
POSTER: Implementation of TCP SEARCH in
FreeBSD and Evaluation on a Satellite Network

Maryam Ataei Kachooei
Worcester Polytechnic Institute

Worcester, MA, USA
mataeikachooei@wpi.edu

Samuel Ollari
Worcester Polytechnic Institute

Worcester, MA, USA
saollari@wpi.edu

Benjamin Skarnes
Worcester Polytechnic Institute

Worcester, MA, USA
bcskarnes@wpi.edu

Jae Chung
Viasat

Marlboro, MA, USA
jaewon.chung@viasat.com

Amber Cronin
Akamai

Cambridge, MA, USA
acronin@wpi.edu

Feng Li
Viasat

Marlboro, MA, USA
feng.li@viasat.com

Benjamin Peters
Viasat

Marlboro, MA, USA
benjamin.peters@viasat.com

Mark Claypool
Worcester Polytechnic Institute

Worcester, MA, USA
claypool@cs.wpi.edu

Abstract—TCP’s slow start phase is particularly inefficient over
most wireless networks, especially high-latency, high-bandwidth
paths such as satellite networks, often exiting too early or too late
(after packet loss). To address this, the Slow start Exit At CHoke-
point (SEARCH) algorithm is designed to improve exit decisions
during slow start by analyzing delivery trends across sliding
RTT-based windows. This paper presents a first implementation
of SEARCH in the FreeBSD kernel using FreeBSD’s modular
congestion control framework. We evaluate our implementation
on a testbed with an actual GEO satellite link with ˜600 ms RTT
and 150 Mb/s capacity. Preliminary results show that SEARCH
exits slow start more effectively than HyStart and HyStart++,
achieving higher throughput and better utilization.

Index Terms—SEARCH, FreeBSD, slow start, satellite networks

I. INTRODUCTION

Transmission Control Protocol (TCP) remains the dominant
transport-layer protocol for reliable data transfer across the
Internet. A critical component of TCP’s performance is its slow
start mechanism, which controls how a connection ramps up its
sending rate at the beginning of a transfer. While effective on
many networks, slow start performs poorly on most wireless
networks [1]. Slow starts ineffectiveness is exacerbated on high
bandwidth-delay product networks such as over satellite links,
often exiting too early – thus underutilizing link capacity – or
exiting too late – thus increasing congestion and packet loss [2].

To address this challenge, a slow start algorithm called
Slow start Exit At CHokepoint (SEARCH) [3] was developed.
SEARCH improves slow start performance by monitoring
delivered bytes over fixed duration bins, comparing recent
delivery rates to delivery rates one round-trip time (RTT) ago,
and exiting based on a normalized delivery rate difference. By
tracking delivery rate behaviors instead of relying solely on
loss or delay, SEARCH can detect when the congestion point
is reached for more timely exits from slow start.

SEARCH has been implemented and evaluated in both
Linux1 and QUIC2 and shown to be effective in various
wireless network environments. In this work-in-progress, we
present an implementation of SEARCH in FreeBSD, a widely-
used operating system in data centers, embedded systems, and
commercial platforms such as Netflix’s CDN infrastructure [4].

After validating our FreeBSD implementation, we evaluate it
using a real-world testbed with a GEO satellite link. Preliminary
results indicate that SEARCH exits slow start more effectively
than HyStart and HyStart++ [5], achieving higher throughput
and avoiding premature exits. Future work may see SEARCH
integration into FreeBSD’s congestion control ecosystem and
additional evaluation across heterogeneous networks.

II. METHODOLOGY

Our goal was to implement the SEARCH algorithm in a
congestion control (CC) module in FreeBSD, while preserving
the behavior and design decisions from the Linux implementa-
tion. This required adapting the algorithm to fit FreeBSD’s CC
framework and interfacing with its TCP internals.

A. SEARCH Algorithm Overview

During slow start, traditional congestion control algorithms
approximately double the number of packets in flight every
RTT, which causes the sending rate to exceed the bottleneck
link capacity. The SEARCH algorithm tracks this behavior
by monitoring byte delivery (via acknowledgments) growth to
determine the right exit point.

