
Improving QUIC Slow Start Performance 
with SEARCH

Amber Cronin*, Maryam Ataei Kachooei*, 
Jae Chung†, Feng Li†,

Benjamin Peters†, Mark Claypool*

* Worcester Polytechnic Institute, † Viasat



Why study QUIC?
2012: Google begins development of a modern replacement for TCP

2021: QUIC codified by IETF with RFC9000

2023: QUIC carries ~30% of web traffic [Cloudflare]

Benefits over TCP:
● Faster protocol encryption setups (by RTTs)
● Multiple streams per connection
● Avoids middlebox ossification by use of UDP

Satellite link fixes (PEPs) no longer function



Satellite Links
GEO links: High bandwidth, high latency
● 600 ms RTT @ 144 Mbps
● Bandwidth Delay Product (BDP) = BW x RTT = 10.8 MB

Queues, Queues, Queues

In practice, RTTs reach 1000+ ms
● BDP = 18+ MB

HyStart unstable



The SEARCH Algorithm
Track the delivery rate rolling average 
to reduce the impact of noise on link 
capacity detection



Initial Tests
QUIC implementation: Quicly
Testbench: Qperf (with modifications)

Before:

After:

Congestion controller limited by 
MAX_DATA transmissions...



Data Gathering

Dataset makeup

Two runs over the satellite 
platform

● 20 hours
● 24 hours

Server set to 150Mbps limit



Results
● SEARCH improves 

median goodput

● 3 second, or 14% 
improvement over 
base case



Congestion Window Modification
Tracking data on link capacity
Theoretical proofs of SEARCH detection (1.96 RTTs)

= Direct knowledge of link capacity

Dataset makeup



Summary
● Extended existing QUIC implementation with SEARCH

● Showed SEARCH improves QUIC’s goodput by 3 seconds (14%)

● Showed SEARCH detects chokepoint and exits before loss

● Tested on a commercial satellite platform



SEARCH


