
SEARCH: Robust TCP Slow Start Performance
over Satellite Networks

Maryam Ataei Kachooei
Worcester Polytechnic Institute

Worcester, MA, USA
mataeikachooei@wpi.edu

Jae Chung, Feng Li, Benjamin Peters
Viasat

Marlboro, MA, USA
{jaewon.chung, feng.li, benjamin.peters}@viasat.com

Mark Claypool
Worcester Polytechnic Institute

Worcester, MA, USA
claypool@cs.wpi.edu

Abstract—TCP slow start begins at a conservative bitrate but
quickly ramps up to the available bandwidth. Unfortunately,
current TCP implementations can either: 1) exit from slow
start prematurely, which is especially detrimental to utilization
on satellite links, or 2) exit from slow start too late, causing
unnecessary packet loss. We propose a novel technique to exit
slow start while avoiding both premature and belated exits. We
evaluate our approach over commercial satellite links – long, fat
networks that pose challenges to determining the right slow start
exit time. Preliminary results show a high success rate for picking
appropriate exit points over satellite links, with potentially being
applicable to other types of networks, more generally.

Index Terms—Satellite, Round-Trip Time, Congestion

I. INTRODUCTION

The Transmission Control Protocol (TCP) is a cornerstone
of the Internet’s communication infrastructure, providing reli-
able and efficient data transfer between hosts. However, TCP’s
performance can be severely degraded in high bandwidth-
delay product (BDP) networks, such as those over satellite
links. Geostationary Earth Orbit (GEO) and Low Earth Orbit
(LEO) are satellite-based communication technologies widely
used when and where wired communication can be a challenge
(e.g., remote areas or during natural disasters). However, the
high altitudes of GEO satellites introduce a significant latency
in signal transmission – about 300 milliseconds (ms) one-way
– which can negatively impact real-time applications [1]. LEO
satellite links have lower latency – about 40 ms one-way – but
move relative to the Earth’s surface, making link capacities and
round-trip times (RTTs) vary with time and with weather [2],
[3].

The slow start phase in TCP is designed to ramp up to the
available bandwidth quickly, doubling the congestion window
each RTT until link capacity is reached, whereupon TCP exits
the slow start phase. Unfortunately, the default Linux TCP
slow start implementation – TCP Cubic with Hystart [4] –
has been shown to be harmful over LEO and GEO links,
causing premature exit from slow start [5] depicted in Fig-
ure 1a. However, without HyStart, TCP exits too late, causing
excessive packet loss depicted in Figure 1b. The optimal exit
point occurs when the congestion window size meets the link
capacity (the chokepoint), depicted in Figure 1c, allowing for
full link utilization while avoiding congestion packet loss.
However, determining this optimal chokepoint exit is difficult

(a) Too early. (b) Too late. (c) At chokepoint.

Fig. 1: TCP slow start exit points.

in satellite networks due to their variable RTTs and capacities
over time.

Exiting slow start early is especially detrimental in satellite
networks due to how long it takes to ramp up the congestion
window size to meet the link capacity. While exiting too late
is preferred over exiting too early, the ideal is to exit slow
start before encountering packet loss. Several techniques have
been explored in an effort to detect the optimal slow start exit
point, but have not been effective for satellite networks. For
instance, bandwidth estimation through packet-pairs [5], [6]
has potential but is not robust enough in noisy environments
where estimates are either too high or too low. Hystart++ [7]
uses increases in RTT to find an exit point, but the variations
in satellite network RTTs make any RTT-based exit approach
problematic.

We propose an alternative approach based on TCP’s delivery
of one window of packets each RTT. Figure 2 depicts the idea
with RTTs depicted on the x-axes and bytes sent/delivered
on the y-axes. All the bytes sent at time t1 on the left
graph are acknowledged as delivered at time t2 on the right
graph. This continues until sending capacity is surpassed at
time t4 whereupon the delivered bytes remain the same at
time t5. Thus, detecting when bytes delivered are significantly
lower than bytes sent one round-trip earlier signals that the
congestion window limit has been reached and slow start can
safely exit. While fairly simple as a concept, the challenge is
an implementation that is robust in the presence of the variable
RTTs inherent in satellite links. In addition, the implemen-
tation must be scalable: a) server-side only for incremental
deployment, and b) minimal per-flow resources.



Fig. 2: Theoretical transmission: sent and delivered bytes.

We propose a new algorithm that monitors the sent and
delivered bytes over a large time window to account for
variation in RTTs, using server-side acknowledgments to com-
pute delivery rates and estimates to reduce per-flow state.
The delivered byte history is shifted back one RTT and the
difference between sent and delivered bytes is normalized to
account for bitrate increases. The slow start phase is then
exited when the difference exceeds a threshold. Preliminary
evaluation over GEO and LEO links shows the promise of
our approach, determining the ideal slow start exit point most
of the time over these networks, some of the most challenging
in terms of capacity and RTT variance.

