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ABSTRACT
Cloud-based game streaming is emerging as a convenient
way to play games when clients have a good network con-
nection. However, high-quality game streams need high bi-
trates and low latencies, a challenge when competing for
network capacity with other flows. While some network
aspects of cloud-based game streaming have been studied,
missing are comparative performance and congestion re-
sponses to competing TCP flows. This paper presents results
from experiments that measure how three popular commer-
cial cloud-based game streaming systems – Google Stadia,
NVidia GeForce Now, and Amazon Luna – respond and then
recover to TCP Cubic and TCP BBR flows on a congested
network link. Analysis of bitrates, loss rates and round-trip
times show the three systems have markedly different re-
sponses to the arrival and departure of competing network
traffic.
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1 INTRODUCTION
Cloud computing infrastructures combinedwith high-capacity
networks have created the emerging market of cloud-based
game systems that stream game content as video down to
the player. Systems that capitalize on this opportunity and
provide game-streaming services include Sony PlayStation
Now, Microsoft xCloud, Google Stadia, NVidia GeForce Now,
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and Amazon Luna. Cloud-based game streaming as a market
is growing rapidly with a value of $865.8 million USD in 2021
and is expected to expand at a compound annual growth rate
of 48.2% from 2021 to 2027 [14].

Cloud-based game streaming differs from traditional com-
puter games in that game-streaming clients do not run full
versions of the game engine. Instead, only the cloud-based
server processes the relatively heavyweight game and graph-
ics tasks – applying physics, resolving collisions, processing
AI, and rending the game frames – streaming the game as
video to the game client. This allows the game client to be rel-
atively lightweight, mostly just playing the streamed game
frames much as would a video player and sending player
input back up to the server. However, the significant disad-
vantages of cloud-based game streaming are the increased
traffic required for the game frame streaming and the added
round-trip latency for all player actions. In particular, the
bitrate requirements for frequent, high-quality video frames
can cause congestion, degrading player quality of experience
and impacting co-located network traffic.
Prior work has shown that cloud-based game streaming

requires a high capacity network and is sensitive to network
latency [2, 9, 20].While studies have analyzed network traffic
for specific cloud systems like Google Stadia, NVidia GeForce
Now and Sony PSNow [11, 13, 30], lacking are comparative
aspects across systems, especially how cloud-based game
streams respond to congestion. This latter aspect, conges-
tion, could be self-induced when the network capacity is
insufficient to support their maximum bitrates or co-induced
when the cloud-based game streaming competes for capacity
with other network flows on the bottleneck link.

Previous work has compared the congestion response for
some cloud-based game streaming systems [32] but only for
TCP Cubic [15], whereas an alternate TCP congestion control
protocol that has gained traction is bottleneck bandwidth and
round-trip time (BBR) [6]. While Cubic uses packet losses
to adjust window sizes and, hence, sending rates, BBR uses
delivery rates and round-trip times to determine the window
sizes. As such, flows that compete with TCP BBR often face
different network conditions than do flows that compete
with TCP Cubic [26]. Moreover, missing in previous work is
analysis of how quickly cloud-based game streaming systems
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respond to flows that join and congest the network and then
how those same game systems recover when the flows depart
and congestion eases.

This paper presents an analysis of the network congestion
response for three commercial cloud-based game streaming
systems – Google Stadia, NVidia GeForce Now and Amazon
Luna – providing a direct comparison of their bitrates over
time and impact on network congestion when competing
for scarce capacity with both TCP Cubic and TCP BBR flows
over a range of network conditions. To do so, we designed a
novel methodology that runs the game systems via a script,
playing the same game automatically on each system to en-
sure similar player actions across runs. The network testbed
and experiments are done over the Internet, but are designed
to be as comparable as possible by interlacing runs of each
game system serially to minimize temporal differences, and
by doing 15 runs for each test condition to provide for a large
sample.
The results show the three game systems have similar

