game on a game
console with a flat-screen television.

In order to overcome some of the potential shortcomings
of using an external camera (e.g., frame rate limitations and
detecting the input start time), Raaen and Petlund [53] propose
connecting an oscilloscope to a computer mouse and the
computer’s display, thus providing a more precise elapsed time
between the photosensor detecting the input from the mouse
and the photosensor detecting pixel changes on the display.
Preliminary results for a commercial first-person shooter game
on a laptop show local latencies from 21 ms to 102 ms.

Casiez et al. [54] present an alternate methodology for mea-
suring local latency that consists of positioning an unmodified
optical mouse on a screen while displaying a particular texture
to fake mouse movement. Measurements across 10 mice, 2
displays, 2 operating systems and several applications and
toolkits show local latencies vary from 46 to 83 milliseconds.
These measurements do not include any additional processing
that would typically occur in a game, such as processing by
the game engine.

Raaen and Kjellmo [55] adapt the system to connect a
laser pointer and a tripod-mounted camera to the oscilloscope,
measuring the latency in popular VR devices—the Oculus Rift

and several smartphones. They find a wide range of latencies,
with the Oculus Rift platform yielding much lower latencies
than smartphone platforms (Samsung Galaxy S4 & S5, and
iPhone 5s & 6).

While providing methodologies to measure local latency and
showing significant local lag for many typical computer setups,
none of the above studies measured local latencies for a motion
sensing input device, such as the Microsoft Kinect.

In our study, we measured our system’s base latency as
follows. Using Unity, we visualized a rectangle on the display.
The Kinect camera was then used to detect a color change
in this rectangle (from white to red). System base latency
was calculated as the time between the color change and the
registration through the Kinect. This process was repeated five
times in rapid sequence and the mean used as the base latency.
Since system latency was measured prior to each block to
monitor the emergence of potential hidden system processes,
this could inadvertently give rise to a deviation in the system
latency. Over all experiment blocks and sessions, system latency
averaged 121.38 milliseconds (SD 7.86), which is considerably
higher than most traditional gaming setups. Depending on
the experiment block, the experienced trial latency in our
study could thus vary between approximately 121 ms (system
base latency) and 620 ms (system base latency plus maximal
artificial latency) (fig. 2).

D. Procedure

Participants were given an explanation of the goal of the
game but were not informed of the goal of the experiment
until after the game session. After hearing the game goals,
participants filled in an informed consent form, as well as a
short sociodemographic survey. Next, participants were made
familiar with the game through a series of 10 practice trials.
Then, participants played 6 experiment blocks, each followed
by the post-block questionnaire. Finally, we explained the goal
of the experiment to the participants and each was given a
small remuneration for their time.

IV. ANALYSIS AND RESULTS

A. Performance

We analyzed player performance by modelling the impact
of latency on players’ reaction times. Aggregated statistics are
given in table II. Figure 3 depicts a cumulative distribution
graph of the reaction times for all users, clustered by latency
block (the minimum added latency for that trial). The x-axis
is the user reaction time (in milliseconds) and the y-axis is the
cumulative distribution. About 5% of the reaction time values
are off the graph to the right. From the graph, the reaction
times are heavily skewed, having maximum reaction times
far above the median. Maximum reaction times (not shown
since they are above the x-axis range) are about 20 seconds for
blocks A, B, and C and about 30 seconds for blocks D, E and
F. The overall maximum reaction time is nearly 100 seconds.
Note that these extreme values were a rare occurrence, caused
by participants temporarily ‘giving up’ due to frustration.

We mitigated this skewness problem by fitting the reaction
time data with quantile regression models, using the conditional
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Fig. 3. Cumulative distribution of reaction time data for each latency block
(minimum added latency).

median (τ = 0.5). Quantile regression modeling does not make
assumptions about the distribution of the residuals [56], making
the technique especially suited to deal with this type of data.
Specifically, our approach consisted of the following steps.
First, we fit the reaction time data with a quantile regression
model containing a single first order predictor: latency. We then
introduced additional polynomial terms (up to the 4th degree)
in an attempt to uncover non-linear relationships. Subsequent
models were compared using F-tests: only those models that
showed a statistically significant improvement to the previous
best model were retained.

The model showing the best fit was expressed by a cubic poly-
nomial (i.e., reaction time ∼ latency+ latency2+ latency3;
see table I and fig. 4). Visual inspection of the model suggests
that the impact of latency becomes especially noticeable
starting from the 250 ms mark. Furthermore, the largest impact
of latency—that is, the latency value where the change in
reaction time is the steepest—occurs at 407 ms. This can be
determined by calculating the inflection point of the polynomial:
−β2

3×β3
= 407 ms.