II. RELATED WORK

Round-trip Time: Ye et al. [8] propose Personalized FAST
TCP that uses link buffers to judge slow start exit times,
being resilient to variations in bandwidth and leading to faster
convergence. While promising, the evaluation is based on
simulations rather than real network deployments. Balasubra-
manian et al. [7] propose HyStart++ to address the premature
slow start exiting in HyStart. HyStart++ uses increases in
RTT to find an exit point and a mitigation to prevent jitter
from causing premature slow start exit. While HyStart++ has
widespread deployment in Microsoft Windows, the variations
in satellite network RTTs make such RTT-based approaches
problematic.

Bandwidth Estimate: Lübben [9] proposes forecasting
TCP’s congestion control rate based on an available bandwidth
estimate using a neural network to pick a slow start exit
point. The author demonstrates earlier slow start exit times
and better TCP fairness. However, the proposed approach
relies on accurate measurements of network parameters, chal-
lenging in networks with high variability, such as satellite
networks. Guo et al. [10] proposed a stateful S-Cubic which
estimates bandwidth based on a previous flow, setting the
initial congestion window and applying pacing. Performance
via simulation shows S-Cubic has higher efficiency and lower
queuing delays than Cubic. However, the dependency on his-
torical data is ineffective where such information is not readily
accessible or when the network conditions have significantly
changed. Kachooei et al. [5] introduce the BEST algorithm
that estimates bandwidth (and slow start exit) using packet-pair
measurements. However, BEST struggles where the estimated
bandwidth and RTTs fluctuate significantly, resulting in mea-
surements that are either too low or too high. Jasim et al. [6]

Fig. 3: GEO and LEO satellite measurement testbed.

propose approximating TCP congestion window thresholds
in high latency connections with packet-pair bandwidth es-
timates. Their experiments find their approach improves TCP
performance, but likely also struggles over satellite networks.

Satellite-Specific: Utsumi et al. [11] develop analytical
models for TCP Hybla to improve performance over satellite
networks. Their steady-state throughput and latency models
yield more throughput improvements over emulated satellite
links. These approaches would benefit from further analysis
beyond emulation to evaluate its effectiveness and limitations
in real-world network environments.

III. METHODOLOGY

We used a testbed – shown in Figure 3 – with two different
bottleneck links to evaluate the performance of TCP slow start
over satellite networks: one link uses a Viasat GEO satellite
while the other uses a Starlink LEO satellite. The client is
configured with the satellite link as the “last mile” connection
downloading from a server, mimicking a typical configuration
where the only connection to the Internet is via a satellite.
When using the Viasat GEO satellite link, the client connects
through a Ka-band outdoor antenna. The Viasat gateway has a
queue that can grow up to 36 MBytes and uses Active Queue
Management to randomly drop 25% of incoming packets at
18 MBytes. The Viasat performance-enhancing proxy (PEP)
was disabled for all experiments to pertain to cases where
encryption or cost prevent PEP use. The Viasat link provides
a maximum data rate of about 150 Mb/s with a minimum RTT
of about 600 ms. When using the Starlink LEO satellite link,
the client connects through an electronic phased array outdoor
antenna. Starlink provides a peak downlink data rate of about
100 Mb/s with a minimum RTT of about 40 ms.

The client and server run Linux kernel version 5.10.79 is
instrumented to record sent bytes, delivered bytes, RTTs, and
congestion window sizes. For each experimental run, iperf3
downloads from the server to the client using TCP Cubic –
the default TCP congestion control algorithm in Linux with
HyStart disabled (it is typically on by default in Linux).

Figure 4a shows the congestion window size (cwnd) versus
time during a download via the GEO satellite link. The cwnd
growth occurs steadily, doubling each RTT during slow start.
This is in contrast to the RTTs during this same time, shown in
Figure 4b, which vary considerably even though the downlink
is not at capacity. The LEO satellite link also has RTT



fluctuations before reaching capacity limits (not shown due
to space limits). These RTT variations pose a challenge to
our approach since comparing bytes sent to bytes delivered
occurred with different RTTs.

To overcome baseline RTT variance, we use a sliding
window of data that is much larger than an RTT, thus
smoothing over the observed variance. To avoid storing per-
packet information, we aggregate sent and delivered bytes over
a much smaller time period – we call this a “bin” – and
then aggregate multiple bins to get an approximation for the
full window. Since data sent in one RTT is acknowledged as
delivered in the next RTT, the delivered bytes are shifted back
in time by the current RTT before comparison.

