Reducing Per-flow

Maryam Ataei Kachooei
Worcester Polytechnic Institute
Worcester, MA, USA
mataeikachooei @wpi.edu

Benjamin Peters
Viasat
Marlboro, MA, USA
benjamin.peters @viasat.com

Abstract—The Slow start Exit At Right CHokepoint
(SEARCH) algorithm is designed to exit the TCP slow start
phase after the flow has reached the link capacity but before
packets have been lost. To do this, SEARCH keeps a history of
the bytes delivered over a recent time window, aggregated into
bins. Unfortunately, this delivery history must be kept per-flow,
adding additional memory load for each TCP connection. We
address this per-flow memory load by observing that SEARCH
only needs the relative number of bytes delivered and propose a
bit-shifting technique that dynamically compresses bin values as
needed. Our approach is tunable to the memory-use reduction
required compared to the delivery precision needed. Evaluation
of our approach over a satellite network shows SEARCH bin
memory use can be reduced by 50% or even 75% without
any significant sacrifice in SEARCH algorithm accuracy. Our
approach is generalizable to other network algorithms, too,
reducing memory use for algorithms that use sliding windows
and historical data tracking.

Index Terms—memory use, bit shifting, TCP SEARCH, slow
start

I. INTRODUCTION

The Slow start Exit At Right CHokepoint (SEARCH) algo-
rithm [1] is designed to improve TCP’s start up by exiting the
slow start phase after the congestion point is reached but before
packet loss occurs. To do this, SEARCH tracks the delivered
bytes over time via a sliding window, comparing the expected
delivered bytes to the actual delivered bytes and determining
the at-congestion point when there is enough of a difference.

During the slow start phase, TCP increases the congestion
window (cwnd) exponentially, doubling the delivery rate each
round-trip time (RTT). However, when the network reaches
its capacity, the delivery rate stops doubling, indicating TCP
should exit from slow start. Figure 1 illustrates this behavior.
The left panel shows the alignment of delivered bytes (blue
line) and sent bytes (green line) up to the capacity point
(dashed vertical blue line). After this point, the sent bytes
continue to increase while the delivered bytes plateau. Note, if
the sent byte rate continues to increase, the bottleneck queue
fills and eventually induces packet loss.

Memory Use

Jae Chung
Viasat
Marlboro, MA, USA
jaewon.chung @viasat.com

Amber Cronin
Akamai
Cambridge, MA, USA
acronin@wpi.edu

in TCP SEARCH

Feng Li
Viasat
Marlboro, MA, USA
feng.li@viasat.com

Mark Claypool
Worcester Polytechnic Institute
Worcester, MA, USA

claypool @cs.wpi.edu
ity]
_ At capauty: :Packet loss § At capacity lPacket e
] [
) 4 £ o
y 1 1
2 : Sent byte © | :
2 . | Delivered byte =& : i
©) = ' !
e i 4 € : y
P £ 0f - - . N\
L g T
Time Time

Fig. 1: SEARCH: (left) sent and delivered rates over time, and
(right) normalized difference over time.

The right panel highlights the normalized difference between
the sent bytes and the delivered bytes. When the normalized
difference rises above zero, this indicates that the network’s
capacity has been reached, typically before packet loss (dashed
vertical red line). SEARCH uses this deviation, along with a
predefined threshold, to determine the right moment to exit the
slow start phase.

The SEARCH RFC draft [2] was presented at the Internet
Engineering Task Force [3] and critique, deployment and im-
provements to SEARCH are encouraged. Open source versions
of SEARCH are available for Linux' and QUIC.?

In SEARCH, the sliding window of delivered bytes over
time is broken into smaller intervals, called bins, which aggre-
gate the delivered byte history over small time periods so as
not to store per-packet information. Since SEARCH benefits
from fine-grained tracking and must smooth delivery rates in
networks with high RTTs, the window requires a large number
of bins.? Since each bin stores the highest sequence number
seen in the delivered acknowledgments, a 32-bit integer (u32
is used. Unfortunately, the combination of many bins (25)
and many bytes (4) for each bin introduces a significant
memory overhead, extra storage that must be kept for each TCP
flow, limiting scalability, particularly for resource-constrained

Uhttps://github.com/Project- Faster/tcp_ss_search
Zhttps://github.com/Project- Faster/quicly/tree/generic-slowstart
3The number of bins in the SEARCH implementation for Linux is 25.

servers.