bitrates when faced with capacity constraints, but behave
quite differently when TCP flows arrive and also when they
depart. When competing for network capacity with TCP
Cubic flows, Stadia takes more than its fair share, Luna shares
fairly equally, and GeForce defers to the competing flowmore
than necessary. Results differ considerably when the game
systems compete for network capacity with TCP BBR flows,
with Stadia being more fair, Luna losing its fair share, and
GeForce deferring even more. These trends are generally
exacerbated by small queues at the congested router. The
time to respond to congestion caused by an arriving TCP
flow and then the time to recover when that TCP flow leaves
shows Stadia and Luna can be the quickest to adapt, but
that their agility depends upon the bottleneck capacity and
router queue size, with large queues generally slowing both
congestion response and recovery.
The rest of this paper is organized as follows: Section 2

provides related work on the network aspects of cloud-based
game streaming and congestion control protocols; Section 3
describes our methodology, including testbed setup and ex-
periment design and parameters; Section 4 analyzes the ex-
perimental results; Section 5 mentions limitations and future
work; and Section 6 summarizes our conclusions.

2 RELATEDWORK
This section presents work related to this paper including:
TCP Cubic and TCP BBR (Section 2.1), interaction between
congestion control algorithms (Section 2.2) and measure-
ments of cloud-based game streaming systems (Section 2.3).

2.1 TCP Cubic and BBR
Ha et al. [15] develop TCP Cubic as an incremental improve-
ment to earlier congestion control algorithms. TCP Cubic
is less aggressive than previous TCP congestion control al-
gorithms in most steady-state cases, but can probe for more
bandwidth quickly when needed. TCP Cubic’s window size
is dependent only on the last congestion event, providing
for more fairness to flows that share a bottleneck but have
different round-trip times. TCP Cubic has been the default in
Linux, Microsoft Windows, and Apple Mac OS as of: Linux
kernel 2.6.19 (in 2007), Windows 10.1709 Fall Creator’s Up-
date (in 2017), Windows Server 2016 1709 update (in 2017),
and Mac OS X Yosemite (in 2014).

Cardwell et al. [6] develop the Bottleneck Bandwidth and
Round-trip time (BBR) as an alternative to Cubic. TCP BBR
uses the maximum bandwidth and minimum round-trip time
observed over a recent time window to build a model of the
network and set the congestion window size, allowing it
to grow up to twice the bandwidth-delay product. BBR has
been deployed by Google servers since at least 2017 and is
available as a TCP congestion control option for the Linux
since kernel 4.9 (end of 2016).
In our experiments, we use the default Linux kernel ver-

sions (v5.4) for both TCP Cubic and TCP BBR.

2.2 Interaction Between Congestion
Control Algorithms

Cao et al. [5] analyze measurement results of BBR and Cubic
over a range of different network conditions. They produce
heat maps and a decision tree that identifies conditions which
show when there are performance benefits from BBR over
Cubic. They find it is the relative difference between the
bottleneck queue size and bandwidth-delay product that
dictates when BBR performs well.
Ware et al. [26] model how TCP BBR interacts with loss-

based congestion control protocols (e.g., TCP Cubic). Their
validated model shows TCP BBR becomes window-limited
by its in-flight cap which then determines BBR’s bandwidth
consumption. Their models allow for predictions of TCP
BBR’s throughput when competing with TCP Cubic with
less than a 10% error.
Turkovic et al. [23] study the interactions between con-

gestion control algorithms. They measure performance in
a network testbed using a “representative” algorithm from
three main groups of TCP congestion control – loss-based
(TCP Cubic), delay-based (TCP Vegas [4]) and hybrid (TCP
BBR) – using 2 flows with combinations of protocols com-
peting with each other. They also do some evaluation of
QUIC [19] as an alternative transport protocol to TCP. They
observe bandwidth fairness issues, except for Vegas and BBR,
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and find BBR is sensitive to even small changes in round-trip
time.