We dub our algorithm Slow start Exit At Right CHokepoint
(SEARCH). Pseudocode for SEARCH is shown in Algo-
rithm 1, initialized with the parameters at the top for each
TCP flow that is established. The window size is 3.5 ×
the minimum RTT to smooth out variation in link latency.
Ten bins are used to approximate the sent and delivered
rates over the window size, each bin of equal duration. The
threshold (THRESH) is the limit (0.25) in the difference in
the normalized sent minus delivered bytes above which slow
start exits.

Each acknowledgment, the sent and delivered bytes are
updated and stored in an array implemented as a circular
queue. When the time (now) has passed the bin boundary,
the bin index is incremented. Also every acknowledgment, the
difference between the total bytes sent for the previous RTT
and the total bytes delivered for the current RTT is computed
and normalized. If this normalized difference is greater than
the threshold (THRESH), ssthresh is set to the current cwnd
which causes slow start to exit.

For overhead, SEARCH runs each time an acknowledgment
is received, but only with a constant, and limited, number
of operations (O(1)). The additional memory needed by
SEARCH is likewise small, with only two arrays of 10
integers each and a few local variables. The effectiveness of
SEARCH relies on adequate queue capacity at the bottleneck,
and SEARCH can fail with spurious (e.g., non-congestion)
packet loss – but then so does traditional slow start.

IV. EVALUATION

We do preliminary evaluation of SEARCH over both GEO
and LEO satellite links using our testbed. The GEO satellite

(a) Congestion window. (b) Round-trip time.

Fig. 4: GEO satellite network.

Algorithm 1 SEARCH: Slow start Exit At Right CHokepoint.
Parameters:
WINDOW SIZE = RTT MIN × 3.5
NUM BINS = 10
BIN TIME = WINDOW SIZE / NUM BINS
THRESH = 0.25

Initialization:
sent[0] = delv[0] = 0
bin index = 0
bin end = now + BIN TIME

Each Acknowledgement:
if (now > bin end) then // Update bin boundary

bin end += BIN TIME
bin index += 1 mod NUM BINS
sent[bin index] = delv[bin index] = 0

end if
sent[bin index] += bytes sent
delv[bin index] += bytes delivered
total sent =

∑
prev sent[] // Sum up to (now - RTT)

total delv =
∑

now delv[] // Sum up to now
normalized diff = (total sent - total delv ) / total sent
if (normalized diff > THRESH) then

set ssthresh to cwnd // Exit slow start
end if

network’s sent and shifted (by one RTT) delivered bytes are
shown in Figure 5a. The y-axis is the sent/delivered MBytes
and the x-axis is the time in seconds. The red vertical line
indicates the first packet loss (normally when slow start exits),
and the green line is when the congestion window is large
enough to reach the link capacity. Together, between the green
dashed line and the red dashed line is when slow start should
exit. From the figure, the delivered bytes closely track the sent
bytes until the link capacity is reached. Subsequently, the sent
bytes continue to increase, but the delivered bytes do not. The
normalized difference in sent and delivered bytes is shown in
Figure 5b. From the figure, the normalized difference crosses
the 0.25 threshold between the green and red vertical lines,
indicating an appropriate slow start exit point – i.e., after the
congestion window has grown to reach link capacity but before
it causes packet loss.

To verify the accuracy of the approximation used by
SEARCH (full window approximated by 10 equal-length
bins), we compared the normalization graph of the best
case 2000 ms measurement with that of the approximation.
Figure 6a displays both normalized graphs, where the blue
line represents the original data, and the orange line represents

(a) Sent and delivered bytes. (b) Normalized difference in (a).

Fig. 5: GEO satellite network.



(a) Normalized best case and ap-
proximated difference.

(b) Error in best case and approx-
imated from (a).

Fig. 6: Best case and approximated - GEO satellite network.

the approximation. The two lines closely align, indicating
the approximation matches well. Figure 6b shows the error
between the best case and the approximated values. All the
error values are relatively small, with an average error of about
2 percent.

We did the same evaluation over the Starlink satellite
network, where the smaller RTTs mean the window size is
only 200 milliseconds. Figure 7a depicts the approximation
results, with data and axes as for Figure 5. The normalized
byte difference also crosses the 0.25 threshold before the red
vertical line, indicating SEARCH is successful in finding an
appropriate slow start exit point. The approximation error rates
(not shown due to space) average a low 4 percent.