Reducing the per-connection memory used by TCP can be
critical in environments where a system must manage thou-
sands or even millions of concurrent flows such as in gateways,
embedded systems, and middleboxes. Prior work has shown
that standard TCP stacks like Linux can exhaust memory and
fail at scale due to linear per-connection state growth, whereas
stateless or memory-efficient alternatives allow support for
significantly more concurrent connections without failure [4].
Even in large-scale deployments, including web services and
cloud infrastructure, engineers have reported hitting system
limits due to aggregate TCP memory usage, prompting efforts
to reduce buffer sizes and streamline connection metadata. [5]

To address this challenge, we propose a key optimization
— bit-shifting the bins to dynamically compress bin values
by reducing their precision as needed, significantly lowering
the memory footprint of the bins while preserving enough
accuracy for the SEARCH algorithm. We incorporate this tech-
nique into the TCP SEARCH algorithm, demonstrating how
it reduces per-flow memory use while maintaining SEARCH
performance. Although demonstrated in SEARCH, this opti-
mization can also be applied to other network protocols that
use historical data tracking.

The contributions of this paper are two-fold:

1) We introduce a bit-shifting technique to reduce memory
use for algorithms that require historical data tracking.

2) We demonstrate the effectiveness of this technique in
the TCP SEARCH algorithm, reducing memory usage
per TCP flow while retaining SEARCH functionality.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work; Section III details the methodol-
ogy, including the implementation of the bit-shifting technique
in the TCP SEARCH algorithm; Section IV evaluates the
impact of the technique on memory savings and SEARCH
algorithm accuracy; Section V discusses the implications of
the research; Section VI mentions some limitations; and Sec-
tion VII summarizes our conclusions and possible future work.

II. RELATED WORK

Efficient memory management is critical in network proto-
cols that rely on historical data for decision-making.

Tangwongsan et al. [6] provide an overview of sliding-
window aggregation algorithms, emphasizing their application
in data stream processing. While their work explores the
computational efficiency of aggregation, it does not address
the challenges of reducing memory overhead when maintaining
precision across a large amount of historical data.

Oge et al. [7] propose scalable hardware implementations of
sliding-window aggregates, focusing on performance optimiza-
tion. However, their approach requires specialized hardware,
making it less practical for software-based congestion control
mechanisms like TCP.

Cardwell et al. [8] introduce TCP BBR, that uses a history of
delivered bytes, somewhat similar to that used by SEARCH —

BBR could perhaps benefit from the reduced memory afforded
by the bit-shifting techniques in our paper.

Our work complements these studies by introducing a bit-
shifting technique to dynamically compress historical values,
significantly reducing memory usage without necessarily com-
promising accuracy.

III. METHODOLOGY
A. Overview of SEARCH Algorithm

The SEARCH algorithm is designed to exit slow start in a
timely manner — after reaching the network’s capacity point
but before inducing packet loss [2]. SEARCH identifies the
congestion point by leveraging the principle that the deliv-
ered bytes should approximately double with each RTT until
capacity is reached, whereupon the delivered bytes will stay
the same each RTT. SEARCH compares the delivered bytes
in the current RTT with the expected bytes sent during the
previous RTT. When the current delivered bytes is significantly
lower than the expected delivered bytes (i.e., it has stopped
doubling), that suggests the capacity point has been reached,
and TCP should exit slow start and enter congestion avoidance.
This process of comparing delivered bytes over time requires
maintaining a delivery history — the focus of our paper.

While SEARCH has demonstrated its effectiveness in wire-
less networks [1], to handle fluctuations in RTT inherent in
many wireless networks, SEARCH maintains a sliding win-
dow of delivered bytes spanning multiple RTTs.* Rather than
tracking individual packet delivery times, the data within the
sliding window is aggregated into bins that represent fixed time
intervals, significantly reducing memory requirements. The
window slides over bin-by-bin rather than at the granularity of
each ACK packet, significantly reducing processing overhead,
too. SEARCH also holds data from the previous RTT, as well
as some extra bins to account for RTT variation.