To investigate block-wise differences in the impact of
latency on reaction times, we conducted an additional one-
way repeated-measures ANOVA on the median reaction times.
Our predictor variable’s levels were labeled with the expected
value of the added latency for respective blocks, increased
with the base latency. For instance, in the block where the
added latency was taken from a uniform distribution ranging
between 0 and 83.33 ms, the expected value for the added
latency (E(latency)) is 41.7 ms. Adding the base latency to
this number gives us approximately 162 ms. The six blocks
were characterized by the following levels of E(latency): 162,
245, 328, 412, 495, and 578 ms, for blocks A through F (see
fig. 2 and table II).

Mauchly’s test indicated that the assumption of sphericity
had been violated (W = 0.334, p = .001), therefore degrees
of freedom were corrected using Greenhouse-Geisser estimates
of sphericity (ε = 701). The effect of latency was significant

((F (5, 180 = 12.901, p < 0.001). To identify which adjacent
factor levels differed significantly, a follow-up set of pair-
wise t-tests was conducted. The latency increase between
adjacent latency levels E(latency) = 328 ms and E(latency) =
412 ms yielded the only significant effect on median reaction
times. Note that this coincides with the inflection point—i.e.,
the steepest effect of latency on reaction time—found in the
quantile regression curve (407 ms). However, the effect did
not survive Holm’s correction for multiple comparisons [57].

TABLE I
QUANTILE REGRESSION MODELLING STEPS.

1st order 2nd order 3rd order 4th order
(Intercept) 6.24e2*** 7.99e2** 1.29e3*** 6.99e2

(2.24e1) (6.28e1) (1.59e2) (3.95e2)
latency 1.13*** -8.75e-2 -5.11** 3.10

(0.072) (0.411) (1.614) (5.480)
latency2 1.76e-3** 1.69e-2*** -2.21e-2

(6.0e-4) (4.97e-3) (-2.21e-2)
latency3 -1.00e-5** 6.00e-5

(0.0) (0.50e-4)
latency4 -5.19e-8

(0.0)
F 8.59** 8.65** 2.027

AIC 139161.8 139151.1 139140.9 139139.6
Coefficients and standard errors (in parentheses) are reported per
model, as well as the corresponding AIC score. F-test statistics
represent a comparison with the previous best model, showing
an optimal fit for the 3rd order model. ***p <0.001, **p <0.01,
p <0.05
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Fig. 4. Polynomial quantile regression fit of reaction time on trial latency:
dots - median reaction time per condition; solid - polynomial fit; dashed -
latency value corresponding with inflection point (407 ms).

TABLE II
REACTION TIME STATISTICS (MS)

Block E(latency) mean median sd
A 162 1055.9 836.702 673.119
B 245 1101.26 834.452 786.332
C 328 1226.828 899.085 881.244
D 412 1476.922 1067.341 1205.301
E 495 1669.119 1189.166 1339.656
F 578 1844.26 1262.214 1534.518
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B. Quality of Experience

We explored the impact of latency on the player’s Quality
of Experience by exploring the post-block survey data. Since
these variables were only queried after each block, the predictor
variable levels were again labeled with the expected value of
the latency for each respective block.
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Fig. 5. Mean flow ratings per condition (normalized). Whiskers - 95%
confidence intervals; dashed horizontal - neutral flow rating.

First, we examined the effect of increased latency on the flow
scores (fig. 5). We did so using a one-way repeated-measures
analysis of variance (ANOVA). The effect of latency was
significant (F (5, 180) = 26.83, p < 0.001). Adjacent factor
levels were then compared using a follow-up set of pair-wise t-
tests, while controlling for multiple testing [57]. All conditions
differed significantly after correction (all pcorrected < 0.05,
barring immediately adjacent ones. A single exception to this
pattern is the significant decrease in flow between the adjacent
328 and 412 ms conditions (t(36) = 3.28, p = 0.02).

Next, we analyzed ratings for latency awareness, sense
of adaptability, sense of efficiency, and disturbance, using
repeated-measures ANOVAs. For the sense of efficiency and
adaptability, Mauchly’s test indicated that the assumption of
sphericity had been violated (both W = 0.48, p = .03),
therefore degrees of freedom were corrected using Greenhouse-
Geisser estimates of sphericity (ε = 0.78 and ε = 0; 80,
respectively). All ratings were significantly affected by the
latency manipulation: latency awareness and disturbance in-
creased with latency (F (5, 180) = 55.81, p < .001, η2 = 0.45
and F (5, 180) = 34.56, p < .001, η2 = 0.34, respec-
tively), whereas efficiency and adaptability decreased with
latency (F (3.9, 140.52) = 22.14, p < .001, η2 = 0.28 and
F (3.99, 143.78) = 10.15, p < .001, η2 = 0.15 respectively).
Interestingly, each of these ratings followed a similar, quasi-
linear pattern, crossing the neutral point (fig. 6) from the 412
ms condition on.

