
Last Stand – A First Person Shooter Game for User Studies on the
Effects of Network Delay on Players

Samin Shahriar Tokey
sstokey@wpi.edu

WPI, Worcester, Massachusetts, USA

Mark Claypool
claypool@wpi.edu

WPI, Worcester, Massachusetts, USA

ACM Reference Format:
Samin Shahriar Tokey and Mark Claypool. 2018. Last Stand – A First Person
Shooter Game for User Studies on the Effects of Network Delay on Players.
In Proceedings of Foundations of Digital Games 2024. ACM, New York, NY,
USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
First-person shooter (FPS) games demand players to make split-
second decisions and have quick reflexes. Delays from player input
until game result output can make FPS games less enjoyable and
unfair [3]. These delays might come from local sources, like input or
output devices, or from network delays, which affect how quickly
data travels between the player’s game and the server. Higher delay
can make the game feel less responsive for players, degrading their
performance and overall gaming experience [2, 5]. In multiplayer
online games, differences in network delays among players, often
due to their geographic proximity to the server, can lead to unfair
advantages, particularly disadvantaging those with higher delay.
Latency compensation techniques can mitigate some of the adverse
effects of network delay on gaming and are deployed by many
commercial games [1, 4].

Despite numerous studies of delay and games and wide-spread
deployment of latency compensation techniques to deal with net-
work delay, there is more research to be done. Additional studies are
needed to understand the impact of delay over the broad range of
player-game interactions and in-game conditions even with a well-
studied genre (e.g., FPS games). While commercial game developers
may assess implemented latency compensation techniques inter-
nally, their analysis is rarely disseminated to the broader public,
limiting the ability of researchers from learn from their engineering.
In order to better understand and improve upon latency compensa-
tion technologies, we need studies of these techniques over a range
of latencies and game conditions.

Despite the prevalence of previous research and commercial
games supporting network gameplay, better tools are needed for
latency researchers. Study of commercial games obfuscate laten-
cies effects with latency compensation and opaque (“black box”)
implementations. This leads to many researchers “reinventing the
wheel” to make new games for their studies. While some of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Foundations of Digital Games 2024, May 21st to 24th, 2024, Worcester, Massachusetts,
USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

are single-player by design (FPSci)1, this poses a challenge to re-
searching network latency where client-server interactions are
required. Moreover, most bespoke games lack high-end graphics
and animations, making it possible that they may not accurately
represent player experience with commercial games.

Latency researchers need a client-server networked FPS game
featuring a client for each player connected to an authoritative
server to mimic typical commercial game architectures. Basic FPS
actions need to be supported (e.g., moving and shooting) with high-
end graphics and sound that provide for an immersive experience.
Game parameters need to be configurable to support the breadth of
FPS game conditions. An framework is needed to allow designers to
easily set per-round parameters for a range of possible experimental
conditions. Extensive logging is needed for all player actions as well
as summary performance statistics each round. Lastly, configurable
subjective opinion prompts are essential for assessing Quality of
Experience (QoE) effectively.

To meet these rquirements, we have designed and developed
“Last Stand” – a two-player networked FPS game implemented with
the Unity game engine, specifically designed to study the impacts
of latency and latency compensation techniques on player perfor-
mance and QoE. The gameplay features rounds of deathmatch 1v1
play with unlimited lives. The player character is equipped with
fluid procedural animations for actions such as sprinting, jumping,
aiming, and leaning. The game equips players with a single-fire rifle
that holds a customizable number (default 11) of bullets per mag-
azine (unlimited magazines) and a customizable fire rate (default
250 rounds per minute).

A central feature of the game is the configurable experimental
harness. This feature allows for launching game rounds with dif-
ferent amounts of delay for each player. Also included is a logging
system that captures player data every game tick, provides round
summaries, and records details of each projectile shot, facilitating
detailed analysis of player performance under different latency con-
ditions. After each round, the game shows customizable qualitative
questions to players – the defaults inquires about perceived lag and
acceptability. User answers are logged in the round summary.

We have used Last Stand in a study of FPS games and a latency
compensation technique (time delay). Our experience suggests it
can be beneficial for other researchers, too, in their latency stud-
ies and so we have made Last Stand available as open source on
GitHub2.

2 LAST STAND
This section describes a demonstration video, key implementation
details, and configuration options.

1FPSci: https://github.com/NVlabs/FPSci
2Last Stand GitHub repository: https://github.com/Tokey/LastStand

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/NVlabs/FPSci
https://github.com/Tokey/LastStand


Foundations of Digital Games 2024, May 21st to 24th, 2024, Worcester, Massachusetts, USA Samin Shahriar Tokey and Mark Claypool

2.1 Demonstration
The game demo3 illustrates two rounds of Last Stand. The demo
starts by showing animations regarding movement and aiming.
Each player can detect the proximity and direction of the other
player by looking at the yellow indicators on the sides of the screen.
If the indicator is on the top, it means the opponent is in front
of the player, and similarly for both the sides as well. The indi-
cator also grows larger as the player approaches the opponent.
Starting from 0:28, the opponent’s animations are displayed, indi-
cating that animations are replicated across the network. At 0:44,
the player secures a confirmed kill, increasing both the kill count
and score. After that regular combat takes place, highlighting death
events, respawns, and headshots. After the end of the round players
are presented with two consecutive qualitative questions at 1:22.
During round 2, regular combat is shown followed by the same
questionnaire at the end.

