
Improving QUIC Slow Start Behavior in Wireless
Networks with SEARCH

Amber Cronin∗, Maryam Ataei Kachooei∗, Jae Chung†, Feng Li†, Benjamin Peters†, Mark Claypool∗
∗Worcester Polytechnic Institute (Worcester, MA, USA)

†Viasat (Marlboro, MA, USA)
∗{acronin, mataeikachooei}@wpi.edu, †{jaewon.chung, feng.li, benjamin.peters}@viasat.com, ∗claypool@cs.wpi.edu

Abstract—QUIC is increasingly being deployed on the Internet
as an alternative to TCP. However, QUIC over satellite links
faces particular challenges as high and variable round-trip
times (RTTs) make it difficult to determine and then reach
link capacity. Standard slow start algorithms to detect link
capacity can perform poorly over satellite links, often exiting
slow start too early and limiting throughput or exiting too
late and causing unnecessary packet loss. The Slow start Exit
At Right CHokepoint (SEARCH) algorithm aims to exit slow
start after reaching link capacity but before incurring packet
loss by tracking delivery rates and exiting when rates have not
increased by the expected amount. SEARCH has shown benefits
over traditional slow start for TCP connections but has yet to
be implemented and evaluated in QUIC. This paper presents
the design and implementation of SEARCH in an open-source
QUIC library, with the code publicly available as a contribution.
Evaluation of SEARCH over a geostationary satellite link show
SEARCH successfully exits slow start before loss in the majority
of cases, improving goodput compared to the baseline.

Index Terms—QUIC, SEARCH, Satellite, Congestion Control

I. INTRODUCTION

QUIC is a relatively new transport-layer protocol, developed
by Google since 2012 and standardized by IETF in 2021 [1].
QUIC implements transport control in userspace and uses UDP
packets for communication between hosts. Further, QUIC
encrypts all communications on the link as a fundamental part
of the protocol, performing this setup in the first round-trip as
compared to the 3-4 round-trips needed by TCP/TLS. QUIC
utilizes multiple streams over a single connection to reduce
head-of-line blocking after loss, improving performance for
use in applications that use HTTP/3. QUIC has gained pop-
ularity since its public release, carrying nearly 30% of web
traffic as of 2023 [2]. Studies of QUIC implementations over
a wide range of network conditions are important for assessing
and verifying behavior of the protocol.

Satellites in Geostationary Equatorial Orbit (GEO) have
high baseline round-trip times (RTTs) of about 600 millisec-
onds (ms) and large bandwidths in the hundreds of megabits
per second (Mb/s). These long, fat links have bandwidth-delay
products (BDP) in the megabytes, compared to kilobytes for
a typical low/medium latency terrestrial connection. TCP has
traditionally faced challenges saturating high BDP connections
due to the nature of TCP probing mechanisms [3]. High
latencies impact the growth of the congestion window and high
bandwidths take multiple RTTs to reach – issues which have

been shown to carry over to QUIC [4] since it shares many
similarities with TCP in its implementation of congestion
control. QUIC implementations include IETF-defined Reno
as well as a mix of CUBIC, BBR, and other less-common
congestion control algorithms, mirroring the ACK-driven loss
detection and congestion control implementations of TCP.
Many endpoint-focused techniques for improving performance
employed by TCP remain relevant for analysis with QUIC.

A typical solution for increasing the performance of TCP in
satellite network environments is to implement a performance
enhancing proxy (PEP) using middleboxes. These break a TCP
connection into two or more parts over the terrestrial and
orbital sections – known as Split TCP [5] – which allows the
terrestrial hosts to see low-latency responses while the orbital
transport can be implemented with a high-RTT optimized
congestion control algorithm such as TCP Hybla [6]. This
strategy relies on TCP’s lack of encryption of headers, en-
abling middleboxes to split TCP connections without exposing
the details of the proxy to the endpoints. Since QUIC is
encrypted, this solution is no longer feasible as endpoints
are cryptographically verified during the handshake, forcing
each endpoint’s own congestion controller to respond to the
characteristics of the link without the possibility of middlebox
intervention.

The slow start phase of congestion control implements the
initial bandwidth-seeking phase of the connection when the
congestion controllers typically double the amount of data
being pushed over the link every RTT until a packet loss
occurs. Over GEO links, the initial 150 MB of application data
delivered over the connection takes place during slow start.
On these links, when packet losses do occur, the high RTT
and the amount of data in-flight (sent, but not acknowledged)
impacts the recovery time. Large queues on satellite ground
stations contribute to bufferbloat [7], which exacerbates the
impact of packet loss by not dropping packets immediately
when link capacity is reached, increasing the penalty of slow
start overshoot.