In total, the latest SEARCH default settings have 10 bins for
the current delivered bytes window and 15 extra bins for the
previous delivered bytes window (extra bins to handle RTT
variation), resulting in a total of 25 bins. By default, each
bin in SEARCH is represented as a 32-bit integer (u32) to
accommodate the cumulative bytes acked by TCP. This means,
at a minimum, the 25 bin window needs to be 100 bytes in
order to manage the delivered bytes history, storage that needs
to be kept per connection by the server. While 100 bytes may
not seem like a lot given memory sizes on many devices, the
storage here is kernel memory and limits efficiency, scalability,
and stability, particularly for memory-constrained systems.

B. Dynamic Bit-Shifting for Compact Data Representation

Figure 2 illustrates how SEARCH fills bins with cumulative
delivered bytes over time. The figure depicts an array of bins,
each indexed by the integer value at the top. The bins are filled
with the cumulative TCP bytes acked values left to right, hence
the steady increase in the stored numbers. Under the default
configuration where each bin is a u32, all values can fit based

4The window scale factor for Linux is set to 3.5 RTTs.

0 1 2 3 4 5 6

| 20 | 40 | 60 | 80 |200 (250|280 |

Fig. 2: Bins in SEARCH with default bin size (u32).

bytes
ACKed
scale

factor

|1e| 20 | 30 |4e |1ee|125|14e| <—|14e

Fig. 3: Bit-shifting applied to u8 bins.

on the allotted bits, even the largest value, 280, placed into bin
6. However, if fewer bits were used in each bin, such as u8,
for this example, the 280 value would be too large to store in
bin 6.

In the case where the acked value is too large to be stored
in a bin, the value is scaled by bit-shifting, dividing the value
in half and recording that the value was scaled. This repeats
(divide by 2, increment the scale factor) until the incoming
value can fit into a bin.

Figure 3 illustrates bit-shifting for our current example.
When the bin size is a u8, the incoming 280 value cannot
fit into a bin. In this case, it is divided by 2 and becomes 140
and the scale factor incremented to 1. Since 140 can fit into
a u8, it is added to the array. At this point, all previous bin
values are also scaled (divided by 2) — i.e., 20 becomes 10,
40 becomes 20 ... and 250 becomes 125.

Shifting all bin values — both the latest incoming ack value
and all previously stored ack values — preserves the high order
bits and the relative difference in previously acked values
and currently acked values. It is this relative difference that
SEARCH needs, not the absolute values. Figure 4 depicts
the SEARCH window calculations if u32 bins are used (top)
compared to u8 bins (bottom). In both cases, the window of
delivered bytes is calculated as the difference between the last
bin value and the earliest bin value in the window. For this
example, with u32 bins:

o Current window = 280 - 60 = 220 bytes

o Previous window = 200 - 20 = 180 bytes
With u8 bins (after bit-shifting):

o Current window = 140 - 30 = 110 bytes

¢ Previous window = 100 - 10 = 90 bytes

SEARCH computes the normalized difference (norm) of
twice the previous delivered bytes compared to the current
delivered bytes:

(2 x previous_window) — current_window

norm = - -
2 x previous_window

Computing the norm for the u32 bins yields 0.375 and
for the u8 bins yields 0.375 — i.e., the norm is consistent,
demonstrating that SEARCH accuracy in detecting delivered
bytes differences is the same in this example even with the bin
scaling.

0 1 2 3 4 5 6

| 20 | 40 | 60 | 80 |200[250|280 |

| 10 | 2e| 30 | 40 |1ae|125|14e|

Fig. 4: Window calculations for u32 (top) and u8 (bottom)
bin sizes.

Algorithm 1 shows pseudo-code for the dynamic bit-shifting
technique used in SEARCH. The algorithm’s inputs in Lines 2-
6) assume the maximum value a bin can hold is defined as
a constant in MAX_SIZE (e.g., with u8 bins, the MAX_SIZE
would be 255). The bins themselves are an array allocated with
NUM_BINS (e.g., NUM_BINS is 25), indexed at curr_index
(the latest bin) and scaled with tofal_scale (initially 0). The
acked_bytes are from the acknowledged TCP sequence num-
bers in the incoming ack packets.