SEARCH divides time into fixed-duration bins derived from
the initial RTT and records the number of bytes acknowledged
(ACKed) within each bin. It maintains a sliding window of 10
bins spanning 3.5 RTTs. For each new bin, the total delivered
bytes in the current window (curr window ) are compared

1https://github.com/Project-Faster/tcp ss search
2https://github.com/Project-Faster/quicly/tree/generic-slowstart



to the bytes delivered one RTT earlier (prev window ). The
normalized difference (norm) is computed as:

norm =
2 · prev window − curr window

2 · prev window

When the norm exceeds a pre-defined threshold (0.35),
indicating that throughput growth has flattened, SEARCH exits
the slow start phase. The parameters used in SEARCH –
window size, threshold, and bin counts – have been derived
in prior work.3

B. Implementation of SEARCH in FreeBSD

We implemented SEARCH as a modular congestion control
algorithm in FreeBSD 14, selected for its API stability. Unlike
the Linux version, which integrates SEARCH into TCP Cubic,
our FreeBSD implementation is based on TCP NewReno.
This choice aligns with Netflix’s production deployment of
NewReno and may facilitate future testing using their CDN
infrastructure.

Our implementation extends FreeBSD’s cc_newreno mod-
ule. Since SEARCH is updated upon receiving each ACK,
its logic is inserted into the ack_received callback. The
algorithm initializes bin-related state during connection setup
and finalizes configuration upon receiving the first ACK when
an RTT estimate becomes available (the initial RTT). Delivered
bytes are tracked in fixed-length bins, with the bin duration
derived from the initial RTT. A circular buffer maintains a
history of bins spanning 3.5 RTTs, along with additional bins
to support shifting back by one RTT for comparison (25 bins in
total). For each ACK, the number of newly acknowledged bytes
is recorded in the current bin, and a normalized difference is
computed when a full comparison window becomes available.
Exiting from slow start is triggered when the normalized
difference exceeds a defined threshold, consistent with the
SEARCH heuristic.

In our FreeBSD implementation, RTT estimation is per-
formed using the t_srtt field from the TCP control block.
While alternative sources such as h_ertt were evaluated,
t_srtt was preferred for its higher resolution and consistent
behavior under high-RTT satellite conditions.

The SEARCH FreeBSD module is configured at runtime
using sysctl, and the implementation is compatible with
FreeBSD’s congestion control lifecycle. This should enable
interoperability with user-level applications and simplify de-
ployment for further testing.

III. EVALUATION

SEARCH experiments are conducted over a real GEO satel-
lite link, as illustrated in Figure 1. The client is a Linux machine
(Ubuntu 20.04, kernel 5.4) connected via Gigabit Ethernet to
a Viasat-2 satellite terminal. The server is a virtual machine
running FreeBSD 14, hosted on a Debian-based system (kernel
6.1) using KVM virtualization and connected to the university
network over Gigabit Ethernet.

3https://github.com/Project-Faster/tcp ss search

Fig. 1: GEO satellite measurement testbed.

(a) (b)

(c) (d)

Fig. 2: Per-flow behavior over the GEO satellite link during
slow start: (a) Bytes delivered, (b) Normalized difference, (c)
Smoothed RTT, and (d) Goodput.

The satellite terminal communicates with the Viasat-2 satel-
lite using a Ka-band outdoor unit and supports a peak downlink
rate of 144 Mb/s. To evaluate end-to-end TCP behavior, the
performance-enhancing proxy (PEP) on the GEO link is dis-
abled. The Viasat gateway applies active queue management
(AQM), triggering random packet drops once per-client queues
exceed 18 MB (about 1.5x the bandwidth-delay product). This
setup enables us to evaluate SEARCH under realistic, high-
delay satellite network conditions, with a baseline RTT of
approximately 600 ms and a bandwidth cap of 150 Mb/s.

We compare the performance of SEARCH against HyStart
and HyStart++ in our testbed using our FreeBSD implementa-
tion. We conducted a 24-hour experiment, yielding 77 iperf3
download runs. The original data was collected with NewReno
with the kernel generating log messages for SEARCH, and exit
times based on HyStart, HyStart++, and SEARCH.

Figure 2 shows a representative example of how SEARCH,
HyStart, and HyStart++ behave during a single bulk download
over the Viasat GEO satellite link. For all graphs, the x-axis is
the time (in seconds) since the download started. The vertical
dashed red line marks the first packet loss, while the vertical
blue dashed lines—labeled in the figure—mark the exit points
from slow start for SEARCH, HyStart++, and HyStart.

