
Improving TCP Slow Start Performance in Wireless
Networks with SEARCH

Maryam Ataei Kachooei
Worcester Polytechnic Institute

Worcester, MA, USA
mataeikachooei@wpi.edu

Jae Chung
Viasat

Marlboro, MA, USA
jaewon.chung@viasat.com

Feng Li
Viasat

Marlboro, MA, USA
feng.li@viasat.com

Benjamin Peters
Viasat

Marlboro, MA, USA
benjamin.peters@viasat.com

Joshua Chung
Lexington Christian Academy

Lexington, MA, USA
joshuachung0906@gmail.com

Mark Claypool
Worcester Polytechnic Institute

Worcester, MA, USA
claypool@cs.wpi.edu

The initial TCP slow start phase seeks to ramp up data
transmission rates quickly to meet available capacity but also
to exit the slow start phase before causing undue congestion.
Unfortunately, the typical default TCP implementation often
exits slow start too early, before capacity has been reached,
causing underutilization, particularly detrimental to networks
with large capacities and high delays. This study introduces
a novel enhancement to TCP slow start – Slow start Exit At
Right CHokepoint (SEARCH) – where the link capacity is
inferred at the server based on bytes delivered compared to the
expected bytes delivered, smoothed to account for link latency
variation and normalized to accommodate link capacities.
Empirical evaluation over geosynchronous satellite links, low-
orbit satellite links, and 4G LTE links shows our approach is
a substantial improvement over default TCP implementations
by not exiting slow start too early, but better than traditional
TCP, too, by exiting slow start before encountering packet loss.
Index Terms—Satellite, Round-Trip Time, Congestion

I. INTRODUCTION

The Transmission Control Protocol (TCP) ensures reliable
and orderly data transfer across the Internet by being able to
operate over network links that span orders of magnitudes in
latency and capacity. In high bandwidth-delay product (BDP)
networks, such as those with a satellite link, latency and
throughput vary with distance and the dynamic nature of the
satellite orbits. Geosynchronous (GEO) satellites have round-
trip latencies of about 600 milliseconds (ms) due to their
high altitudes, while LEO satellites have round-trip latencies
of about 30 ms but with latencies and capacities sensitive to
atmospheric conditions and satellite locations [1]. TCP faces
challenges when operating over such networks in that the high
round-trip times (RTTs) and network variability can make
determining link capacity difficult.

The TCP slow start mechanism is an adaptive algorithm
designed to start cautiously yet rapidly increase to the available
link capacity, approximately doubling the congestion window
(cwnd) each RTT. Unfortunately, default implementations of
TCP slow start, such as TCP Cubic with HyStart in Linux,

often result in a premature exit from the slow start phase, or,
if HyStart is disabled, excessive packet loss when they over-
shoot the link capacity. Exiting slow start too early curtails
TCP’s ability to capitalize on the full bandwidth potential, a
setback that is particularly pronounced in satellite networks
where the time to grow the congestion window is substantial.
Conversely, a delayed exit overshoots the link’s capacity,
inducing congestion and packet loss, particularly problematic
for links with large (bloated) bottleneck queues.

Thus, a primary goal for TCP connections over wireless
links should be to maintain slow start congestion window
growth for as long as safely possible without triggering an
early transition to congestion avoidance. By doing so, the
network can better achieve its full bandwidth potential, crucial
for maintaining high throughput in satellite links. A secondary
goal is to prevent packet loss by avoiding a late exit from slow
start, causing unnecessary congestion. While Active Queue
Management (AQM) techniques can assist in managing con-
gestion by marking or dropping packets as signals to transition
from slow start to congestion avoidance [2], AQM mechanisms
are not universally present across all links so, finding a solution
that works independently of an AQM is needed.

Strategies to determine the exit point from TCP slow start
include bandwidth estimation, but this often falters in links
with high variability resulting in capacity estimates that can
swing wildly between too high and too low [3], [4]. TCP with
HyStart [5] considers packet timing to find a slow start exit
point before packet loss but is destructive for satellite networks
by exiting slow start too early. HyStart++ [6], which leverages
incremental changes in RTT to signal an exit, suffers similarly.
TCP with Bottleneck Bandwidth and Round-trip propagation
time (BBR) [7] doubles data rates during startup until the
rates no longer increase by more than 25% for three RTTs.
While this ramps up to capacity quickly, for many network
connections, this can mean BBR exits from the slow start too
late.

Our approach is to monitor the disparity between the deliv-



ered bytes in an RTT compared to what is expected based on
bytes delivered in the previous RTT. Large difference between
delivered bytes and expected delivered bytes is a reliable
indicator that slow start is at the network chokepoint and
should exit. We call our approach the Slow start Exit At Right
CHokepoint (SEARCH) algorithm. SEARCH is grounded in
the principle that during slow start, the congestion window
expands by one for each acknowledgment (ACK) received,
prompting the transmission of two packets and effectively
doubling the delivery rate each RTT. However, when the
network surpasses capacity, the delivery rate does not double
as expected, signaling that slow start should exit. Specifically,
the current delivered bytes should be twice the delivered bytes
one RTT ago. Since capacities increase over time, SEARCH
normalizes the difference based on the current delivery rate
and since link latencies can vary independently of data rates
(especially for wireless links), SEARCH smooths the mea-
sured delivery rates over several RTTs.

This paper provides a detailed description of SEARCH, in-
cluding justification for the windowed smoothing and delivery-
difference thresholds. It also details the sensitivity analysis of
SEARCH algorithm parameters to provide the rationale behind
the heuristic settings. Lastly, experiments with hundreds of
TCP downloads over GEO, LEO, and 4G LTE links provide
for an empirical comparison of SEARCH versus default TCP
implementations (with and without TCP HyStart enabled).