Miyazawa et al. [21] and Claypool et al. [10] analyze TCP
Cubic and TCP BBR flows competing for capacity on a bot-
tleneck link. They measure shared throughputs showing: 1)
TCP flows have balanced bitrates intra-protocol (e.g., TCP
BBR with TCP BBR), but that 2) TCP flows have imbalanced
bitrates inter-protocol (e.g., TCP BBR with TCP Cubic). In
particular, bitrate imbalance between TCP Cubic and TCP
BBR flows goes through cycles as Cubic’s increase until loss
and subsequent decrease coupled with BBR’s adjustment to
the amount of data sent based on latency causes alternation
in throughputs.
Our work complements the above work by investigating

the interaction with cloud-based game streaming systems,
heretofore untested, first TCP Cubic and then TCP BBR.

2.3 Cloud-based Game System
Measurements

There are studies analyzing the network performance of
early commercial cloud-based game systems, such as On-
Live [29] and Gaikai [28]. Manzano et al. [20] collect and
analyze network traffic traces from five different games on
both OnLive and Gaikai. They find these cloud-based game
streaming systems have higher bitrates than do traditional
network games. Claypool et al. [9] make more detailed analy-
sis and observations of OnLive network traffic traces and find
OnLive has network turbulence more akin to high-definition,
live video, with large, frequent packets and high bitrates.

For current systems, Suznjevic et al. [22] measure network
traffic for NVidia GeForce Now and find GeForce requires
bitrates significantly higher than earlier cloud-based game
streaming systems (about 25 Mb/s today compared to 6 Mb/s
previously). Xu et al. [30] measure Google Stadia game traffic
for several games, showing Stadia has a traffic pattern similar
to but still significantly different than streaming video and at
much higher rates than previous cloud-based game stream-
ing systems or video (about 19 Mb/s compared to 6 Mb/s).
Domenico et al. [11] study the networking for Google Stadia,
NVidia GeForce Now and Sony PS Now, finding bitrates up
to 45 Mb/s for Stadia and GeForce but only 13 Mb/s for PS
Now, and all services are resilient for up to 5% packet loss.

While the above papers are helpful for characterizing net-
work characteristics for cloud-based game streaming sys-
tems, they do not measure system congestion response when
faced with competing network flows, particularly the re-
sponse when new flows start to congest the network and the
recovery when they stop.

The closest work to our own that we are aware of is from
Carrascosa and Bellalta [7] that limits link capacities for
Google Stadia during gameplay, finding Stadia adjusts the

resolution and/or frame rate in response to a bitrate reduc-
tion. However, the experiments conducted do not necessarily
represent responses when TCP flows are competing on the
network, including specific response to TCP BBR or TCP
Cubic, nor are other, non-Stadia systems considered and
compared as does our work.

3 METHODOLOGY
To observe the response of cloud-based game streaming sys-
tems to competing network flows, we selected three popular
commercial systems and a game common to all (Section 3.1),
setup a measurement testbed that allowed for controlling
congestion conditions (Section 3.3), gathered network traces
(Section 3.4), and analyzed the data (Section 4).

3.1 System and Game Selection
We selected three cloud-based game streaming platforms –
Google Stadia, NVidia GeForce Now, and Amazon Luna –
based on their current and likely future popularity for game
players. While Luna and GeForce offer native applications
for client-side players, since all three support play via the
Google Chrome browser, we use Chrome as the game client
for a fair comparison across systems.

For game selection, as for the platform, we sought a game
that could be played on each system to allow for a fair com-
parison. We selected one of the few games available on all:
Ys VIII: Lacrimosa of Dana (Nihon Falcom, 2016) – a third
person action/exploration game. In our experiments, each
Ys run, the game loads the same map and during gameplay,
three characters (one controlled by the player) fight enemies
for 10 minutes.