To address this issue, we implement a new slow start
algorithm called Slow start Exit At Right CHokepoint
(SEARCH) [8] in QUIC to limit the overshoot and exit the
slow start phase and enter the congestion avoidance phase
before loss occurs. While SEARCH has been implemented and
evaluated in TCP with good results, it has yet to be shown to
be effective for QUIC. However, since SEARCH is general-

979-8-3503-5209-2/24/$31.00 ©2024 IEEE

purpose and does not rely on TCP or QUIC-specific behaviors,
it is a good candidate to improve the performance of QUIC
in a satellite network environment. This paper describes our
SEARCH implementation in an open-source QUIC library,
with further modification to SEARCH’s exit from slow start for
analysis. We contribute the code to the open-source library as
well as evaluate the implementation’s performance compared
to baseline over a commercial GEO satellite link.

The rest of this paper is organized as follows: Section II
discusses prior work related to this paper; Section III de-
scribes the implementation of SEARCH in QUIC and our
experimental design; Section IV analyzes and summarizes the
experimental results; Section V mentions some limitations of
the work as well as possible future work; and Section VI
summarizes our conclusions.

II. RELATED WORK

Endres et al. [4] evaluate the performance of multiple
QUIC implementations over a simulated GEO satellite link
and present a tool for further comparisons. Jaeger et al. [9]
perform a similar evaluation on alternative high bitrate links,
measuring endpoint to endpoint speed and efficiency with a
variety of metrics.

Martin and Khademi [10] compare the performance of the
BBRv1, BBRv2, and CUBIC congestion control algorithms
in QUIC over a simulated GEO satellite link, and show that
while BBR (both v1 and v2) perform substantially better than
CUBIC, in lossy satellite environments each fails to meet
fairness standards.

Custura et al. [11] study the impact of QUIC’s acknowl-
edgement frequency on throughput, including over emulated
satellite links. Further, Volodina and Rathgeb [12] implement
an algorithm to tune the acknowledgment frequency over time
based on link characteristics, and show performance improve-
ments over constant acknowledgment frequencies, including
over emulated satellite links.

Liu et al. [13] propose Jump Start, a replacement slow start
mechanism that bypasses the exponential growth phase by
pacing an initial burst of data after the completion of the
handshake. Jump Start calculates the speed and size of the
initial transmission based on the initial handshake RTT, data
to be sent, and advertised window size from the receiver.
Jump Start has been added to some QUIC implementations,
and Meta has demonstrated improvements to transfer times
with its use [14], though their case study does not assess the
algorithm’s overall performance.

Caini and Firrincieli [6] propose TCP Hybla, a replacement
for both slow start and congestion avoidance phases of the
congestion control algorithm. Hybla modifies the CWND
growth in each phase by a scale factor derived from the link
RTT so that a Hybla connection can ramp up to the link
capacity in about the same time as in a comparable low-
RTT network, though it suffers the same chokepoint overshoot
problem observed in standard slow start.

Ha and Rhee [15] propose HyStart as an addition to the
standard exponential doubling of the TCP slow start algorithm

Fig. 1: Bytes marked as delivered in one RTT (solid) vs. bytes
expected to be delivered in the next RTT (dashed), displaying
deviation at link capacity marking the chokepoint.

and is implemented and enabled in the Linux kernel by default.
TCP HyStart may perform well on terrestrial links, but can
mistake the variation in RTT seen on satellite networks as
congestion and exit slow start too early [16]. Balasubramanian,
Huang, and Olson [17] propose HyStart++, a modification to
the original HyStart algorithm that uses an RTT delay heuristic
with a modification to reduce the impact of jitter causing
premature exits from slow start.

Ataei Kachooei et al. [8] propose SEARCH, a modification
to the slow start mechanism that tracks delivery rates with
a sliding window to detect deviation between sending and
delivery rates before packet loss occurs. SEARCH’s benefits
to performance have been shown via experiments with packet
traces over GEO, Low Earth Orbit (LEO), and 4G LTE links
for TCP. We implement the SEARCH algorithm in an open-
source QUIC implementation.