The rest of this paper is organized as follows: Section II
reviews related work, Section III describes our SEARCH
approach, Section IV tunes SEARCH algorithm parameters,
Section V describes experiments and analysis evaluating per-
formance, Section VI discusses implications of our findings,
Section VII mentions some limitations of the work, and
Section VIII summarizes our conclusions and possible future
work.

II. RELATED WORK

Jasim et al. [4] propose a technique for approximating the
TCP congestion window thresholds for high latency connec-
tions by using a packet-pair technique to estimate bandwidth.
The authors perform experiments using a variety of network
configurations and find that their approach can improve the
performance of TCP when latencies are high. Additionally,
they compare their approach to other existing methods and find
it outperforms them in terms of both efficiency and accuracy.

Ye et al. [8] propose a new algorithm, Personalized FAST
TCP, which improves the performance of the FAST TCP
congestion control for personalized healthcare systems. The
algorithm uses the number of remaining link buffers to judge
exit times for slow start, designed to help the queuing delay
ratio stays within the expected range and not change with
variations in bandwidth or other parameters, leading to faster
convergence of the system. They also propose a method for
dynamically adjusting the gain parameters of the controller
based on local information obtained from each connection
source, allowing the system to adjust to changes in network

operation states within the range of relevant protocol param-
eters to maintain stability. With this method, they find the
FAST TCP system achieves a small queuing delay and quickly
converges to the equilibrium point.

Gál er al. [9] introduce BIC (Binary Increase Congestion
Control) and Hybla as solutions to improve TCP’s performance
in high-latency networks. Hybla modifies the slow start and
congestion avoidance phases of NewReno to reduce the de-
pendency on RTT, achieving RTT fairness but with amplified
reactions in higher RTT flows. BIC aims to approximate
the optimal congestion window size using a binary search
approach, though may exhibit RTT fairness issues comparable
to Reno’s. Unlike these loss-based algorithms, delay-based
algorithms preemptively adjust to network conditions.

Kachooei et al. [3] present the BEST algorithm, a band-
width estimation technique based on packet-pair measurements
for determining the slow start exit point. While showing
promise, BEST encounters challenges in environments with
high variability in estimated bandwidth and RTT, leading to
underestimation or overestimation of the available bandwidth.

Li et al. [10] present Fast Bandwidth Estimation (FBE),
a solution designed to optimize the slow start phase in high-
bandwidth networks like WiFi 6 and 5G. Recognizing the issue
of link underutilization due to the slow ramp-up of congestion
windows, FBE utilizes the initial ACK feedback to estimate
link capacity without sending extra probe packets. By refining
ACK intervals to reflect true link rates and dynamically
adjusting the congestion window based on driver queue feed-
back, FBE attempts to address the inaccuracies in bandwidth
estimation that are especially prevalent in variable wireless
links. Comparative experiments show FBE outperforms tradi-
tional slow start methods, cutting down convergence time and
improving short flow completion times against well-known
algorithms such as CUBIC and BBR.

Kasoro er al. [11] propose ABCSS, a method that combines
the strengths of Appropriate Byte Counting (ABC) and the
Slow Start (SS) algorithm. This approach is designed to
increase the congestion window more effectively than the tra-
ditional slow start, aiming to address the invariant congestion
window during initial round trips that leads to TCP burst issues
and potential buffer overflows.

While the above approaches are all alternatives, and in
some sense improvements, to traditional slow start, unlike our
approach they do not focus on the fundamental problem of
avoiding an early exit to slow start before the link capacity
is reached while still exiting before inducing unnecessary
congestion.

III. METHODOLOGY

Our primary objective is to improve TCP performance by
exiting slow start in a timely manner – after the capacity point
is reached but before inducing packet loss. We introduce an
additional algorithm to slow start that identifies the congestion
point by comparing the delivered bytes to the expected deliv-
ered bytes, with the understanding that delivered bytes should
approximately double each RTT until capacity is reached. The



Fig. 1: TCP acknowledged delivery of data over time.

algorithm also examines delivered bytes smoothed over several
RTTs in order to be resilient to underlying link variance,
and normalizes delivered bytes to adapt to a range of link
capacities.

During TCP slow start, each acknowledgment received in-
creases the congestion window by one, triggering transmission
of two packets and effectively doubling the window size – and
consequently the sent bytes – each RTT. Thus, in uncongested
network conditions, the number of bytes acknowledged as
delivered in a given RTT is about twice the number of bytes
delivered in the previous RTT.

Figure 1 illustrates this concept, with the number of deliv-
ered bytes shown on the y-axis according to the RTTs on the x-
axis. Here, the delivered bytes (the blue line) can be compared
with twice the number of bytes delivered one RTT earlier
(the green line). If the number of bytes delivered during the
previous RTT is equal to twice the number of bytes delivered
during the current RTT – such as happens at t3 where the
delivered bytes have doubled since t2, and then again at t4
where the delivered bytes have doubled since t3 – then the
link capacity has not been reached. This observation aligns
with the behavior of TCP slow start, where the congestion
window is increased by one for each delivered byte, resulting
in a doubling of the sent bytes each RTT. However, at time t5
the number of bytes delivered is not double the bytes delivered
since time t4, indicating the congestion point has been reached.

This concept – that delivery rates should double each RTT
until capacity is reached — is core to our Slow start Exit At
Right CHokepoint (SEARCH) algorithm. Our initial version of
SEARCH [12] (SEARCH 1.0), recorded the sent and delivered
bytes separately for comparison, whereas here in SEARCH
2.0 we refine the algorithm to use only the delivered bytes
thus reducing memory use by about 50%. This reduction is
significant for TCP servers which must store slow start state
per-flow so reducing a flow’s memory footprint is desirable.
In SEARCH 2.0, when the bytes delivered one RTT prior is
half the bytes delivered now, the bitrate is not yet at capacity,
whereas when the bytes delivered prior are less than half the

bytes delivered now, the link capacity has been reached and
TCP exits slow start.