The bit-shifting algorithm only acts when a bin is being
updated — i.e., the current TCP acknowledged byte value needs
to be stored in the current bin. Line 9 shifts the acknowledge
bytes (acked_bytes) by the scale factor (total_scale) and stores
this in the (local) bin_value. On Line 11, if the resulting
bin value is larger than the maximum size a bin can hold
(MAX_SIZE), then Lines 14-17 shift the bin value and increase
the current scale factor (curr_scale), repeating until the bin
value fits into a bin.

Once the necessary current scale factor (curr_scale) is
determined, Lines 19-21 apply the same number of shifts to all
previously stored bins. This ensures that all bin values remain
scaled consistently relative to each other. In Line 23, the total
scale factor is updated to the cumulative shifts applied to all
past bin values and for subsequent bin values. Finally, Line 26
stores the scaled value in the current bin.

This approach dynamically adjusts bin values only when
needed, ensuring minimal overhead in scenarios where bin
values remain below the defined threshold (MAX_SIZE). When
scaling is needed, it is applied to all bin values, preserving the
relative values in each bin for comparing previously delivered
byte windows with current delivered byte windows, needed by
SEARCH.

IV. EVALUATION

This section describes how we evaluate the performance
of the SEARCH algorithm with the proposed bit-shifting
technique for memory-use reduction. The evaluation examines
how different bin sizes (u32, ul6, u8, and u4) impact the
accuracy of SEARCH’s computations, particularly its ability
to determine a slow start exit point after the congestion point
but before packet loss.

Evaluation of SEARCH is on a testbed designed to mimic
common scenarios where the wireless link serves as the “last

Algorithm 1 Dynamic bit shifting for memory optimization.

: Input:
: bin[NUM_BINS] // Window of delivered bytes
: MAX_SIZE // Maximum allowable bin value

/I Index of bin to fill
// Total shifts (div 2) for all bin values
/I Latest ack sequence number

curr_index
. total_scale
. acked_bytes

R W

=

: On each bin update:
8: // Scale current bin value based on previous shifts
9: bin_value < acked_bytes > total_scale

10: // Check if bin value can fit in bin

11: if bin_value > MAX _SIZE then

12: // Shift bin value until it fits

13: curr_scale < 0

14: while bin_value > MAX_SIZFE do
15: bin_value <+ bin_value > 1

16: curr_scale < curr_scale + 1

17: end while

18: // Apply additional shifts to all previous bins
19: for i < 0 to current_index — 1 do

20: bin[i] < bin[i] > curr_scale

21: end for

22: // Update total number of shifts

23 total_scale < total_scale + curr_scale

24: end if

25: // Store scaled value in current bin

26: bin[current_index] + bin_value

mile” of connectivity for a client downloading data from an
Internet-connected server. Our testbed is illustrated in Figure 5.
The client system is a PC equipped with an Intel i7-5820K
CPU @ 3.30GHz and 32 GB of RAM, running Ubuntu 20.04
and Linux kernel version 5.4.0. The server is a PC with an Intel
15-8500 CPU @ 3.00GHz and 8 GB of RAM, running Linux
Mint 20.3 with kernel version 5.10.79. The server connects to
the university LAN via a Gigabit Ethernet link. The campus
network is connected to the broader Internet through multiple
10 Gb/s uplinks, throttled to 1 Gb/s.

The client connects to a Viasat satellite terminal using a
Gigabit Ethernet link. The terminal, associated with the Viasat-
2 satellite’, supports a peak downlink rate of 144 Mb/s.

The Viasat gateway implements per-client queue manage-
ment, allowing each client queue to grow up to 36 MB. Active
Queue Management (AQM) is used to control queue lengths,
with random dropping of 25% incoming packets once the
queue exceeds 18 MB. To emulate encrypted or constrained
scenarios that prohibit performance-enhancing proxies (PEPs),
the GEO PEP is intentionally disabled.

Shttps://en.wikipedia.org/wiki/ViaSat-2

_ /
= 1
?:'-}ErsLAN G Internet "7 =z Gateway

Fig. 5: GEO satellite measurement testbed.