In Figure 2a, the blue curve shows the number of bytes deliv-



ered within the current sliding window, while the orange curve
shows twice the number of bytes delivered one RTT earlier. At
the start, both curves track closely, indicating steady growth.
As the link nears capacity, the two lines diverge, signaling that
the delivery rate is no longer doubling. Figure 2b plots the nor-
malized difference between the current and previous delivered-
bytes windows. Once the value exceeds the 0.35 threshold
(35%) – the horizontal dashed gray line – SEARCH exits
slow start. This exit occurs just before congestion manifests
(vertical dashed red line), showing that SEARCH detects the
slowing delivery trend. In contrast, HyStart and HyStart++ exit
much earlier, well before the network is fully utilized. Figure 2c
confirms that the RTT exhibits fluctuations which act as noise
for delay-based signals, which likely mislead HyStart and
HyStart++ into exiting early. Figure 2d shows that throughput
continues to increase after HyStart and HyStart++ exit, peaking
just before the first loss event, suggesting their premature exit.
SEARCH exits later than HyStart and HyStart++, avoiding loss
while achieving higher throughput.

This case study illustrates that SEARCH more accurately
identifies the chokepoint for slow start exit, enabling better uti-
lization of high BDP satellite links without causing congestion.

Figure 3a shows the cumulative distribution of slow start exit
times for each algorithm over all cases. HyStart exits almost
immediately, with over 90% of flows exiting within the first 2
seconds. HyStart++ exits more gradually, with the majority of
flows exiting between 5 and 10 seconds. SEARCH exits later,
with most flows exiting between 10 and 17 seconds – closer to
the onset of congestion.

Figure 3b shows the cumulative distribution of goodput
measured at the point where each algorithm exits slow start
for all cases. HyStart exits almost immediately, resulting in
very low goodputs – nearly all flows exit below 10 Mb/s.
HyStart++ performs better, with most flows exiting between
10 and 100 Mb/s, but still having unused capacity. SEARCH
achieves significantly higher goodput, with many flows exiting
between 30 and 150 Mb/s. In contrast, loss-based exits tend
to occur at high goodputs—often above 150 Mb/s – but at the
cost of triggering a congestion response.

Figure 3c shows the trade-off between headroom and good-
put at the point of slow start exit for all cases. Headroom is
defined as the number of RTTs between the exit point and the
first loss event. An effective algorithm should provide enough
headroom to the congestion avoidance algorithm can avoid
a congestion response (e.g., dropped packets, rate reduction,
retransmissions), while not exiting too early, which can result
in underutilization and limit goodput. From the figure, HyStart
consistently exits with large headroom (often 20-50 RTTs),
but with low goodputs, indicating significant underutilization.
HyStart++ achieves modest goodputs but still tends to exit
conservatively. In contrast, SEARCH exits with moderate head-
room (typically 5–20 RTTs) and higher goodput. This indicates
that SEARCH is able to probe more aggressively while still
leaving a sufficient safety margin before congestion.

(a) (b)

(c)

Fig. 3: (a) Slow start exit times, (b) Goodput at slow start exit,
(c) Goodput at exit versus headroom (in RTTs).

IV. CONCLUSION

This work presents the first implementation of the SEARCH
slow start algorithm in the FreeBSD kernel, extending
SEARCH to BSD-based systems commonly used in data cen-
ters and CDNs. By integrating SEARCH into NewReno and
validating it over an actual GEO satellite link, we demonstrate
that SEARCH consistently achieves higher throughput than
HyStart and HyStart++, while maintaining sufficient headroom
to avoid congestion loss. SEARCH exits slow start closer to
the TCP operating point, making better use of the available
bandwidth without triggering congestion.

Future work includes conducting evaluations across a wider
range of network environments, including LEO satellite, WiFi,
4G, and 5G networks, as well as assessing the cost of overshoot-
ing the chokepoint. We also aim to integrate SEARCH into
production testbeds and contribute the module to the FreeBSD
codebase for broader adoption and validation.

REFERENCES

[1] P. Bruhn, M. Kuehlewind, and M. Muehleisen, “Performance and Im-
provements of TCP CUBIC in Low-delay Cellular Networks,” Computer
Networks, vol. 224, p. 109609, 2023.

[2] M. Arghavani, H. Zhang, D. Eyers, and A. Arghavani, “SUSS: Improving
TCP Performance by Speeding Up Slow-Start,” in Proceedings of the ACM
SIGCOMM Conference, 2024, pp. 151–165.

[3] M. A. Kachooei, J. Chung, F. Li, B. Peters, J. Chung, and M. Claypool,
“Improving TCP Slow Start Performance in Wireless Networks with
SEARCH,” in WoWMoM Symposium, 2024, pp. 279–288.

[4] FreeBSD Foundation, “Netflix Case Study: Maintaining the World’s
Fastest Content Delivery Network at Netflix on FreeBSD,” Nov. 2023.
[Online]. Available: https://freebsdfoundation.org/netflix-case-study/

[5] P. Balasubramanian, Y. Huang, and M. Olson, “RFC 9406: HyStart++:
Modified Slow Start for TCP,” 2023.