One challenge in monitoring delivered data across multiple
RTTs is latency variability for some links. An unstable latency
in the absence of congestion – common in some wireless
links – can cause RTTs to differ over time even when the
network is not at capacity. This variability complicates the
direct comparison of data because a lower latency can lead
to false positives in that the delivered bytes one RTT ago
seem too low, thus appearing to be at the link capacity
when it is not. For instance, Figure 2 shows the RTT times
for a TCP connection over a GEO satellite link. For this
connection, capacity is not reached until after 12 seconds,
yet the RTTs vary considerably due to the scheduling of TCP
acknowledgments on the uplink. This type of variability makes
accurate comparison of delivered amounts difficult.

To counteract link latency variability, SEARCH tracks de-
livered data over several RTTs in a sliding window providing
a more stable basis for comparison. Since tracking individual
packet delivery times is prohibitive in terms of memory
use, the data within the sliding window is segmented into
bins representing small, fixed time periods. The window then
slides over bin-by-bin, rather than sliding every ACK packet,
reducing both the computational load (SEARCH only triggers
at the bin boundary) and memory requirements.

The SEARCH algorithm is shown in Algorithm 1. In
Lines 1-7, SEARCH initializes with predefined parameters for
window size, number of bins, bin duration, and threshold. The
window size (WINDOW SIZE) is set to 3.5 times the initial
RTT to smooth out variation in link latency. Ten bins are used
to approximate the delivered rates over the window size, with
an additional 10 (EXTRA BINS) bins stored (NUM BINS) in
order to allow comparison of the current delivered bytes to the
previously delivered bytes one RTT earlier. The W constant
is used as the actual window size for computing delivered
bytes. The bin duration (BIN DURATION) is calculated by
dividing the window size by the number of bins. The threshold
(THRESH), set at 0.35, is the upper bound of the permissible
difference between the previously delivered bytes and the
current delivered bytes (normalized) above which slow start
exits.

After one-time initialization in Lines 8-11, the algorithm

Fig. 2: RTTs for a GEO satellite link.



operates upon the arrival of each acknowledgment. On line
13, when the current time (now) has passed the end time of
the last bin, it updates the bin boundary (Lines 14-16). Line
17 computes the index (prev) for the previous bins. Line 18
checks if there has been at least a window’s-worth of data
previously delivered – if so, SEARCH can begin checking to
see if slow start should exit in Lines 20-26. Line 20 computes
the bytes delivered for the current window by summing up
the corresponding bins, and Line 21 does the same but for
the window one RTT ago. Line 22 computes the normalized
difference in the bytes delivered one RTT ago and the bytes
delivered currently. Line 23 compares this difference to the
threshold (THRESH) and, if it is greater, exits slow start by
setting ssthresh to cwnd. Lastly, Line 29 adds the currently
delivered bytes (in the acknowledgment packet) to the tally in
the latest bin.

Note, if the value of prev (computed on Line 17) falls within
a bin (i.e., between two bin boundaries), the computation on
Line 21 uses an appropriate proportion of the bin at prev-
W (i.e., bin[prev-W]) and prev (i.e., bin[prev]) in computing
prev delv. This adjustment is not shown in the Algorithm 1
to keep it readable.

IV. SEARCH PARAMETERS

This section provides the rationale for SEARCH parameters:
window size (Section IV-A), threshold values (Section IV-B),
and number of bins (Section IV-C).

A. Window Size

The SEARCH window smooths over baseline RTT fluctua-
tions in a connection. The window size must be large enough
to encapsulate meaningful link variation, yet small in order to
allow SEARCH to respond near when slow start reaches link
capacity. In order to determine an appropriate window size,
we analyzed RTT variation over time for GEO, LEO, and 4G
LTE links for TCP during slow start.

Figure 3a shows the RTT observed over time averaged
over 77 samples from a GEO network during TCP slow start
preceding congestion. The SEARCH window size should be
large enough to capture the observed periodic oscillations in
the RTT values. In order to determine the oscillation period,
we use a Fast Fourier Transform (FFT) [13] to convert the RTT
values from the time domain to the frequency domain. The
results are depicted in Figure 3b. The x-axis is the frequency
(in Hz) and the y-axis is the magnitude of the signal. The
primary peak is at 0.5 Hz, meaning there is a large, periodic
cycle that occurs about every 2 seconds. Given the minimum
RTT for a GEO connection of about 600 ms, this means the
cycle occurs about every 2/0.6 ≈ 3.33 RTTs. Thus, a window
size of about 3.5 times the minimum RTT should smooth out
the latency variation for this type of link.

Figure 3c and Figure 3d show similar analysis for a LEO
satellite link, again using RTT values for 77 TCP transfers
during slow start prior to congestion. While the RTT period-
icity for the LEO link is not as pronounced as in the GEO
link, the FFT still has a dominant peak at 10 Hz, so a period

Algorithm 1
SEARCH 2.0: Slow start Exit At Right CHokepoint.