A. Delivered Bytes and Normalized Difference

Figure 6 shows the results of the bit-shifting technique for
bin sizes u32 (default), ul6, u8, and u4 for one download
over a Geostationary satellite network (a Viasat link).

All configurations, including the default u32, as well as
smaller bin sizes (ul6, u8, and u4), are simulated using
a Python codebase to replicate the SEARCH algorithm’s
behavior. The original data is collected with default TCP Cubic
— HyStart and SEARCH disabled — with the kernel generating
log messages (ack number plus timestamp) for the simulation.

The left side graphs in Figure 6 show the cumulative
delivered bytes (blue line) and twice the previously delivered
bytes (green line), which SEARCH compares to compute the
normalized difference. The right side graphs illustrate the
normalized difference (pink line), which serves as the key
metric for determining the capacity — when the normalized
difference is over a threshold (0.35 by default), SEARCH exits
slow start. Vertical dashed lines mark significant events: the
blue dashed line (C) indicates when capacity is reached, the
green dashed line (E) shows when SEARCH exits the slow
start phase, and the red dashed line (L) marks the first packet
loss. The top pair of graphs is for the default u32 bin size,
with each pair below having a reduced bin size: ul6, u8, and
ud.

From the figure, comparing the graphs on the left top to
bottom shows differences in the delivered bytes patterns —
notably, the “zig-zag” shape in the delivered byte lines for
reduced bin sizes. Each peak and corresponding trough in these
graphs are when the bit-shifting algorithm scales the incoming
bytes acked and all previous bins in order to reduce the size of
an incoming value to fit the bin size. The normalized values
in the graphs on the right show the SEARCH computations of
the difference in delivered bytes versus the expected delivered
bytes (twice the previous delivered bytes) look almost identical
for u32 and ul6 bin sizes, deviate slightly for the u8 bin size,
and deviate significantly for only the u4 bin size. In fact, the
SEARCH exit points are the same for all bin sizes, except
for u4 where SEARCH would have determined the exit point
just after packet loss. For this download, the bin size can be
safely reduced from u32 to ul6 or even u8 without negatively
affecting SEARCH’s ability to determine the slow start exit
point.

To quantitatively compare the impact of reduced bin bits on

SERE
50 | —— currdelv ! 4 c
—=—twice prevdelv | | \ [
— Vo2 N
) \ = \
~ kel A Y
o [————
ud2 = 2 v 2 h
=~ i N
.
o -
1.5
0 6 12 < 0 6 12
time (s) time (s)
[
= o8 i] 15
o f
foa) M o
(] A
Q kel d
u1é @ T 0 e et o e o
x 8
K s
< £
o 5
(%) ° e 1.5
0 6 12 0 6 12
time (s) time (s)
—
» o 15
o 0003 e
= o
ol (o
3 £
© T 0
o NS
ud 5 0.0015 ® A
2 N
= ©
@
o IS
* 0 S 1.5
0 6 12 c o 6 12
time (s) time (s)
000016 p g 15
om /\ c
= / £
~ [
o £ i
o
ud & o.00008 s 0
3 S
= ©
©
8 £
09 6 12 2 155 6 12
time (s)

time (s)

Fig. 6: SEARCH with bit-shifting for bins u32, ulé, u8, and
u4 for one download over a GEO satellite link. Left: Scaled
values for current delivered bytes (green) and twice previously
delivered bytes (blue) — note that y-axis ranges differ due to
scaling for each bin size. Right: Normalized difference (pink).

SEARCH performance, we compute the mean squared error
(MSE) between the normalized difference with u32 bits and
the normalized difference with fewer bits. We do so for 45
runs over the same Viasat link as in Figure 6 (which has 1
run). We use a Geo satellite link since prior work has shown
these to be among the most challenging for determining link
capacity over time [1].

Figure 7 shows the MSE of the normalized difference for
different bin sizes. From the figure, bin sizes u8 and up
exhibit minimal error, with the normalized differences used
by SEARCH nearly the same as for the u32 baseline. In
contrast, as bit sizes drop to u7, u6, u5 and u4, the errors
increase compromising SEARCH’s ability to accurately detect
the capacity point — as in Figure 6 bottom, fewer bits makes
it more likely SEARCH exits after the capacity point.