Since gameplay visuals (i.e., what is streamed to the client
and the player sees) depend upon the player’s actions, we
developed innovative scripts to play the game automatically,
thus providing identical, repeatable gameplay conditions
across runs and across platforms. Our scripts automatically
open the game (with input appropriate for each system), load
the same game map, and then play the game automatically
as might a human player. The script executes player actions,
including jump, run, attack, cast abilities and camera rota-
tion, at a frequency and pattern that a human player does
(although not necessarily in response to what is happening
on the screen). This means the same actions can be repeated
exactly across all runs.

3.2 Network Conditions
Our goal is to assess the response and recovery for the cloud-
based game streaming systems considering congestion aris-
ing from both network capacity limits and competing traffic,
and explore the difference in adaptation when facing TCP
Cubic versus TCP BBR flows. The network capacity limits
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alone allow comparison of system responses to self-induced
congestion arising from various “last-mile” network condi-
tions provided, say, by an Internet Service Provider (ISP), as
well as provide baseline performance for constrained con-
ditions without competing TCP flows. Adding competing
traffic allows comparison of system congestion responses and
recovery for co-induced congestion caused by the presence
of other network flows on the bottleneck link. We consider
link capacities that are: 1) above the maximum required for
each system, but that are less than twice the needed capacity
when competing with another flow, 2) right at the maximum
capacity required, and 3) 40% below the maximum capacity
required.

The dynamics of many congestion control algorithms (e.g.,
TCP) are influenced by the size of the queue at the bottleneck
router [10]. A general rule of thumb is that the bottleneck
link’s buffer queue size should be a multiple (typically 2x)
of the product of the bottleneck capacity and the round-
trip delay, otherwise known as the bandwidth-delay product
(BDP) – i.e., the BDP is computed by taking the link capacity
(bottleneck) in bits per second and multiplying it by the
round-trip time (delay) in seconds. Other guidelines suggest
a “good” queue size is (𝐵𝐷𝑃)/

√
𝑛, where 𝑛 is the number of

flows at the bottleneck link. However, there are also routers
that have considerably larger buffers, a phenomena known
as “buffer bloat” [12]. We consider a range of queue sizes,
including those that are: 1) shallow, at about one-half the
BDP, 2) typical, at about 2x the BDP1, and 3) bloated, at about
7x the BDP.

3.3 Measurement Testbed
Figure 1 depicts the general setup for our measurement
testbed. Our testbed automatically plays the game YS via
Chrome on the game client depicted in the figure, connect-
ing through our custom router to the appropriate cloud-
service provider (one of Google Stadia, NVidia GeForce Now
or Amazon Luna). For experiments with competing traffic,
the bottleneck link (from the router down to the clients)
is shared by an iperf client that does bulk-downloads from
an iperf server using TCP. The game client has a PC run-
ning Windows 10 Pro, connecting to the cloud-based game
streaming service via Chrome version 98.0.4758.102 (64-bit).
The PC hardware is an Intel i7 eight-core CPU @ 2.0 GHz
with 64 GB RAM with a 1 Gb/s Ethernet NIC. The PC has an
LED monitor with 1920x1080 pixels running at 60 Hz. The
iperf client and server are both Alienware PCs each with
an 8-core Intel i7-4790K CPU @ 4 GHz with 16 GB RAM
running Ubuntu 20.04 LTS, Linux kernel version 5.4, and
connect with 1 Gb/s Ethernet NICs.

1Some guidelines are for queues to be 1x BDP, but others are larger based
on delay [3], hence we settle on 2x BDP.

Figure 1: Measurement testbed.

The game client and iperf client PCs connect via a 1 Gb/s
switch to a Raspberry Pi 4 configured to act as a network
router. The Pi has a 5 GHz 64-bit quad-core CPU with 8 GB
of RAM and runs Ubuntu 20.04 LTS, Linux kernel version 5.4,
using tc [27] and netem to constrain the network capacity
and add delay. Wireshark is used to gather all network traces
for throughput analysis, gathering the game streaming traffic
on the router and the iperf TCP traffic on the client. All three
game-streaming systems use UDP as the transport protocol
and the iperf server uses either TCP Cubic and TCP BBR
(v1.0), as appropriate.