1: Parameters:
2: WINDOW SIZE = Initial RTT × 3.5
3: W = 10
4: EXTRA BINS = 10
5: NUM BINS = W + EXTRA BINS
6: BIN DURATION = WINDOW SIZE / W
7: THRESH = 0.35

8: Initialization:
9: bin[NUM BINS]

10: curr = 0
11: bin end = now + BIN DURATION

12: Each acknowledgement:
13: if (now > bin end) then
14: bin end += BIN DURATION
15: curr += 1
16: bin[curr mod NUM BINS] = 0

17: prev = curr - (RTT / BIN DURATION)
18: if (prev ≥ W) and (curr - prev) ≤ EXTRA BINS then
19: // Check if SEARCH should exit
20: curr delv =

∑curr
curr-W bin[i mod NUM BINS]

21: prev delv =
∑prev

prev-W bin[i mod NUM BINS]

22: norm diff =
2 · prev delv − curr delv

2 · prev delv

23: if (norm diff ≥ THRESH) then
24: // Exit slow start
25: set ssthresh to cwnd
26: end if
27: end if
28: end if
29: bin[curr mod NUM BINS] += bytes delivered

of about 0.1 seconds. With LEO’s minimum RTT of about 30
ms, the period is 0.1/0.03 ≈ 3.33 RTTs. Thus, a window size
of about 3.5 times the minimum RTT should smooth out the
latency variation for this type of link, too.

Figure 3e and Figure 3f show analysis of a 4G LTE network
for RTT values collected across 55 TCP transfers during slow
start prior to congestion. Similarly to the LEO link, the LTE
network does not have a strong RTT periodicity. It has a
dominant peak at 6 Hz, with a period of about 0.17 seconds.
With the minimum RTT of the LTE network about 60 ms, this
means a window size of at least 0.17/0.06 ≈ 2.8 times the
minimum RTT is needed. A SEARCH default of 3.5 times the
minimum RTT exceeds this, so should smooth out the variance
for this type of link as well.

B. Threshold

The threshold determines when the difference between the
bytes delivered currently and the bytes delivered during the



Fig. 3: Average RTT and FFT over GEO, LEO, and 4G LTE.

previous RTT is great enough to exit the slow start phase. A
small threshold is desirable to exit slow start close to the ‘at
capacity’ point, but the threshold must be large enough not to
trigger an exit from slow start prematurely due to noise in the
measurements.

During slow start, the congestion window doubles each
RTT. In ideal conditions and with an initial cwnd of 1, this
results in a sequence of delivered bytes that follows a doubling
pattern (1, 2, 4, 8, 16, . . .). Once the link capacity is reached,
the delivered bytes each RTT cannot increase despite cwnd
growth.

For example, consider a window that is 4x the size of the
RTT. After 5 RTTs, the current delivered window comprises
2, 4, 8, 16, while the previous delivered window is 1, 2, 4, 8.
The current delivered bytes is 30, exactly double the bytes
delivered in the previous window. Thus, SEARCH would
compute the normalized difference (Line 22 in Algorithm 1)
as zero.

Once the cwnd ramps up to meet full link capacity, the
delivered bytes plateau. Continuing the example, if the link
capacity is reached when cwnd is 16, the delivered bytes
growth would be 1, 2, 4, 8, 16, 16. The current delivered win-
dow is 4 + 8 + 16 + 16 = 44, while the previously delivered
window is 2+4+8+16 = 30. Here, the normalized difference
between 2× the previously delivered window and the current
window is about (60−44)/60 = 0.27. After 5 more RTTs, the
previous delivered and current delivered bytes would both be
16 + 16+ 16+ 16 = 64 and the normalized difference would
be (128− 64)/64 = 0.5.

To generalize this relationship, Figure 4 shows the con-
gestion window as a function of time. The blue curve has
an exponential growth (doubling) during slow start and the
window. The shaded region labeled ‘x’ is the window in
the initial growth period. At window ‘z’, capacity has been
reached and sustained long enough that the window is full of
‘at capacity’ values, as in the above example. At window ‘y’,
the left side of the window has exponential growth while the
right side has plateaued at capacity.

Fig. 4: Window position based on congestion point: ‘x’ is
before capacity and window growth doubles each RTT, ‘y’
is at capacity where the left side of the window has doubled
growth and the right side has plateaued, and ‘z’ has plateaued
for the whole window.

The theoretical underpinnings of this behavior can be quan-
tified by integrating the area under the congestion window
curve. During exponential growth (e.g., Figure 4 window ‘x’),
the area in a window from RTT round a to RTT round b is:∫ b

a
2x dx =

[
2x

ln(2)

]b
a
= 2b

ln(2) −
2a

ln(2)

Once at capacity is reached (e.g., Figure 4 window ‘z’), say
by RTT round c, the area in a window from RTT round d to
RTT round e is:∫ e

d
2c dx = [2c · x]ed = 2c · e− 2c · d = 2c · (e− d)

If the window encompasses both exponential growth and
constant, at capacity rate (e.g., Figure 4 window ‘y’), the area
is computed in pieces, exponential up to the ‘at capacity point’
and then constant to the end of the window.

If r is the current round measured in RTTs, c is the round
where capacity has been reached, and w is the size of the
window in RTTs, then if capacity is reached after the current
round (e.g., Figure 4 window ‘x’), r < c:

w︷ ︸︸ ︷
2x, 2x+1, . . . , 2r−1, 2r︸︷︷︸

r

. . .︸︷︷︸
c after window

So:

prev delv =

[
2x

ln(2)

]r−1

r−1−w

curr delv =

[
2x

ln(2)

]r
r−w

(1)



If capacity has been reached before the window (e.g., Figure 4
window ‘z’), c < (r − w):

↑
c before window

,

w︷ ︸︸ ︷
2c, 2c, . . . , 2c, 2c︸︷︷︸

r

So:
prev delv = 2c · ((r − 1)− (r − 1− w))

curr delv = 2c · ((r)− (r − w))
(2)

If congestion occurs within the window (e.g., Figure 4 window
‘y’), (r − w) < c < r:

w︷ ︸︸ ︷
2x, 2x+1, . . .. . .