Finally, we analyzed the sum scores for the IMI sub-
scales interest and enjoyment and perceived competence,
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Fig. 6. Mean ratings per condition for adaptability, awareness, efficiency,
disturbance, interest & enjoyment (IMI), and perceived competence (IMI), (all
ratings normalized). Whiskers - 95% confidence intervals; dashed horizontal -
neutral rating.

using repeated-measures ANOVAs. For perceived competence,
Mauchly’s test indicated that the assumption of sphericity had
been violated (W = 0.50, p = .05), therefore degrees of
freedom were corrected using Greenhouse-Geisser estimates
of sphericity (ε = 0.80). Ratings on both scales were
significantly impacted by our latency manipulation (interest and
enjoyment: F (5, 180) = 16.22, p < .001, η2 = 0.12; perceived
competence: F (4, 144.1) = 28.6, p < .001, η2 = 0.22),
showing a monotonous decrease in both cases. Again, mean
scores for both ratings drop below the neutral point from 412
ms onwards (fig. 6).

V. DISCUSSION

Technological advancement has helped bring Internet net-
work latencies down, while simultaneously enabling richer
application platforms that use wireless networks and have
more computational demands, potentially increasing local
latency. Exergames—where players engage with a game
through active movement—are particularly at risk, as they often
depend on more complex peripherals to accurately register
player movement. The aim of our study was to determine
acceptable local latencies in the context of exergaming, and
where the threshold lies beyond which player experience and
performance begin to suffer. We conducted a 37-person user
study where participants played a custom-made desktop-based
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exergame which introduced artificial latency and recorded
player performance (reaction time) and various measures of
the player’s user experience (e.g., flow).

As expected, an increase in latency causes player perfor-
mance to deteriorate. More specifically, performance decrease
follows an S-shaped curve. At low values (under 200 ms),
latency has a minimal impact on performance, but the latency
impact increases for moderate values (300-500 ms), and begins
to cap at high values (above 500 ms). The tipping point—i.e.,
the point where latency appears to have to most severe impact—
is at about 400 ms. Similarly, latency has a negative impact on
the players’ experience. The most significant decrease in flow is
at about 350 ms. From that point, mean flow ratings approached
the neutral point. Players do not experience a heightened sense
of pleasant engagement with the game and its mechanisms[25],
nor do they completely reject the experience: they are simply
indifferent. This pattern is reflected in almost all of the other
ratings. With increasing degrees of latency, players become
more aware and feel more disturbed by the delays, begin to
feel less efficient in their actions, and cannot adapt to the delay
as well. For each of these ratings, the neutral line is crossed
with latency values of about 350 ms. Where players would
first disagree with the items (e.g., ‘Indicate how disturbing you
found the latency’), they now pivot to positive responses—or
vice versa. Correspondingly, the same trend can be observed
in the subscales of the Intrinsic Motivation Inventory [52].
With increasing degrees of latency, players report less interest
and enjoyment, and begin to feel less competent. The neutral
threshold is again crossed at the same 350-millisecond mark.

Relative to the spectrum of game genres, our results suggest
that single player, local exergames are less susceptible to latency
than first-person shooters, for which latencies of 100 ms or less
have been shown to hamper performance both in local [9, 58]
and networked play sessions [12, 59]. Real-time strategy games,
in turn, have been associated with noticeably higher latency
thresholds. A study by Claypool [14] suggested that latencies
under 1 second, while perceptible, were easy to adapt to from
a player’s perspective, and player performance was largely
unaffected by seconds of latency. The authors attribute this
sizeable latency tolerance to the very nature of the games, which
“emphasize strategy more than the interactive aspects” [14, p.68].
The opposite is true for our exergame, in which quick reflexes
are the player’s primary assets.

The effects of latency on our exergame are perhaps most
similar to games with a third-person perspective, where
players see and ‘puppeteer’ a game character. In these games,
performances begin to degrade when latency reaches hundreds
of ms [32, 60]. This latency tolerance similarity may be at
least partially explained by the indirect nature of the interaction
for both our exergame and third-person perspective games—in
both cases, players indirectly control an avatar (a silhouette,
in our exergame) that in turn interacts with the game world.
Note that lower latency thresholds have been proposed for
third-person games [61], although such stricter criteria can
likely be attributed to the multi-user nature of the games that
were studied. In massive multiplayer online role-playing games,
for instance [13], the most important source of latency is the
player’s connectivity to the game server. In this case, latency

has a different contextual meaning, as it can hinder interactions
with other players, or bring about competitive disadvantages.
In contrast, our study zoomed in on local latency in a single
player exergame setting.