III. METHODOLOGY

During slow start, typical congestion control algorithms
operate by approximately doubling the number of packets
in flight every RTT, causing the sending rate to surpass the
delivery rate that is limited by the link capacity. At its core, the
SEARCH algorithm uses this idea by tracking bytes delivered
over the course of the connection, and comparing the current
delivery rate to the expected delivery rate from the previous
RTT. Upon receiving acknowledgements, the server can verify
that delivery rates match sending rates for the previous RTT
until they are limited by the link capacity, as shown in
Figure 1. Delivery rates for the current and previous period
are computed based on a sliding window, set to a size of 3.5x
the initial RTT, to reduce the impact of jitter. When these rates
deviate by a measurable amount, SEARCH exits the slow start
and moves to congestion avoidance, typically before packet
loss occurs. SEARCH is shown in Algorithm 1 with more
details and theoretical evaluation provided in Ataei Kachooei
et al. [8].

One significant modification we make to the SEARCH
algorithm as it was previously published is as follows. When
exiting slow start at the chokepoint, SEARCH is delayed in
its prediction by almost exactly two RTTs, and the algorithm
has knowledge of the exact amount of deviation between
the predicted delivered bytes and the actual delivered bytes.
Thus, the number of bytes excess added to the congestion
window (CWND) since it bypassed the BDP of the link can
be computed and reduced from the CWND. This modification
is added in lines 25-27 of Algorithm 1. We perform tests with
and without this modification added, and compare the values
of the CWND at exit with the SEARCH CWND reduction
(removing the two-RTT window byte count) and the CUBIC
CWND reduction.

Algorithm 1
SEARCH: Slow start Exit At Right CHokepoint.

1: Parameters:
2: WINDOW SIZE = Initial RTT × 3.5
3: W = 10
4: EXTRA BINS = 15
5: NUM BINS = W + EXTRA BINS
6: BIN DURATION = WINDOW SIZE / W
7: THRESH = 0.35

8: Initialization:
9: bin[NUM BINS]

10: curr = 0
11: bin end = now + BIN DURATION

12: Each acknowledgement:
13: if (now > bin end) then
14: bin end += BIN DURATION
15: curr += 1
16: bin[curr mod NUM BINS] = 0

17: prev = curr - (RTT / BIN DURATION)
18: if (prev ≥ W) and (curr - prev) ≤ EXTRA BINS then
19: // Check if SEARCH should exit
20: curr delv =

∑curr
curr-W bin[i mod NUM BINS]

21: prev delv =
∑prev

prev-W bin[i mod NUM BINS]

22: norm diff =
2 · prev delv − curr delv

2 · prev delv

23: if (norm diff ≥ THRESH) then
24: // Exit slow start

25: back =
Initial RTT · 2

BIN DURATION

26: over =
∑curr

curr - back bin[i mod NUM BINS]
27: set ssthresh and cwnd to (cwnd - over)
28: end if
29: end if
30: end if
31: bin[curr mod NUM BINS] += bytes delivered

Fig. 2: Docker testbed used for verifying implementation
behavior and performance.

To test SEARCH in QUIC, we select the Quicly project1 as
our QUIC implementation, developed by Fastly for the H2O
webserver. Quicly is actively deployed and has been utilized
for previous QUIC research. We select the Qperf project2 as a
wrapper for performing iperf3-like behavior with Quicly, and
fork both projects to implement necessary features to support
our testing.3,4

Rather than duplicating a single congestion control algo-
rithm and adding our slow start modification into it, we refac-
tored the Quicly code to support modular slow start implemen-
tations. We extend the congestion controller structure defini-
tion with a new field, which points to a slow start function with
an identical signature as the on_acknowledgement()
function. A configuration setting in the startup context allows
dynamic selection of the slow start algorithm, and each con-
gestion control implementation may choose to utilize the slow
start function pointer, allowing non loss-based controllers to be
implemented as normal. This method reduces the time required
to implement alternative slow start algorithms for existing
congestion controllers, and decouples the slow start phase from
the congestion avoidance phase in software to better match the
behavior of most congestion controllers.

By default, Quicly initializes the QUIC maximum window
parameter to 16 MB. The maximum window parameter places
a cap on the number of bytes permitted to be in flight on
the link at the connection and stream level. This preempts the
congestion controller, and a MAX DATA frame must be trans-
mitted from receiver to sender to grow the window and enable
more data to be sent on the link. Quicly’s implementation to
determine when MAX DATA frames are sent is not BDP-
aware, and grows the maximum window based on percent
usage of the current window. For large BDP networks, such
as for a GEO link, this has an unintended consequence of
limiting the CWND growth and stifling the sending rate. In our
experiments, we set the maximum window parameter to 256
MB to allow the congestion controller to control the sending
rate without limitations being imposed on link utilization.