↑
c within window

, 2c, 2c︸︷︷︸
r

So:

prev delv =

[
2x

ln(2)

]c
r−1−w

+ 2c · (r − 1− c)

curr delv =

[
2x

ln(2)

]c
r−w

+ 2c · (r − c)

(3)

With closed-form equations for both the current deliv-
ered bytes (curr delv) and the previously delivered bytes
(prev delv), the normalized difference can be computed based
on the RTT round relative to the ‘at capacity’ round. Figure 5
shows this relationship. The x-axis is the RTT round relative to
the ‘at capacity’ round. So, for example, x = 2 means 2 RTTs
after capacity has been reached and x = −1 means one RTT
before capacity will be reached. The y-axis is the normalized
difference in current delivered bytes and previously delivered
bytes (Line 22 in Algorithm 1). For illustration, the trendline
shows three functions, each representing a different window
size (in RTTs): 2, 3.5, and 5.

From the graph, as expected, before capacity (x < 0) the
normalized difference is 0. When capacity is reached, the
normalized difference climbs sharply during the first RTT,
leveling off slightly and reaching a maximum of 0.5 when the
window is full of ‘at capacity’ values. The initial growth in
the normalized difference values once x > 0 is approximately
the same regardless of the window size.

While SEARCH seeks to detect the ‘at capacity’ point as
soon as possible after reaching it, it must also avoid premature
exit in the case of noise on the link. The 0.35 threshold value
chosen does this and can be detected with 2 RTTs of reaching
capacity.

C. Number of Bins

Dividing the delivered byte window into bins reduces the
server’s memory load by aggregating data into manageable
segments instead of tracking each packet. This approach sim-
plifies data handling and minimizes the frequency of window
updates, enhancing server efficiency. However, more bins
provide more fidelity to actual delivered byte totals and allow
SEARCH to make decisions (i.e., compute if it should exit

Fig. 5: Normalized difference versus RTT round. The normal-
ized difference must exceed the SEARCH threshold for slow
start to exit.

slow start) more often, but require more memory for each
flow. The sensitivity analysis conducted here aims to identify
the impact of the number of bins used by SEARCH and the
ability to exit slow start in a timely fashion.

Using a window size of 3.5× the minimum RTT and a
threshold of 0.35, we vary the number of bins from 5 to
40 and observe the impact on SEARCH’s performance over
77 GEO TCP downloads, 77 LEO TCP downloads, and 55
4G LTE downloads. Figure 6 depicts the results, with one
graph for each network type: GEO, LEO, and 4G LTE. The
x-axis for each graph is the number of bins and the y-axis
is a percentage. For each bin value, the percentage of times
SEARCH exited slow start too early (before capacity was
reached), too late (packet drops were encountered), or at the
chokepoint is computed and plotted as the y-value.

For the GEO link (Figure 6a), the trendlines are all flat
which indicates SEARCH performance is relatively stable no
matter what bin size is chosen. For the LEO link (Figure 6b)
and 4G LTE link (Figure 6c), the trendlines are still mostly flat,
albeit the LEO link showing a slight upward trend early and at
the chokepoint with number of bins. While ideally, SEARCH
would maximize the at chokepoint values, it also seeks to avoid
early slow start exits since these are especially detrimental to
high BDP links. For all graphs, a bin size of 10 minimizes
early exits while having an at chokepoint percentage that is
close to the maximum.

V. EVALUATION

This section describes our measurement testbed (Sec-
tion V-A), a heuristic to determine the ‘at capacity’ time
(Section V-B), and evaluation results (Section V-C).

A. Measurement Testbed

We set up a measurement testbed to evaluate SEARCH
which mirrors common Internet user scenarios wherein the
wireless link is the “last mile” of connectivity to the client
which is downloading from an Internet-connected server.

Our testbed includes GEO and LEO satellite networks,
depicted in Figure 7. The client is a PC with an Intel i7-5820K



(a) GEO (b) LEO

(c) 4G LTE

Fig. 6: Bin sensitivity analysis.

CPU @ 3.30GHz and 32 GB RAM running Ubuntu-20.04 and
Linux kernel version 5.4.0. The server is a PC with an Intel
i5-8500 CPU @ 3.00GHz and 8 GB RAM running Mint-20.3
and Linux kernel version 5.10.79. The server connects to our
University LAN via Gb/s Ethernet. The campus network is
connected to the Internet via several 10 Gb/s links, all throttled
to 1 Gb/s.

The client connects to a Viasat GEO satellite terminal
(with a dish and modem) via a Gb/s Ethernet connection.
The client’s downstream Viasat service plan provides a peak
data rate of 144 Mb/s. The terminal communicates through
a Ka-band outdoor antenna (RF amplifier, up/down converter,
reflector, and feed) through the Viasat 2 satellite1 to the larger
Ka-band gateway antenna. The terminal supports adaptive
coding and modulation using 16-APK, 8 PSK, and QPSK
(forward) at 10 to 52 MSym/s and 8PSK, QPSK and BPSK
(return) at 0.625 to 20 MSym/s. The Viasat gateway performs
per-client queue management, where the queue for each client
can grow up to 36 MBytes. Queue lengths are controlled at the
gateway by Active Queue Management (AQM) that randomly
drops 25% of incoming packets when the queue is over half of
the limit (i.e., 18 MBytes). The GEO performance-enhancing
proxy (PEP) is deliberately deactivated to simulate conditions
where encryption or other constraints preclude PEP usage.

The client connects to the LEO satellite through an elec-
tronic phased array outdoor antenna. The LEO network deliv-
ers a peak downlink rate of approximately 100 Mb/s and has
a minimum RTT of about 30 ms.

Our 4G LTE testbed has a server with an Intel Pentium
Silver N6005 CPU and 16 GB of RAM running Ubuntu
version 22.04.1 and Linux kernel version 6.2.0. The client is an

1https://en.wikipedia.org/wiki/ViaSat-2

Fig. 7: GEO and LEO satellite measurement testbed.

