
In Proceedings of the Information Resources Management Association Conference
May 21-24, 2000 Anchorage, Alaska, USA

1

Video Performance in Java

Mark Claypool, Tom Coates, Shawn Hooley, Eric Shea and Chris Spellacy

Computer Science Department
100 Institute Road

Worcester Polytechnic Institute
Worcester, MA 01609
Phone: (508) 831-5409

Email: claypool@cs.wpi.edu

ABSTRACT
The tremendous growth in both Java and multimedia
present an opportunity for cross-platform multimedia
applications. However, little research has been done on
Java multimedia performance. In this paper, we
present experiments that measure the multimedia
performance of an MPEG-1 client in Java. We find
Just-In-Time compilation, local media access and
processor type significantly affect multimedia
performance, while choice of operating system, Java
virtual machine and garbage collection have a
negligible effect on multimedia performance. Overall,
Java still lags considerably behind multimedia
performance in C++.

1 INTRODUCTION
The power of today's computers and the connectivity of
today's networks present the opportunity for
multimedia from a server, over a network to the
desktop. These new streaming multimedia applications
promise to enrich our interactions with the power and
flexibility of computers. Java is equally promising
with the potential to transform application development
as we know it. The “write once, run anywhere” nature
of Java bytecode continues to score major
implementation wins, especially at large organizations
whose need for cross-platform solutions overrides other
factors. The Java Media APIs are designed to meet the
increasing demand for multimedia, supporting audio,
video, animations and telephony [Mic99]. The use of
Java for continuous media applications is inevitable.

Before Java can be executed, it must first be compiled
from source code into what is known as bytecode.
There are several different ways of executing bytecode
as native machine code: a Java Virtual Machine (JVM)
is an interpreter that translates the bytecode into
machine code one by one, over and over again; a Just in
Time (JIT) compiler translates some of the bytecode

into machine code just before it is to be used and
caches it in memory for reuse; and a static native
compiler translates all the bytecode operations into
native machine code ahead of time, taking full
advantage of traditional compiler optimizations.

Related work on Java performance has concentrated on
the performance of traditional benchmarks such as
SPEC JVM98 and jBYTEmark in Java environments
[HCJ+97, HG98, spec]. CaffeineMark seeks to provide
an indicator of Java Applet performance in a Java
runtime environment [Sof99]. Other research has
concentrated on achieving optimum performance in
Java environments [FNN+97]. Such research has
shown that JIT and static native compilation can
provide impressive performance improvements over
purely interpreted Java.

However, traditional benchmarks tend to model
traditional application performance. Multimedia
applications have very different performance
requirements than do traditional applications. Although
we often think of multimedia as a continuous stream of
data, computer systems handle multimedia in discrete
events. An event may be receiving an update packet or
displaying a rendered video frame on the screen. The
quantity and timing of these events give us measures
that affect application quality. There are three
measures that determine quality for most multimedia
applications [CR99b]: delay, the time it takes
information to move from the server through the client
to the user; jitter, the variation in delay, can cause gaps
in the playout of a stream such as in an
audioconference, or a choppy appearance to a video
display; and loss which can take many forms such as
reduced bits of color, pixel groups, smaller images,
dropped frames and lossy compression [CR99a]. In a
distributed application, jitter can be caused by disk
devices or media codecs, operating system, workstation
load and network load. Delay and loss are the primary
concerns for traditional text-based applications, while

In Proceedings of the Information Resources Management Association Conference
May 21-24, 2000 Anchorage, Alaska, USA

2

jitter has been shown to be a fundamental concern for
multimedia applications [CT99].

In addition, object-oriented languages such as Java
make heavy use of memory. Java removes the burden
of memory management from the programmer through
runtime garbage collection. This freedom comes at a
performance price, however, as JVMs often spend 15
percent to 20 percent of their time on garbage
collection [HG98]. Most significantly, a chart of the
memory usage of a JVM shows a jagged sawtooth
pattern (see Figure 1, from [HG98]), indicating that
garbage collection is intermittent and likely increases
jitter. Moreover, our previous work shows Java servers
do suffer from increased jitter versus native-code
servers [CT98].