Note, while Figure 7 shows analysis of non-standard variable
sizes (e.g., 5 bits, 13 bits) this is mostly an academic exercise.

L

g 0.08

Y—

4= 0.06

O .

T 0.04 N

0 "o

N \

— 0.02 >

CU \

£

< 0.00 T#-ne-
8 u4 u5 u6 u7 u8 u9 ulOullul2ul3ul4ul5ulb

bin size (in bits)

Fig. 7: MSE of normalized difference versus bin size.

BBR

Cubic + HyStart

Overhead per Flow (Bytes)
g 8

Cubic

4 8 12 24 28 32

BilnGSize (bzigs)
Fig. 8: Per-flow memory overhead versus bin size. Horizontal
dashed lines show BBR, Cubic + HyStart, and Cubic for
comparison.

Practically, only bin sizes of 8 bits (u8) and 16 bits (ul6)
should be considered as alternatives to 32-bit bins. Based
on the Figure 7, since u8 is right at the edge of the MSE
trendline, a “safer” choice that has fidelity to the u32 bin size
computations is a ul6 bin size.

The per-flow SEARCH memory use scales linearly with the
bit size. Figure 8 illustrates this relationship. The x-axis is
the bin size (in bits) and the y-axis is the per-flow memory
overhead. The angled blue line shows the per-flow memory
used by SEARCH for the given bin bit size. The horizontal
lines provide a comparison of the per-flow memory overhead
for BBR, Cubic + HyStart, and Cubic, respectively.

As expected, Cubic has the lowest memory overhead due to
its minimal per-flow data use (typically exiting slow start only
upon packet loss), while SEARCH with larger bin sizes (e.g.,
u32) has more overhead because it stores the full cumulative
acked byte values for each bin. However, SEARCH with
ul6 and u8 bin sizes show significant reductions in per-flow
memory use — the former having about the same per-flow
memory use as BBR and the latter having somewhat less.
Note, SEARCH with ulé bins can fit into Linux’s private
ICSK_CA_PRIV block, which is 104 bytes. This means that
ul6 SEARCH can be used in default Linux kernels without
requiring kernel modification and recompilation. For resource-
constrained devices, smaller bin sizes such as u8 or below
could be considered if memory is at a premium and some

inaccuracy in SEARCH is acceptable.

The results presented in Table I highlight the impact of
different bin sizes on the performance of TCP with SEARCH
based on 45 test cases conducted over the Viasat network.
‘Exit’ is when slow start exits, ‘Early’ is the percentage of
runs that exit slow start before capacity is reached, ‘Late’ is
the percentage of runs that exit slow start only upon packet
loss, and ‘Chokepoint’ is the percentage of runs that exit after
capacity is reached but before packet loss. Times are shown
in seconds, averaged over all runs with the standard deviation
in parentheses.

From the table, as the bin size decreases, the exit times
remain exactly the same for ul6 but show slight variations
for other bin sizes. For instance, the average exit time for u4
is slightly higher at 11.5 seconds compared to 11.3 seconds for
u8 and 11.2 seconds for ul 6 and u32. The percentage of runs
exiting slow start early is consistent at 4.4% for all bin sizes.
However, late exits increase from 22.2% for the larger bin sizes
to 25% for the u4 bin size. Correspondingly, the Chokepoint
exit percentage decreases from 73.4% for the larger bin sizes
down to 70.6% for the u4 bin size.

TABLE I: SEARCH evaluation with different bin sizes.

Bin Size Exit (s) Early (%) Late (%) Chokepoint (%)
u4 11.5 (3.0) 44 25.0 70.6
u8 11.3 2.7) 44 222 73.4
ul6 11.2 (2.9) 4.4 222 73.4
u32 11.2 (2.9) 44 222 73.4

Overall, the analysis suggests SEARCH bin sizes can be re-
duced from u32 to ul6 with identical algorithm performance,
and to u8 with similar algorithm performance. Decreasing the
bin size to u4 somewhat degrades algorithm performance.

V. DISCUSSION

From our analysis, storing delivered bytes in a u32 is
not needed — SEARCH compares previously delivered bytes
to currently delivered bytes, so the relative amounts are all
SEARCH really needs. This means fewer bytes — ul 6 or even
u8 — can be used without sacrificing SEARCH accuracy.