2.2 Implementation
The networking of Last Stand is done using Unity’s Netcode for
Game Objects4. The game runs in a peer-to-peer configuration,
where one computer acts as the host and authoritative server and
the other is the client. Animations and player positions are contin-
uously replicated for both. Hit detection is done on the client and
then replicated over the network. The server controls the projectile
spawning and projectile control. Latency is added to each player
action by delaying the player input by that set latency by having the
game loop check keep an input queue of action and only execute
them at scheduled times (i.e., after fixed added delay). All of the
round configurations and session control are read, transferred, and
executed by the host/server.

2.3 Configuration
After downloading,5 Last Stand needs to be configured before exper-
iments are run. At least 2 computers are required to run the game,
where 1 will act as server/host and 1 as a client. Inside the Data/
folder there are two configuration files. The first (GameConfig.csv)
is for setting the game parameters and takes in 1 row of data, each
with 4 columns defining the global game configuration: Is Host, IP,
Port, Enable Ping Display.

The second file (PlayerConfig.csv) defines the configuration
for both of the players’ delay settings each round. It can have 𝑛
rows, indicating 𝑛 + 1 rounds. The first row of the game is played
twice: initially as the “Practice Round” and then again at a random
point in the session. Before each session, the round settings are
shuffled to ensure variability in the experiences of the players. This
file is read only on the host side and the settings are propagated to
the client at the start of each round. There are 8 columns in each
row. For the columns, these are: host start delay, host end delay,
host adaptive time delay increase rate, host adaptive time delay
decrease rate. The next 4 columns are similar, but for the Client.

3Last Stand Demo Video: https://youtu.be/5AMLja4qZkI
4Unity Netcode for Game Objects: https://docs-multiplayer.unity3d.com/netcode/
current/about/
5Last Stand Download: https://github.com/Tokey/LastStand/releases/download/v24.03.
24/Last.Stand.zip

3 EXAMPLE RESULTS
This section shows preliminary results from an ongoing study using
Last Stand. The results are meant to illustrate a type of data and
analysis that can come from user studies using Last Stand, but we
note there is far more analysis that could be done.

We had 26 pairs of users (so far) play short (80 seconds) rounds
of Last Stand using a weapon with the default settings. Players had
different amounts of delay added each round, ranging from 0 ms to
200 ms.

Figure 1 shows the performance of players and QoE versus la-
tency. The x-axis shows latency the y axis on the left shows QoE
and right shows Score. Each point is the mean value of all users
across the indicated conditions, shown bound by 95% confidence
intervals.

Figure 1: Mean Score and QoE versus latency.

For calculating the score, each confirmed hit gives the player 1
point, head-shots are 5 points and each confirmed kill is 10 points.
QoE (1-low to 5-high) was provided from the in-game prompts at
the end of each round. From the graph, player performance and
QoE drop as latency increases.

4 SUMMARY
Research on delay and FPS games is needed to design better games
and game systems, improve latency compensation techniques, and
apply technologies beyond just games for entertainment. To that
end, we have developed Last Stand a customizable FPS game specif-
ically designed for user studies with delay.

REFERENCES
[1] Yahn W. Bernier. 2001. Latency Compensating Methods in Client/Server In-game

Protocol Design and Optimization. In Proceedings of the GDC. San Francisco, CA,
USA.

[2] Wai-Kiu Lee and Rocky K. C. Chang. 2015. Evaluation of Lag-related Configura-
tions in First-person Shooter Games. In Proceedings of NetGames. Zagreb, Croatia.

[3] Shengmei Liu, Atsuo Kuwahara, James Scovell, Jamie Sherman, andMark Claypool.
2021. The Effects of Network Latency on Competitive First-Person Shooter Game
Players. In Proceedings of QoMEX. Virtual Conference.

[4] Shengmei Liu, Xiaokun Xu, and Mark Claypool. 2022. A Survey and Taxonomy of
Latency Compensation Techniques for Network Computer Games. ACM Comput.
Surv. 54, 11s, Article 243 (Sept. 2022), 34 pages.

[5] P. Quax, P. Monsieurs, W. Lamotte, D. De Vleeschauwer, and N. Degrande. 2004.
Objective and subjective evaluation of the influence of small amounts of delay and
jitter on a recent first person shooter game. In Proceedings of the NetGames’04.

https://youtu.be/5AMLja4qZkI
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://github.com/Tokey/LastStand/releases/download/v24.03.24/Last.Stand.zip
https://github.com/Tokey/LastStand/releases/download/v24.03.24/Last.Stand.zip

	1 Introduction
	2 Last Stand
	2.1 Demonstration
	2.2 Implementation
	2.3 Configuration

	3 Example Results
	4 Summary
	References