Examples of a tc-netem commands run on our router are:
tc qdisc add dev eth0 root handle 1: \

netem delay 4ms
tc qdisc add dev eth0 parent 1: handle 2: \

tbf rate 15mbit burst 1mbit limit 510kbit

The first command adds delay to the system (used to make
sure all systems have the same round-trip times) and the
second command sets the capacity limit and buffer size.
The router connects to the Internet via our campus net-

work. As a baseline measure of throughput, Google’s M-Lab
Internet speed test consistently shows the campus network
through the router to our client PC has downstream bitrates
over 900 Mb/s and upstream bitrates over 200 Mb/s. These
rates are well-beyond what the streaming services require –
i.e., our campus network is not the bottleneck. According to
the IP addresses observed and the server location informa-
tion released by the platforms, the game servers used in our
experiments are all on the U.S. east coast, physically near
our university in New England.
Based on ping measurements from our client, the Stadia

servers have an average round-trip time of 11.9 ms, GeForce
servers 4.5 ms and Luna servers 16.4 ms. For equal compari-
son across systems, our router adds 4.5ms round-trip delay to
Stadia, 12 ms to GeForce and 15 ms for iperf to provide about
a 16.5 ms round-trip time for all. While a 16.5 ms may be a
better round-trip time than that of many residential connec-
tions, our focus is on a comparison of congestion response,
not necessarily the quality of the individual connections.



Game-streaming versus TCP BBR and TCP Cubic IMC ’22, October 25–27, 2022, Nice, France

3.4 Experiments
Our pilot studies determined 3minutes of gameplay provided
for a steady state for bitrate for cloud-based game streams.
Our Wireshark traces begin after the game is being played
(i.e., loading, menus, etc. are not included — just gameplay).

We measured the steady-state bitrates for our systems
(Stadia, GeForce and Luna) and selected game (Ys) on an
unconstrained network, and the averages are shown in Ta-
ble 1 with the standard deviation in the parenthesis. Based
on these rates, we tested 3 network conditions: a “good” con-
nection with a capacity limit of 35 Mb/s which is above the
baseline bitrates, a “normal” connection with a capacity limit
of 25 Mb/s which is right at the baseline bitrates, and a “bad”
connection with a capacity limit of 15 Mb/s which is below
the baseline bitrates. We verified a solo iperf flow can satu-
rate the link on our testbed at all three capacities with a 16.5
millisecond round-trip time.

Table 1: Game system bitrates without capacity con-
straints or competing traffic. Units are Mb/s. Mean val-
ues are reported with standard deviations in parenthe-
ses.

System Bitrate (Mb/s)
Stadia 27.5 (2.3)
GeForce 24.5 (1.8)
Luna 23.7 (0.9)

Additional scripts automatically: 1) connect to the router
to: a) set the queue size and bottleneck capacity limit, as
appropriate, and b) launch Wireshark; 2) launch a ping
command from the client to the game server2; and 3) start
presentmon3 to record frame rates at the client.
In summary, for each round, the fully-automated experi-

ment procedure is:
(1) Connect to the iperf server and set the TCP congestion

control algorithm to Cubic or BBR, as appropriate.
(2) Start the game in the browser and wait for the game

to load.
(3) Connect to the router to set the bitrate, delay and queue

size and start Wireshark.
(4) Initiate a ping from the client to the appropriate game

server and start presentmon.
(5) Run the script on the game client which launches and

then plays the game Ys.
(6) After 3 minutes, start iperf on the iperf client.
(7) Continue the script which plays the game Ys for 3 more

minutes, then stop iperf.
2Identified automatically in a script via the Wireshark trace.
3https://github.com/GameTechDev/PresentMon

(8) Continue the script which plays the game Ys for a 3
final minutes.

(9) Close the game and all data collection tools and reset
the router to the unconstrained conditions.