Moreover, the approach presented — bit-shifting on demand,
only when values get too large — is tunable to different
environments. TCP servers that handle only a few connections
but are on a high-capacity link may choose to use large bins —
u32 or even larger if the kernel uses larger values for TCP —
since per-flow memory overhead is not an issue but fidelity to
the acked bytes could be. Conversely, TCP servers on resource-
constrained devices may use small bins — u8 or even smaller —
if the per-memory overhead is critical and the network capacity
is not large.

The bit-shifting approach as presented is targeted for
SEARCH, but potentially any algorithm that keeps historical
data over time and may be larger than the current storage
capability could make use of the bit-shifting technique.

VI. LIMITATIONS

Our work does not evaluate the processing overhead for bit
shifting. While the number of instructions in Algorithm 1 is
limited, this could still be significant for some systems. When
bit-shifting is required — i.e., the incoming value is too large
to fit into the bin — there could be multiple shifts required (i.e.,
the shifting is done in a loop in Lines 14-17), but in practice,
there is typically only one shift or at most two.

The analysis of overhead presented only considers the
additional memory used by the SEARCH algorithm. There is
still per-flow memory used by the base TCP algorithm itself.
Analysis of the relative per-flow overhead for SEARCH (with
and without smaller bins) could put this in perspective.

VII. CONCLUSION

To dynamically reduce per-flow memory use while preserv-
ing data fidelity for SEARCH effectiveness, we propose a bit-
shifting technique that reduces the size of incoming values on
the fly. Incoming values are too large to fit are compressed (bit-
shifted) along with all previously stored data, and the scale
factor stored. This reduces data fidelity but allows relative
differences to be compared (e.g., for SEARCH the previous
delivered bytes and the current delivered bytes).

Evaluation shows that compared to the default (u32), ulé
or even u8 bins have minimal error while significantly reduc-
ing the per-flow memory overhead. For example, a ulé bin
has about the same overhead at TCP BBR and allows TCP with
SEARCH to fit into the Linux kernel without recompilation.

Future work could do a more detailed evaluation of
SEARCH with different bin sizes, beyond the single (if large)
dataset tested in this paper. SEARCH could be combined with
other TCP versions (e.g., BBR), perhaps improving upon their
default start-up exit conditions. The above work coupled with
a broader evaluation of SEARCH — more network link types,
bottleneck bandwidth, and round-trip time conditions — could
help support and refine SEARCH deployment.

REFERENCES

[11 M. A. Kachooei, J. Chung, F. Li, B. Peters, J. Chung, and M. Claypool,
“Improving TCP Slow Start Performance in Wireless Networks with
SEARCH,” in WoWMoM Symposium, 2024, pp. 279-288.

[2] J. Chung, M. A. Kachooei, F. Li, and M. Claypool, “SEARCH - a New
Slow Start Algorithm for TCP and QUIC,” p. 15, Jul. 2024. [Online].
Available: https://datatracker.ietf.org/doc/draft-chung-ccwg-search/

[3] M. Claypool, “SEARCH — a New Slow Start Algorithm for TCP and
QUIC,” in IETF, Vancouver, Canada, 2024.

[4] A. Shieh, A. C. Myers, and E. G. Sirer, “A Stateless Approach to
Connection-oriented Protocols,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 3, pp. 1-50, 2008.

[5] Cloudflare, “Unbounded Memory Usage by TCP for Receive Buffers, and
How We Fixed It,” 2023. [Online]. Available: https://tinyurl.com/ybhjp66s

[6] K. Tangwongsan, M. Hirzel, and S. Schneider, “Sliding-Window Aggre-
gation Algorithms.” 2019.

[7] Y. Oge, M. Yoshimi, T. Miyoshi, H. Kawashima, H. Irie, and T. Yoshinaga,
“An Efficient and Scalable Implementation of Sliding-window Aggregate
Operator on FPGS,” in Symposium on Computing and Networking. IEEE,
2013, pp. 112-121.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” Communications of the
ACM, vol. 60, no. 2, pp. 58-66, 2017.