To evaluate the effectiveness of our approach, we conducted
evenly-spaced downloads over a 24-hour period for GEO and
then LEO satellite links. Each run does an iperf3 download
using the default TCP slow start with HyStart disabled,
logging values to ascertain SEARCH performance. In total,
we conducted 213 runs over the GEO satellite link and 131
runs over the LEO satellite link. Table I shows the results
averaged across all runs for each link: cg is the average time
when the congestion window reaches the link capacity, defined
as where the normalized difference exceeds 0.1; ex is the
average time when TCP exits slow start via SEARCH – i.e.,
the normalized difference becomes greater than 0.25; dp is the
average time when packet loss occurs with normal slow start
– i.e., if SEARCH was not used; and hr is the “headroom”,
the average time between exiting slow start via SEARCH
and experiencing packet loss. The experiment results indicate
SEARCH successfully detects an exit point after congestion

(a) Approx. sent and delivered. (b) Normalized difference in (a).

Fig. 7: SEARCH – LEO satellite network.

TABLE I: SEARCH evaluation.

Link Runs Success (%) cg (s) ex (s) dp (s) hr (s)
GEO 213 64.4 11.0 12.4 18.1 5.7
LEO 131 52.0 0.5 0.6 0.7 0.1

but before packet loss most of the time for both GEO and
LEO links. For the GEO link, the headroom is much greater
than the RTT while for the LEO link it is slightly larger than
the RTT, suggesting TCP with SEARCH can exit slow start
without incurring packet loss.

V. CONCLUSION

We propose SEARCH, a novel algorithm that accurately
detects a good slow start exit point via the difference in bytes
sent and bytes delivered. SEARCH is server-side only, and
uses a large window to account for link variance and bins to
accurately approximate with low overhead. Preliminary evalu-
ation over GEO and LEO satellite networks shows SEARCH
can determine a slow start exit point after the congestion
window has grown to capacity but before inducing packet
loss. The effectiveness of SEARCH in challenging GEO and
LEO networks suggests potential to enhance TCP performance
beyond only satellites.

Our current work is to finalize our Linux kernel implemen-
tation, including sensitivity analysis of our parameter settings
(e.g., bin size and exit threshold). We also plan to compare
our proposed algorithm with state-of-the-art approaches, e.g.,
HyStart++, and over a wider range of network conditions.

REFERENCES

[1] M. Furqan and B. Goswami, “Satellite Communication Networks,”
Handbook of Real-Time Computing; Tian, Y.-C., Levy, DC, Eds, 2022.

[2] B. Al Homssi, A. Al-Hourani, K. Wang, P. Conder, S. Kandeepan,
J. Choi, B. Allen, and B. Moores, “Next Generation Mega Satellite
Networks for Access Equality: Opportunities, Challenges, and Perfor-
mance,” IEEE Communications Magazine, vol. 60, no. 4, 2022.

[3] C. H. Park, P. Austria, Y. Kim, and J.-Y. Jo, “MPTCP Performance
Simulation in Multiple LEO Satellite Environment,” in IEEE Computing
and Communication Workshop and Conference (CCWC), 2022.

[4] S. Ha and I. Rhee, “Hybrid Slow Start for High-Bandwidth and Long-
Distance Networks,” in International Workshop on Protocols for Fast
Long-Distance Networks, Manchester, UK, Mar. 2008.

[5] M. A. Kachooei, Z. Pinhan, F. Li, J. Chung, and M. Claypool, “Fixing
TCP Slow Start for Slow Fat Links,” in Proceedings of the 0x16 NetDev
Conference, Oct. 2022.

[6] A. M. Jasim and G. A. Abed, “An Effective Practice to Approximating
TCP Congestion Window Threshold in High Latency Connectionsut-
sumi2018new,” Al-Iraqia Journal for Scientific Eng. Research, 2022.

[7] P. Balasubramanian, Y. Huang, and M. Olson, “HyStart++: Modi-
fied Slow Start for TCP,” IETF Draft draft-balasubramanian-tcpm-
hystartplusplus-03, Apr. 2020.

[8] J. Ye, B. Huang, and X. Chen, “An Improved Algorithm to Enhance
the Performance of FAST TCP Congestion Control for Personalized
Healthcare Systems,” Wireless Commun. and Mobile Computing, 2021.

[9] R. Lübben, “Forecasting TCP’s Rate to Speed up Slow Start,” IEEE
Open Journal of the Computer Society, vol. 3, pp. 185–194, 2022.

[10] L. Guo and J. Y. Lee, “Stateful-TCP—A New Approach to Accelerate
TCP Slow-Start,” IEEE Access, vol. 8, pp. 195 955–195 970, 2020.

[11] S. Utsumi, S. M. S. Zabir, Y. Usuki, S. Takeda, N. Shiratori, Y. Kato,
and J. Kim, “A New Analytical Model of TCP Hybla for Satellite IP
Networks,” Journal of Network and Computer Applications, 2018.