To verify the implementation of SEARCH in QUIC, we
create a emulated test network consisting of two Docker
containers – a router and a server – on two local subnets,
shown in Figure 2. The router is configured with Linux traffic
control (tc) to implement a 150 Mbit/s link with a 300
ms one-way delay and a 36 MB queue on each outgoing

1https://github.com/h2o/quicly
2https://github.com/rbruenig/qperf
3https://github.com/AmberCronin/quicly
4https://github.com/AmberCronin/qperf

Fig. 3: GEO satellite testbed used for performance evaluation.

virtual interface to the host machine and the server container.
Corresponding virtual interfaces are added to the host machine
and the server container to communicate through the router
container. Finally, the router is configured to route all traffic
between the subnets through the virtual interfaces to emulate
the satellite link. Tests using this configuration were performed
on a Thinkpad T14 AMD Ryzen 7 PRO 4750U with 32 GB
DDR4 RAM running Fedora 35, Docker version 20.10.17.
Repeated runs were performed over this emulated link to verify
the Quicly configuration and show that the QUIC flows with
and without SEARCH enabled behaved as expected.

After our Quicly implementation with SEARCH was vali-
dated, we performed tests over a real satellite link to assess the
SEARCH algorithm. Our satellite testbed consists of a server
and a client connected over a commercial GEO satellite link,
shown in Figure 3. The server connects to our University LAN
via a Gb/s Ethernet. The campus network is connected to the
Internet via several 10 Gb/s links, all throttled to 1 Gb/s. To
address issues of network operators dropping high-bandwidth
UDP traffic, the outgoing link from the server was limited
to 200 Mb/s, and the network interface set to a maximum
transmission unit (MTU) of 1360 bytes.

The client connects to a Viasat GEO satellite terminal
(with a dish and modem) via a Gb/s Ethernet connection.
The client’s downstream Viasat service plan provides a peak
data rate of 144 Mb/s. The terminal communicates through
a Ka-band outdoor antenna (RF amplifier, up/down converter,
reflector, and feed) through the Viasat 2 satellite5 to the larger
Ka-band gateway antenna. The terminal supports adaptive
coding and modulation using 16-APK, 8 PSK, and QPSK
(forward) at 10 to 52 MSym/s and 8PSK, QPSK and BPSK
(return) at 0.625 to 20 MSym/s. The Viasat gateway performs
per-client queue management, where the queue for each client
can grow up to 36 MBytes. Queue lengths are controlled at the
gateway by Active Queue Management (AQM) that randomly
drops 25% of incoming packets when the queue is over half of
the limit (i.e., 18 MBytes). The performance-enhancing proxy
is not available for non-TCP flows (i.e., QUIC flows).

To test the behavior and performance of the SEARCH al-
gorithm, we record time taken to download a number of bytes
for a measure of goodput with and without SEARCH enabled.
This is accomplished by performing a 200 MB download,

5https://en.wikipedia.org/wiki/ViaSat-2

Fig. 4: Bytes sent/bytes delivered in the Docker testbed with
SEARCH exit point and first packet loss marked.

Fig. 5: Delivered and estimated delivered sums in the Docker
testbed with SEARCH exit point marked, ends at packet loss.

and logging the time taken to deliver 1 MB chunks. Runs
were capped at 60 seconds and alternated between SEARCH
enabled and standard slow start, with a 60 second sleep period
before starting the next run. Three sets of runs are analyzed:
1) 20 hours, from a Sunday night to a Monday afternoon; 2)
24 hours, from a Monday night to a Tuesday night; and 3) 24
hours, from a Wednesday night to a Thursday night.

IV. ANALYSIS

Figure 4 depicts the behavior of SEARCH in a quiet
environment using the Docker testbed. The x-axis is the
time in seconds since the download starts and the y-axis the
throughput computed in 500 ms intervals. The sent bytes are
captured on the server and the delivered bytes captured on the
client. SEARCH (which runs on the server) infers by about
time 9s (shown with the left vertical dashed line) that the link
capacity has been reached and exits slow start before packet
loss occurs at 11 s (shown with the right vertical dashed line).
Figure 5 shows the internal workings of SEARCH where the
delivered bytes confirmed by the server (delv bin sums) do
not grow as expected based on the delivery rate the previous
RTT (shifted bin sums), and so SEARCH exits at about time
9s (shown with the vertical dashed line).