At present, a new generation of games and experiences is still
fighting its way to the mainstream: extended (virtual, augmented
or mixed) reality applications. Recent studies suggest that
latency thresholds are more stringent when users are placed in
virtual reality. First, end-to-end latency values over 58 ms can
already lead users to experience cybersickness—a feeling of
nausea triggered by visual vestibular mismatch [38]. This is not
typically a concern for desktop-based exergames, as the frame
of reference (i.e., the room in which players find themselves)
is still fundamentally real from a sensory perspective. Second,
one of the oft-used principal markers for a ‘good’ virtual reality
experience is the ability to convince users they are present [62]
in the alternate reality. There is research to suggest that the
illusion of embodiment, at least, suffers from latency values
upwards of 192 ms, though overall measures of agency and
presence appear more resilient in that respect [38, 63]. Third
and finally, performance in virtual reality settings can already
be impacted by relatively small amounts of delay (e.g., 69
ms [38]), which in turn can be expected to be of gradually
increasing detriment to the user experience.

Using a custom-made exergame imposed some limitations.
Depending on the configuration of the game parameters, the
impact of latency can be expected to shift patterns here
presented. For instance, our game used moving targets which
moved with speeds selected at random in the interval between
0.128 and 0.642 m/s. These boundaries were set during the
piloting phase, where no artificial latency was added, in
an effort to create diverse and sufficiently—but not overly—
challenging gameplay. Naturally, it is possible to impair both
performances and user experiences by, for instance, increasing
the target speed, making the game significantly more difficult.

Second, our exergame was rudimentary in many respects.
Little attention was devoted to the visual aspects of the
game: no specific graphics are used apart from the user’s
silhouette, the targets, the green zone that helped players to
reset their position, and some basic score information. The
game’s auditory feedback was simple, to the point of it being
perceived as monotonous by some participants. More fleshed-
out games may be more intrinsically captivating, potentially
affecting the player’s tolerance for latency.

Third, the game was played offline without any networking
to a server or other players. While the presence of scoring
information can be expected to spark indirect competitiveness
in some players, at no point did they directly compete with each
other. As mentioned earlier, game settings in which players can
directly cooperate or compete can conceivably lower the amount
of latency a player is willing to bear. However, results from
a recent study support our findings [64]. In this experiment,
which made use of a multiplayer virtual reality (VR) exergame,
various degrees of artificial network latency were introduced,
either on the side of the user, or the side of the (artificial)
opponent. Interestingly, the quality of experience was only
affected when the latency on the user-side was high (500 ms).
The latency on the side of the opponent, in turn, did not appear
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to influence the player’s experience. This pattern was also
visible in flow ratings, which only significantly dropped when
the user’s network latency was high.

Fourth, the participants in our experiment were all healthy
volunteers of a fairly young age (28 years old, on average).
Exergames are often used to improve motor skills, or prevent
their deterioration, in older adults [65] and can also function
as a therapeutic tool, facilitating physical rehabilitation pro-
grams [10, 66]. We must be cautious in generalizing our present
findings to elderly or clinical populations without additional
testing. For instance, the impact of latency can be expected
to be more pronounced with less mobile individuals, whose
reaction time may be slower in general.

Designing a perfectly archetypical exergame is challenging.
Still, we argue that our specific exergame instance offers a
good perspective on how latency impacts a player’s experience,
as well as a valuable approximation for the critical tipping
point that should be observed by developers. Future work
could broaden these results in several ways. For instance,
it could further explore the potential confound between the
added latency in a trial and the speed with which the target
moved. Follow-up studies could also explore the role of the
input device—in our case: the player’s body—by juxtaposing
our exergame with a comparable mouse-and-keyboard version.
Finally, it may be interesting to investigate the impact of
the medium by juxtaposing our desktop application with an
VR-based variant (e.g., by exploring a VR version of Spaz!).
More specifically, it is unclear to what extent the nature of
the experience—i.e., exergaming—is responsible for the high
latency tolerances reported by users, and how these findings
extrapolate to fully immersive experiences.

VI. CONCLUSION

Results from our 37-person user study show an increase in
local latency causes player performance to deteriorate following
an S-shaped curve—latencies under 300 ms minimally impact
performance, latencies between 300 and 500 ms sharply
degrade performance, and latencies above 500 ms have an
impact plateau. Similarly, latency degrades player quality of
experience, most sharply around 350 ms where positive player
flow drops by about 50%. These bounds suggest a latency target
budget of no more than 300 ms total for exergame developers
when developing for desktop-based platforms. These effects
are relatively forgiving compared to traditional first-person
computer games that are severely affected by latencies under
150 ms [12, 59] , but are akin to some latency tolerances for
third-person computer games [32, 60] and less than latencies
for some omni-present computer games [14].
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