In addition to the Java runtime options of JVM, JIT
compilation and garbage collection, client applications
may be configured in a variety of other ways, as
depicted in Figure 2. A remote server can deliver the

video file or the client can access the video file from
the local disk, the client processor can be upgraded, or
the client application can be developed in C or C++.

In this work we investigate the performance of a client
Java MPEG-1 player under two different JVMs, using
combinations of JIT compilation and garbage
collection. We compare these performance differences
across three different processors, local disk access and
two operating systems. From this data we determine
the greatest bottlenecks to high-quality Java multimedia
performance, and how best to improve the overall
quality.

2 EXPERIMENTS
In order to measure the performance of Java
multimedia, we built a client-server video system. The
server, written in C++, streams MPEG-1 frames across

the LAN to the client. The client, written in Java,
decompresses and displays the video frames on the
screen. In the client, we varied the hardware platform,
Java virtual machine, JIT compilation, garbage
collection, and local versus remote video file.

For accessing the remote file, our client connected to
our server with a TCP connection over a socket. Our
C++ server is a Win32 console application in order to
be as fast as possible and minimize the effects of the
server on the performance of the client. The server
accepts the name of the MPEG file to transmit as a
command line argument. It then listens for a connection
on a socket, and transmits the file. The 64 byte MPEG
header is sent first, followed by the MPEG data that is
broken up into separate frames. This is done using a
sliding window that scans the file as it is read from the
disk for the MPEG flag signifying the end of a frame.
At the end of the file, the remaining data, the last
frame, is sent and the socket is closed.

Title:
execute
Creator:
Tgif-3.0-p12 by William Chia-Wei Cheng (william@cs.UCLA.edu)
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 2. Runtime Environments for Video Players. This
figure depicts the possible runtime environments for a Java
video player and a C++ video player. The options we
investigate in this research are in parentheses.

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Seconds

Fr
ee

 K
b

Heap is running out
of mem, triggering
garbage collection.

Garbage collector
frees up memory
in the heap.

Figure 1. The Pattern of Garbage Collection. This jagged pattern is typical of memory
availability when the garbage collector disposes of groups of objects.

In Proceedings of the Information Resources Management Association Conference
May 21-24, 2000 Anchorage, Alaska, USA

3

Our client extends a Java Applet developed by Carlos
Hasan of the University of Chili [Has98] and is written
in Java using Sun's Java Development Kit (JDK)
version 1.2. Our client is a multithreaded application
instead of an Applet to control the file transmission,
with the MPEG decompression and display running in
a different thread started by the play button. The client
has timing hooks to record performance data to a file.

Figure 3. Java Virtual Machine. This figure depicts the
impact of the choice of Java Virtual Machine on video
performance. The vertical axis is in frames per second.
The horizontal axis depicts Microsoft's Jview and Sun's
JVM. Both tests were run on Windows NT.

All tests were run on a dedicated 10 Mbps Ethernet
network. The server ran on a separate system. The test
cases included running the client on Windows 98 and
Windows NT 4.0 Workstation with Service Pack 4
installed, running the Sun’s Java virtual machine
version 1.2 (called JVM) and the Microsoft’s Java
virtual machine version 5.0 (called Jview) with JIT
compilation enabled or disabled. We did experimental
runs with garbage collection enabled and disabled, and
by accessing the MPEG video file from the local disk
and from the server over the network.

We tested an MPEG video of a lighter falling through
the sky and being lit (lighter.mpg). The MPEG
statistics are given below:

lighter.mpg:
670 320x240 frames
Rate: 30 frames/sec
Length: 22 sec
GOP: IPBBPBBPBBPBB
Mean Frame Size: 4554 bytes
Compression Rate: 1.98%
Bandwidth: 1.09 MBits/sec

During each experimental run, four data points were
collected per frame: start decompression time, stop
decompression time, start display time and stop display
time. Also, the client start and stop times were
recorded when the first data packet was received and
when the final frame finished displayed, respectively.
This allowed us to measure framerate and jitter. Each
experiment was run 5 times and the average framerate
and jitter for the 5 runs was recorded.