Measurements over the real satellite network found some
runs reported loss in the first RTT after the connection
establishment, behavior that did not happen in the Docker
testbed. While were were unable to ascertain the cause of
these reported losses, they occur whether or not SEARCH
is enabled and so are are excluded from further analysis. We
define early (non-congestion based) loss as those with packet
loss before 9 seconds and are likewise excluded. Table I shows
the breakdown of the dataset. The runs listed in the “Clean”
column make up the dataset considered for the remainder of
the evaluation.

First-RTT Loss Wireless Loss Clean Total
Baseline 103 12 544 659

SEARCH 116 8 535 659
Total 219 20 1079 1318

TABLE I: Initial dataset. The “Clean” column is used for
evaluation.

Total 50 MB 100 MB 150 MB 200 MB
Baseline 544 449 421 386 358

SEARCH 535 445 419 380 323
Total 1079 894 840 766 681

TABLE II: Number of runs delivering indicated Mbytes.

Table II lists the number of runs that succeed in delivering
the specified byte counts within the time limit.

Figure 6 compares the median, 25%, and 75% time quartiles
required to deliver the specified byte count for each set of
runs. Prior to delivering 130 MB, SEARCH and the baseline
perform nearly identically, as SEARCH does not modify the
behavior of standard slow start. At approximately 135 MB,
the median run without SEARCH begins deviating from the
median run with SEARCH enabled since SEARCH is able to
exit slow start and avoid packet loss and degraded throughput.
The greatest separation occurs at 160 MB, as the median time
saved by SEARCH reaches about 3s. The lower quartile of the
baseline runs deviate from the lower quartile of the SEARCH
runs at 175 MB, showing that continuing to double the sending
rate degrades the overall goodput.

Figure 7 depicts the median time savings (i.e., baseline
minus SEARCH) by enabling SEARCH, with the difference of
the quartiles depicted by the shaded area. SEARCH provides
benefit by reducing the download time of files over 125 MB by
up to three seconds by extending the region before packet loss
occurs compared to the baseline. The percentage improvement
over the baseline is shown in Figure 8, and peaks at a 14%

Fig. 6: Median time to download the indicated Mbytes with
shading depicting the range between the 25% and 75% quar-
tiles.

Fig. 7: Difference in median run timing, shading depicts
absolute difference between quartiles.

Fig. 8: Percent time savings of the median runs when
SEARCH is enabled compared to the baseline performance.

improvement for the median 160 MB download. There is
no benefit to goodput before this point, and the benefit after
this particular point is amortized by the congestion avoidance
phase as the connection progresses.

Figure 9 shows the time to download 150 MB for all
included runs. Fourty-five percent (45%) of runs have no
significant difference in the time to download the 150 MB,
an additional 40% of runs perform better with SEARCH by
several seconds, and the remaining 15% (the tail of the CDF)
are where the baseline performs slightly better than SEARCH.
The number of runs included in this analysis are presented in
Table II.

Finally, we present analysis comparing SEARCH CWND
reduction to the equivalent CWND reduction if SEARCH
declaring exit was treated as a packet loss, similar to exit-
ing slow start due to explicit congestion notification (ECN)
marks. When ECN marks are received, the packet containing
those marks triggers a call to the congestion controller’s
on_loss() function. When using CUBIC, this reduces the
congestion window by β (CUBIC defines β=0.3). This analy-
sis is presented in Figure 10 as a CDF. This analysis is from
the third set of runs, with statistics presented in Table III. By
reducing the CWND by only the amount of bytes transmitted
since congestion began, SEARCH is able to maintain a higher

Fig. 9: CDF of time to deliver 150 MB for full dataset.

sending rate that should be closer to the link capacity than it
would if the exit was declared equivalent to an ECN-triggered
call to the congestion controller’s loss function.

First-RTT Loss Wireless Loss Clean Total
Baseline 106 22 232 360

SEARCH 83 23 254 360
Total 189 45 486 720

TABLE III: SEARCH with CWND lowering dataset makeup.

Fig. 10: Ratio of CWND reduction at SEARCH exit point to
the original CWND exit (i.e., a β multiplicative decrease).