Intel Celeron 2957U CPU and 4 GB of RAM running Ubuntu-
22.04.1 and Linux kernel version 6.2.0. The client connects to
the Internet via a 4G LTE “hotspot” connection over an iPhone
XS through the Verizon network.

The clients and server are instrumented to log delivered
bytes, RTTs, and congestion window sizes. The standard test
protocol uses TCP Cubic – Linux’s default TCP congestion
control algorithm – with HyStart disabled, unless otherwise
noted.

B. Determining when TCP has Reached Link Capacity

SEARCH’s goal is to exit slow start after the congestion
window has grown large enough to reach link capacity but
before inducing packet loss. In order to determine the ‘at
capacity’ point for an unknown link, we deploy a heuristic that
uses the one-way latency offset recorded via Wireshark on the
client to determine when the downlink has been saturated. At
the start of data transmission, the latency offset is low, indicat-
ing the link before congestion. As the transmission continues,
the latency offset increases once the downlink is saturated
– i.e., the capacity limit has been reached and subsequent
congestion window growth results in queuing thus increasing
latency. Using this idea, our heuristic for determining the ‘at
capacity point’ from a previously-gathered Wireshark trace is:

1) Determine when the latency offset first surpasses twice
the minimum RTT. Reaching this level suggests that the
link capacity has been reached sometime in the past.

2) Trace backward from this time point to find when the
latency offset falls below one-half the minimum RTT.
This is used as the ‘at capacity’ point.

Figure 8 shows an example for the latency offset values
recorded at the client from Wireshark for a TCP download
from a server over a GEO satellite link with a minimum RTT
of 600 ms. The x-axis is the time in seconds and the y-axis
is the latency offset in milliseconds with the blue curved line
the latency offset values. For the first 10 seconds, the latency
offsets are low, well under one-half the minimum RTT. After
time 10 s, the latency offset values rise fairly continuously until
past time 25 s. The time of the first packet loss is determined
via 3 duplicated ACKs in the Wireshark trace at about time 17
s. The latency offset first surpasses 2× the minimum RTT (i.e.,
1200 ms) at about time 12 s, and the earlier latency offsets are
examined sequentially in reverse from here (i.e., prior to time
12) to determine where the offset drops below one-half the



minimum RTT (i.e., 300 ms). In this example, this happens at
about 10.5 s. This is used as the ‘at capacity’ point for this
transfer.

Fig. 8: Determining the ‘at capacity’ point using the latency
offset.

C. Results

SEARCH parameters are configured based on analysis in
Section IV: window size 3.5× the initial RTT, 10 bins, and
threshold 0.35. The ‘at capacity’ point during a download is
determined using the heuristics described in Section V-B and
requires two thresholds: twice the minimum RTT and half the
minimum RTT. Table I displays these thresholds for GEO,
LEO, and 4G LTE networks.

TABLE I: Thresholds for finding the ‘at capacity’ point.

Network First (ms) Second (ms)
GEO 1200 300
LEO 60 15

4G LTE 116 28

Figure 9 shows a representative example of SEARCH
performance for a single download on each link: GEO, LEO,
and 4G LTE. For all graphs, the x-axis is the time (in seconds)
since the download started.

The left graphs show the data transferred in Mbytes. The
green line shows the current delivered bytes and the blue
line shows twice the previous delivered bytes. The vertical
dashed red lines indicate the first time a packet is lost. In
all three graphs, the green line (current bytes) and the blue
line (previous bytes) start near each other at the beginning
of the download but then diverge before packet loss, where
the current delivered bytes do not match (twice) the previous
delivered bytes suggesting capacity has been reached.

The right graphs show the normalized difference (Line 22 in
Algorithm 1), depicted as a light blue trendline. The vertical
blue dashed lines indicate when capacity is reached (based
on our heuristic in Section V-B), the vertical green dashed
lines indicate when SEARCH exits slow start, and the red
vertical dashed lines indicate the first packet loss. For all three
runs, SEARCH is effective at exiting slow start after capacity
has been reached but before packet loss occurs. Comparing
the three runs, the GEO link has a much clearer signal that

capacity has been reached in that there is less noise (variation)
in the normalized difference measurements compared to the
LEO and 4G LTE links. This suggests that while a lower
threshold value could benefit the GEO link, the inherent noise
in the measurements for the LEO and 4G LTE links could
cause a premature exit from slow start with a lower threshold.

Fig. 9: Bytes delivered and normalized difference over GEO,
LEO, and 4G LTE links.

To fully evaluate SEARCH, we implemented periodic
downloads over a full day for both GEO and LEO satellite
connections and multiple time-spaced downloads on the LTE
network. Each session had an iperf3 download from the server
to the client using standard TCP slow start with HyStart
disabled, with the server kernel logging data to evaluate
SEARCH performance. We completed 77 runs each on the
GEO and LEO satellite links and 55 runs on the LTE network.
The results are summarized in Table II: ‘capacity’ is the time
for the congestion window to hit the link’s capacity, ‘loss’
is the time for the first packet loss, and ‘exit’ is the time
when slow start exits. All values are shown as means with
standard deviations in parentheses. The ‘Timely’ column is
the percentage of runs that did not exit prematurely, before
capacity was reached.

The results from these tests suggest that SEARCH reliably
determines the exit point following congestion for all link
types. The average slow start exit point is after capacity is
reached but before packet loss. For all links, for over 96% of
the connections, SEARCH did not exit slow start too early.

In our comparative analysis presented in Table III, we
compare the performance of TCP with SEARCH compared
to TCP with HyStart on (the Linux default) and TCP with



TABLE II: SEARCH evaluation.