3 RESULTS

3.1 Java Runtime
Figure 3 compares the performance of two Java virtual
machines on Windows NT. We tested Sun's JVM
version 1.2 and Microsoft's Jview version 5.0. Sun's
JVM was only 7% faster. However, we found that there
were subtle differences between the two. For instance,
Jview performs slightly better under Windows NT,
whereas JVM performs better under Windows 98.
Since the performance differences due to the VM are
slight, for all subsequent tests we used Microsoft’s
Jview, unless explicitly noted.

Figure 4 shows Java performance using Microsoft's
Jview with JIT compilation enabled and without JIT
compilation enabled on Windows NT. The use of JIT
compilation makes a huge difference in performance.
When JIT is enabled, the frame rate is almost 7 frames
per second. However, with JIT disabled the framerate
drops to slightly over 1 frame per second. We found
similar results for Sun's JVM.

Figure 4. This figure depicts the impact of Just-In-Time
(JIT) compilation on video performance. The vertical
axis is in frames per second. The horizontal axis depicts
Microsoft's Jview with and without JIT compilation.
Both tests were run on Windows NT.

In Proceedings of the Information Resources Management Association Conference
May 21-24, 2000 Anchorage, Alaska, USA

4

Figure 5 depicts Java performance with garbage
collection enabled and with garbage collection
disabled. With garbage collection disabled the frame
rate is 7.2 frames per second. When garbage collection
is enabled the frame rate is 6.8 frames per second. As
shown, garbage collection does not make a significant
difference in performance.

Figure 5. Garbage Collection. This figure depicts the
impact of garbage collection on video performance. The
vertical axis is in frames per second. The horizontal axis
depicts Microsoft's Jview with and without garbage
collection. Both tests were run on Windows NT.

3.2 Operating System
Figure 6 depicts Java performance under two different
operating systems, Windows 98 and Windows NT
(v.4.0 service pack 4). Windows 98 provides 4.9 frames
per second while Windows NT provides 6.8 frames per
second. The performance of Windows NT was also
better than that of Windows 98 on the other two
systems tested.

Figure 6. Operating System. This figure depicts the
impact of Microsoft operating system choice on video
performance. The vertical axis is in frames per second.
The horizontal axis depicts Microsoft's Windows 98 and
Windows NT operating systems running Microsoft's
Jview.

3.3 Processor
Figure 7 depicts the Java performance under systems
with different processors. It shows the average frame
rate for three systems running Windows NT and using
Microsoft's Jview. The processor that the tests were
run on made a large difference on frame rate. We find
that the fastest system, a Pentium II 300MHz, has twice
as high a frame rate as the slowest system, a Pentium
233MHz.

Figure 7. Processor. This figure depicts the impact of
processor on video performance. The vertical axis is in
frames per second. The horizontal axis depicts three
platforms: a Pentium 233 MHz, a Pentium Pro 200 MHz
and a Pentium II 300 MHz, all running Microsoft's
Jview. All tests were run on Windows NT.

In Proceedings of the Information Resources Management Association Conference
May 21-24, 2000 Anchorage, Alaska, USA

5

3.4 Video Location
Figure 8 shows the impact on framerate from the
location of the video to be played out. The client doing
local playback read the file from the hard drive. The
client doing remote playback connected to a server on a
different workstation on the same LAN. Both tests
were run on Windows NT. Surprisingly, local playback
is over 2.5 times faster than remote playback.

Figure 8. Video Location. This figure depicts the impact
that the location of the video file has on video
performance. The vertical axis is in frames per second.
The horizontal axis depicts accessing a file from the local
hard drive or from a server across the network. Both tests
were run on Windows NT.