V. LIMITATIONS AND FUTURE WORK

This work does not analyze the behavior of SEARCH in
QUIC with competing flows. Future work could study how
SEARCH in QUIC behaves when competing with SEARCH-
enabled and baseline flows, as well as other congestion con-
trollers (e.g., BBR), and ideally in the presence of TCP flows
of various types. Similarly, SEARCH in QUIC could also be
studied over other network links, including Ethernet and WiFi,
mobile (4G/5G) networks, and LEO satellite networks.

Our Docker testbed findings indicate that several of Quicly’s
default settings degrade its performance when deployed over

high-BDP networks. We recommend that Quicly (and QUIC
as a whole) behavior as it relates to the maximum window
parameter be studied to better apply a limited window size
in high-BDP networks to allow congestion control to function
properly.

VI. CONCLUSION

This work presents an implementation of the SEARCH
algorithm [8] in QUIC. We extended the Quicly open-source
library to support generalized slow start modules and im-
plemented SEARCH as one such module. Evaluation over
an emulated GEO satellite link validates our implementation,
illustrating how SEARCH detects the congestion point and
exits slow start before packet loss occurs. Evaluation over a
commercial GEO satellite link shows SEARCH can improve
median download time by about 3 seconds (14%) compared
to the baseline by limiting CWND growth when capacity is
reached and delaying any packet loss due to congestion.

REFERENCES

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” 2021, IETF RFC 9000.

[2] D. Belson and L. Pardue. Examining HTTP/3 usage one year on. [On-
line]. Available: https://blog.cloudflare.com/http3-usage-one-year-on

[3] S. Claypool, J. Chung, and M. Claypool, “Comparison of TCP con-
gestion control performance over a satellite network,” in Passive and
Active Measurement, O. Hohlfeld, A. Lutu, and D. Levin, Eds. Springer
International Publishing, 2021, pp. 499–512.

[4] S. Endres, J. Deutschmann, K.-S. Hielscher, and R. German,
“Performance of QUIC implementations over geostationary satellite
links.” [Online]. Available: http://arxiv.org/abs/2202.08228

[5] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Montenegro, “Perfor-
mance enhancing proxies intended to mitigate link-related degradations,”
2001, IETF RFC 3135.

[6] C. Caini and R. Firrincieli, “TCP hybla: a TCP enhancement for hetero-
geneous networks,” International Journal of Satellite Communications
and Networking, vol. 22, no. 5, pp. 547–566, 2004.

[7] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet:
Networks without effective AQM may again be vulnerable to congestion
collapse.” ACM Queue, vol. 9, no. 11, pp. 40–54, 2011.

[8] M. A. Kachooei, J. Chung, F. Li, B. Peters, and M. Claypool, “SEARCH:
Robust TCP slow start performance over satellite networks,” in IEEE
48th Conference on Local Computer Networks (LCN), 2023, pp. 1–4.

[9] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle, “QUIC on
the highway: Evaluating performance on high-rate links,” in 2023 IFIP
Networking Conference (IFIP Networking), 2023, pp. 1–9.

[10] A. Martin and N. Khademi, “On the suitability of BBR congestion
control for QUIC over GEO SATCOM networks,” in Proceedings
of the Workshop on Applied Networking Research, ser. ANRW ’22.
Association for Computing Machinery, 2022, pp. 1–8.

[11] A. Custura, T. Jones, R. Secchi, and G. Fairhurst, “Reducing the
acknowledgement frequency in IETF QUIC,” International Journal of
Satellite Communications and Networking, vol. 41, no. 4, 2023.

[12] E. Volodina and E. Rathgeb, “Impact of ack scaling policies on QUIC
performance,” in Proceedings of IEEE LCN, Oct. 2021.

[13] D. Liu, M. Allman, S. Jin, and L. Wang, “Congestion control without
a startup phase,” in Proceedings of the Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet), Feb. 2010.

[14] J. Beshay, “Improving transfer times in the backbone network using
QUIC jump start,” @Scale. [Online]. Available: https://www.youtube.
com/watch?v=E3RUgw2-k0g

[15] S. Ha and I. Rhee, “Taming the elephants: New TCP slow start,”
Computer Networks, vol. 55, no. 9, pp. 2092–2110, 2011.

[16] B. Peters, P. Zhao, J. Chung, and M. Claypool, “TCP HyStart perfor-
mance over a satellite network,” in Proceedings of the 0x15 NetDev
Conference, Jul. 2021.

[17] P. Balasubramanian, Y. Huang, and M. Olson, “HyStart++: Modified
slow start for TCP,” 2023, IETF RFC 9406.