(10) Repeat the above procedure for each of the three sys-
tems (Stadia, GeForce and Luna.

(11) Repeat the above procedure for both of the TCP con-
gestion control algorithms (Cubic and BBR).

We repeat the above procedure 15 times for each network
condition (capacity constraint and router queue size combi-
nation), cloud-based game streaming system and TCP con-
gestion control algorithm. Since Internet conditions from the
campus network to the game servers can change over time,
we stripe across game service to keep system comparisons as
temporally close as possible. For consistency, all this is done
by the scripts automatically, without manual intervention.
Thus, the order of experimental runs through the parameters
from outer loop to inner loop is: [1 to 15 iterations] [Cubic,
BBR congestion control] [B35, B25, B15 capacity constraint]
[7x, 2x, 0.5x router queue size] [Stadia, GeForce, Luna game
system].

A complete run of all systems and all iterations takes about
48 hours providing for performance that accounts for any
time-of-day affects. Data was gathered for two consecutive
weekdays in March 2022.

Table 2 provides a summary of the key experimental pa-
rameters.

Table 2: Experimental parameters.

Game system Stadia, GeForce, or Luna
Game Ys VIII: Lacrimosa of Dana
Capacity limit 15, 25, or 35 Mb/s
Queue size 0.5x, 2x, or 7x BDP
Competing TCP flow Cubic or BBR
Trace length 9 minutes (3 with iperf)
Iterations 15 runs per condition

4 ANALYSIS
This section compares the different cloud-based game stream-
ing systems with capacity and queue limits, both with and
without competing TCP flows, either TCP BBR or TCP Cu-
bic, considering: 1) game streaming bitrates (Section 4.1); 2)
bitrate fairness combined with a measure of adaptiveness to
congestion (Section 4.2); and 3) indicators of player quality
of experience (Section 4.3).

https://github.com/GameTechDev/PresentMon


IMC ’22, October 25–27, 2022, Nice, France Xiaokun Xu and Mark Claypool

(a) Stadia versus TCP Cubic (b) GeForce versus TCP Cubic (c) Luna versus TCP Cubic

(d) Stadia versus TCP BBR (e) GeForce versus TCP BBR (f) Luna versus TCP BBR

Figure 2: Game system bitrate versus time with a 25 Mb/s capacity constraint and a simultaneous iperf TCP flow
from 185s to 370s. Each line shows a separate run with a different bottleneck queue size (0.5x, 2x, or 7x) in multiples
of the bandwidth delay product (BDP).

4.1 Bitrates
We start analysis with a bitrate comparison (computed every
0.5 seconds) of each cloud-based game streaming system for
each queue size (0.5x, 2x and 7x BDP) where the competing
TCP flow runs for 3 minutes in the middle of the 9 minute
run. Figure 2 depicts the results for the 25 Mb/s capacity
constraint. The top row is for TCP Cubic and the bottom
row is for TCP BBR. The left column is Stadia, the middle is
GeForce and the right is Luna. For each graph, the x-axis is
gameplay time, in seconds, and the y-axis is the measured
bitrate, in Mb/s. The mean bitrate for the game system is
shown with a colored line with the shading depicting 95%
confidence intervals across the 15 runs. There is one line for
each queue size: 0.5x BDP - red, 2x BDP - green, and 7x BDP
- blue. The left vertical dashed line at 185s shows when the
iperf TCP flow starts and the right vertical dashed line at
370s shows when the flow stops. The horizontal dashed line
in the middle provides a visual reference for a fair share of
1/2 the bottleneck capacity limit (12.5 Mb/s in this scenario).