Network Runs Capacity (s) Loss (s) Exit (s) Timely (%)
GEO 77 11.8 (2.6) 22.9 (8.7) 13.7 (1.7) 96.1
LEO 77 0.4 (0.1) 0.6 (0.1) 0.5 (0.1) 96.1
4G LTE 55 0.3 (0.2) 1.9 (1.8) 0.7 (0.6) 96.4

HyStart off (i.e., traditional TCP). ‘Capacity’ is the time for
the congestion window to hit the link’s capacity, ‘Exit’ is the
time for first packet loss, ‘Early Exit’ is the percentage of runs
that exit slow start before capacity is reached, ‘Late Exit’ is
the percentage of runs that exit slow start only upon packet
loss, ‘Choke Point Exit’ is the percentage of runs that exit after
capacity is reached but before packet loss. Times are shown
in seconds, averaged over all runs with the standard deviation
in parentheses.

Note, we do not have ‘Capacity’ times for SEARCH since
our implementation only logs kernel values but does not
actually trigger slow start exit. However, since there are very
few ‘Early Exit’ values for SEARCH, its ‘at capacity’ times
would be similar to those for HyStart off. Also, for the LEO
runs with HyStart on, TCP exited slow start immediately and
the data ramped up so slowly that our heuristic was only able
to detect the ‘at capacity’ time about 10% of the time. Hence,
our estimates for Capacity, Early Exit, Late Exit, and Choke
Point Exit are approximated.

When HyStart is off, the capacity limit is reached the
quickest but TCP always overshoots the ‘at capacity’ point,
exiting slow start only when it encounters packet loss. When
HyStart is on, over GEO and 4G LTE, TCP exits slow start
extremely early (always before capacity is reached) which, in
turn, causes the capacity limit to be reached much later than
when HyStart is off. With SEARCH, over GEO and 4G LTE,
TCP rarely exits early, reaches capacity limits about as fast
as TCP with HyStart off, and usually exits at the chokepoint.
With SEARCH, over LEO, TCP exits after the capacity limit
on average and rarely early and improves upon the late exits
by about 43% versus TCP with HyStart off.

TABLE III: SEARCH, HyStart enabled, HyStart disabled over
GEO, LEO, and LTE links.

Slow Start Capacity Exit Early Late Choke Point
Network Method (s) (s) Exit (%) Exit(%) Exit (%)

GEO
SEARCH – 13.7 (1.7) 3.9 2.6 93.5
HyStart on 23.1 (1.9) 1.3 (0.1) 100 0 0
HyStart off 11.8 (2.6) 22.9 (8.7) 0 100 0

LEO
SEARCH – 0.5 (0.1) 3.9 57.1 39.0
HyStart on 5.0 0.1 (0.1) 100 0 0
HyStart off 0.4 (0.1) 0.6 (0.1) 0 100 0

4G LTE
SEARCH – 0.7 (0.6) 3.6 36.4 60.0
HyStart on 2.1 (1.0) 0.1 (0.1) 100 0 0
HyStart off 0.3 (0.2) 1.9 (1.8) 0 100 0

VI. DISCUSSION

Traditional TCP (without HyStart) exits slow start after
capacity is reached by persisting until packets are loss. HyStart
had sought to improve upon this by using packet timing to
infer capacity is reached before packet loss. Unfortunately,
TCP Cubic with HyStart enabled – the Linux default – always
exits slow start prematurely before capacity is reached on
GEO, LEO and 4G LTE wireless links. This is especially
problematic for GEO links that have a high bandwidth-delay
product (BDP) since any underutilization will persist and
be pronounced. SEARCH shows improvements over HyStart,
rarely exiting TCP slow start early over those same links, and
SEARCH shows improvements over traditional TCP, too, by
usually exiting slow start before packet loss occurs. This is
especially promising since GEO, LEO and 4G LTE wireless
links are some of the most challenging in terms of round-trip
times, capacities and variances for both over time.

SEARCH is a server-side only approach meaning it requires
only modifications to the TCP sender and not to the TCP
receiver. This allows for incremental deployment in that only
the server endpoint needs to be updated for downloads from
that server to benefit from SEARCH.

While SEARCH requires some additional per-flow state, the
amount of memory needed is modest – about 100 extra bytes
per flow. The additional processing required by SEARCH is
similarly modest, with only a few extra computations each
time an acknowledgement arrives (updating the byte-delivered
total) and the SEARCH exit condition check only run at the bin
boundary (about twice for each congestion window of packets
delivered.)

The SEARCH idea of computing the slow start exit point
based on delivered bytes has a solid foundation in the way TCP
slow start works – approximately doubling the cwnd each RTT
– but can be sensitive to timing; in fast networks, the speed
of packet delivery is small compared to the TCP processing
potentially adding noise to the RTT shifting. Fortunately, the
smoothing window – set to 3.5 times the minimum RTT –
ought to help for fast networks, too, but further testing should
be done.

VII. LIMITATIONS

There are three main limitations to the work:
Evaluations until now have only considered bulk downloads,

where the server looks to transfer data as fast as possible.
While this is perhaps the most interesting and critical in terms
of bottleneck link utilization, the slow start characteristics of
flows that are application-limited may differ. TCP flows that
are limited not by the congestion window but by the appli-
cation sending rate are a potential challenge for SEARCH.
In such cases, the SEARCH window will advance without an
increase in the delivered bytes, but this is not an indicator that
capacity has been reached. Future work should assess – and
then address – this case.

The results in this paper are created by first: 1) running
experiments with an instrumented Linux kernel that logs the
delivered bytes and RTT each acknowledgment, and 2) then



running a Python version of SEARCH on the log files to deter-
mine how it would perform. While this version of SEARCH
should perform the same as would a kernel implementation
of SEARCH, our ongoing work is to do verify exactly this
– evaluate a kernel implementation version of SEARCH over
the same network conditions evaluated thus far.