3.5 Interpreted vs. Native
We ran our test video on a MPEG player written in
C++ and compiled into native code on Windows NT.
The C++ player was able to play the video at full-
motion video speed of 30 frames per second, as
depicted in Figure 8. Moreover, the C++ player used
approximately 15% of the CPU, suggesting a possible
maximum playback of 200 frames per second.

Figure 9. Interpreted vs. Native. This figure depicts a
comparison of the multimedia performance of interpreted
Java code to native compiled C++ code. The vertical axis
is in frames per second. The horizontal axis depicts Java
or C++. Both tests were run on Windows NT.

4 CONCLUSIONS
To the best of our knowledge, we are the first to
provide experiment-based Java performance for
MPEG-1 players. In addition, we provide performance
using the multimedia server and under a number of
system and Java runtime configurations. Our MPEG
client and server allow us to benchmark Java runtime
systems and compare performance to C++ runtime
systems.

Of the variables that we tested we found that Just-In-
Time compilation, local access to the MPEG-1 video,
and the client workstation processor type influence
multimedia performance the most. Other variables that
we tested extensively and found to make a minimal
difference were the operating system, the Java Virtual
Machine being used, and disabling garbage collection.

After identifying which variables had the greatest
impact, we then measured level of performance that we
could achieve under ideal circumstances. The best
frame rate that we found with our streaming Java
MPEG-1 player was 7.5 frames per second, using JIT
on the Pentium II 300MHz, Windows NT system. This
performance falls far below the full-motion video 30
frames per second. Moreover, native compiled C++
code could theoretically achieve over 200 frames per
second on the same system.

Future continuations of this project include in-depth
exploration of the effect of Java on jitter. Other
research that may prove useful is to investigate how
some other video standards perform through Java.
Future work also includes performance of new

In Proceedings of the Information Resources Management Association Conference
May 21-24, 2000 Anchorage, Alaska, USA

6

technologies such as Sun's Hotspot, the JavaCPU and
JavaOS.

REFERENCES
[CR99a] Mark Claypool and John Riedl, The Effects
of High-Speed Networks on Multimedia Jitter, In
Proceedings of IASTED Euromedia Conference,
Munich, Germany, April 25-28, 1999.

[CR99b] M. Claypool and J. Riedl. End-to-End
Quality in Multimedia Applications. Chapter 40 in
Handbook on Multimedia Computing, 1999.

[CT98] M. Claypool and J. Tanner. The Effects of
Java on Jitter in a Continuous Media Stream. In
Proceedings of IEEE Multimedia Technology and
Applications (MTAC) Conference, September 1998.

[CT99] M. Claypool and J. Tanner. The Effects of
Jitter on the Perceptual Quality of Video. In
Proceedings of ACM Multimedia Conference,
November 1999.

[FNN+97] M. Fraenkel, B. Nguyen, J. Nguyen, R.
Redpath, and S. Singhal. Building High-Performance
Applications and Services in Java: An Experimental
Study. In Object-oriented Programming, Systems,
Languages and Applications (Addendum) (OOPSLA),
pages 16 - 20, 1997.

[Has98] C. Hasan. MPEG-1 Video Stream Decoder
Applet, 1998. [Online] at http://www.dcc.
uchile.cl/~chasan/MPEGPlayer.zip .

[HCJ+97] C. Hsieh, M. Conte, T. Johnson, J.
Gyllenhaal, and W. Hwu. Optimizing NET Compilers
for Improved Java Performance. IEEE Computer, June
1997.

[HG98] T. Halfhill and A. Gallant. How to Soup Up
Java. Byte Magazine, May 1998.

[Mic99] Sun Microsystems. Java Media Application
Programming Interfaces (APIs), May 1999. [Online] at
http://java.sun.com/products/java-
media.

[Sof99] Pendragon Software. CaffeineMark 3.0: The
Industry Standard Java Benchmark, 1999. [Online] at
http://www.webfayre.com/pendragon/cm3
/index.html.

[spec] Standard Performance Evaluation Corporation.
[Online] at http://www.spec.org/