The evaluations thus far have been for only three types
of wireless last mile links – GEO, LEO and 4G LTE –
with relatively uncontrolled conditions for competing traffic.
While these wireless networks are among the most challenging
for slow start due to the underlying variations in RTTs and
capacities, there are many more network conditions to consider
including, but not limited to, other wireless links (e.g., WiFi,
5g) and traffic patterns (contending and cross traffic).

VIII. CONCLUSION

TCP slow start is designed to ramp up to the capacity limit
of a link quickly, exiting the slow start phase and entering
congestion avoidance once it is sure capacity has been reached.
For traditional slow start, this means exiting slow start only
when encountering packet loss which can cause unnecessary
queuing, retransmissions, and recovery time. TCP with HyS-
tart is designed to avoid overshooting a link’s capacity, exiting
slow start before packet loss is encountered. Unfortunately,
when running on some wireless links, TCP with HyStart
always exits slow start prematurely causing link capacity to
be reached far later than for traditional TCP.

TCP with SEARCH looks to exit slow start after capacity is
reached but before packet loss. SEARCH uses the difference
between bytes delivered currently and bytes delivered during
the previous RTT to detect if capacity has been reached.
SEARCH calculates delivered bytes over several RTTs to
smooth out RTT variance and uses bins to approximate the
bytes delivered over time and reduce server-side memory use.

Evaluation of hundreds of downloads of SEARCH across
GEO, LEO, and 4G LTE network links compared to TCP with
HyStart and TCP without HyStart shows SEARCH almost
always exits after capacity has been reached but before packet
loss has occurred. This results in capacity limits being reached
quickly while avoiding inefficiencies caused by lost packets.

Future work includes implementing SEARCH in the Linux
kernel and in an open-source, user-level QUIC library (e.g.,
QUICly [14]). In addition, we intend to evaluate SEARCH
over a broader range of network conditions, LAN and other
wireline networks, and wireless networks where the client is
mobile. Other future work could compare SEARCH to other
slow start approaches, such as HyStart++ [6], deployed by de-

fault in Microsoft OS, and TCP Hybla [15]. Additional future
analysis is to determine the number of extra bins SEARCH
needs to adequately cover shifting back when determining
previously-delivered bytes – limiting the number of extra bins
is desirable but so is the ability to handle highly variable
RTTs. Future work also needs to modify SEARCH to handle
scenarios when there are extended periods of inactivity (e.g.,
the application has no data to send or when server acknowl-
edgment processing is delayed) – in such cases, SEARCH may
look to freeze the delivered byte window.

REFERENCES

[1] A. Raman, M. Varvello, H. Chang, N. Sastry, and Y. Zaki, “Dissect-
ing the Performance of Satellite Network Operators,” arXiv preprint
arXiv:2310.15808, 2023.

[2] M. M. Hamdi, S. A. Rashid, M. Ismail, M. A. Altahrawi, M. F.
Mansor, and M. K. AbuFoul, “Performance Evaluation of Active Queue
Management Algorithms in Large Network,” in Proceedings of the
IEEE 4th International Symposium on Telecommunication Technologies
(ISTT), 2018, pp. 1–6.

[3] M. A. Kachooei, Z. Pinhan, F. Li, J. Chung, and M. Claypool, “Fixing
TCP Slow Start for Slow Fat Links,” in Proceedings of the 0x16 NetDev
Conference, Oct. 2022.

[4] A. M. Jasim and G. A. Abed, “An Effective Practice to Approximating
TCP Congestion Window Threshold in High Latency Connections,” Al-
Iraqia Journal for Scientific Engineering Research, 2022.

[5] S. Ha and I. Rhee, “Taming the Elephants: New TCP Slow Start,”
Computer Networks, vol. 55, no. 9, pp. 2092–2110, 2011.

[6] P. Balasubramanian, Y. Huang, and M. Olson, “HyStart++: Modi-
fied Slow Start for TCP,” IETF Draft draft-balasubramanian-tcpm-
hystartplusplus-03, Apr. 2020.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based Congestion Control,” Communications of the
ACM, vol. 60, no. 2, pp. 58–66, 2017.

[8] J. Ye, B. Huang, and X. Chen, “An Improved Algorithm to Enhance
the Performance of FAST TCP Congestion Control for Personalized
Healthcare Systems,” Wireless Commun. and Mobile Computing, 2021.

[9] Z. Gál, G. Kocsis, T. Tajti, and R. Tornai, “Performance Evaluation
of Massively Parallel and High Speed Connectionless vs. Connection
Oriented Communication Sessions,” Advances in Engineering Software,
vol. 157, p. 103010, 2021.

[10] L. Li, Y. Chen, and Z. Li, “Small Chunks can Talk: Fast Bandwidth
Estimation without Filling up the Bottleneck Link,” in Proceedings of
the IEEE/ACM 31st International Symposium on Quality of Service
(IWQoS). IEEE, 2023, pp. 1–10.

[11] N. Kasoro, S. Kasereka, G. Alpha, and K. Kyamakya, “ABCSS: A Novel
Approach for Increasing the TCP Congestion Window in a Network,”
Procedia Computer Science, vol. 191, pp. 437–444, 2021.

[12] M. A. Kachooei, J. Chung, F. Li, B. Peters, and M. Claypool, “Search:
Robust tcp slow start performance over satellite networks,” in 2023 IEEE
48th Conference on Local Computer Networks (LCN). IEEE, 2023, pp.
1–4.

[13] H. J. Nussbaumer and H. J. Nussbaumer, The Fast Fourier Transform.
Springer, 1982.

[14] Various contributors, “H2O/QUICly Git Repository,” https://github.com/
h2o/quicly/tree/master, 2023, accessed: November 30, 2023.

[15] C. Caini and R. Firrincieli, “Tcp hybla: a tcp enhancement for heteroge-
neous networks,” International journal of satellite communications and
networking, vol. 22, no. 5, pp. 547–566, 2004.