Before the competing flow arrives (i.e., up to time 185s),
the three systems have similar maximum bitrates near the
capacity limit, Luna having the least bitrate variation and
GeForce the most. When the iperf TCP flows arrive (time
185s), bitrates for all three systems decrease, indicating they

respond to the presence of other traffic competing for the
available capacity and, similarly, the systems recover to their
original bitrates sometime after the TCP flows leave (after
time 370s). Note, however, that the bitrate when the TCP
flow is running differs across the three systems – GeForce’s
bitrates are noticeably lower than the fair share of the capac-
ity, whereas Luna’s and Stadia’s bitrates are around the fair
share. When competing with TCP Cubic, the Stadia and Luna
bitrates depend upon the bottleneck queue size, with a larger
queue (7x) resulting in a lower bitrate by the game system
than with a small queue (0.5x). When competing with TCP
BBR, the game system bitrates are mostly independent of the
queue size, but Stadia shares the capacity more fairly than it
does with TCP Cubic and Luna gets less of the capacity than
it does with TCP Cubic. Note, too, that the time it takes the
game systems to adjust their bitrates to TCP flow arrivals
at 185s is generally much shorter than the time it takes the
game systems to recover to their original bitrates after the
TCP flows leave at 370s. A summary analysis of the combined
response-recovery times is provided in in Section 4.2.

We next analyze the bitrate difference between each game
system and the competing iperf TCP flow for each network
condition from time 220s to 370s, deliberately not computing
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Figure 3: Ratio of bitrate difference (i.e., difference ÷ capacity) for a game system competing with a TCP Cubic
flow or a TCP BBR flow.

the bitrates during the initial response to congestion, which
are analyzed separately in Section 4.2.

Figure 3 uses heatmaps to depict the results. The top row
of heatmaps is for the game systems competing with TCP
Cubic and the bottom row with TCP BBR. There is one large
box for each game system (Stadia on the left, GeForce in the
middle, and Luna on the right), with the smaller boxes within
each representing one network condition – 35, 25, and 15
Mb/s capacities as rows and 0.5x, 2x and 7x BDP queues as
columns. The numbers in the boxes are the average difference
in throughput for the game systemminus the competing TCP
flow, shown normalized by the capacity (thus ranging from
-1 to 1). The warm, red tones show where the game system
has a higher bitrate than the TCP flow and the cool, blue
tones where the game system has a lower bitrate.
Visually, when competing with TCP Cubic, GeForce is

entirely “cool” and always gets less than its fair share of the
capacity. In contrast, Stadia and Luna have mostly “warm”
areas where they get more than their fair share, with Stadia
having several “hot” areas, the “hottest” for a small queue
(0.5x BDP) and high capacity (35 Mb/s). However, both Stadia
and Luna have two “cool” areas with less than their fair share
for large queues (7x BDP).
When competing with TCP BBR, GeForce is still entirely

“cool,” but the colors are darker than for Cubic, which means

a competing TCP BBR flow gets more capacity than does a
competing TCP Cubic flow, and generally the smaller queues
and higher capacities have “cooler” areas. Luna with BBR
is also entirely “cool” in visible contrast to Luna with TCP
Cubic which is “warmer”. The “coolest” is for a small queue
(0.5x BDP) and high capacity (35 Mb/s). Stadia with BBR has
both “warm” and “cool” areas, and when compared to Stadia
with Cubic most of the “heat” has settled, with the exception
of the large queue (7x BDP) which is “warmer” for BBR. This
last change is likely because BBR caps its sending rate to
twice the computed BDP which, in turn, limits queuing at
the router that happens with TCP Cubic (see Section 4.3).

4.2 Adapativeness and Fairness
We next analyze how quickly a game system adjusts its bi-
trate when the TCP flow arrives and, when the flow departs,
how quickly the game system adjusts its bitrate back to the
initial level. We call the former response time and the latter
recovery time. To determine response time, we calculate the
mean original bitrate before the TCP flow arrives (from 125s
to 185s) and the mean bitrate for one minute when the game
system stabilizes, having adjusted to the TCP flow (from 310s
to 370s). Response time is the number of seconds it takes
the game system from time 185s until the average bitrate is
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(a) Game system versus TCP Cubic (b) Game system versus TCP BBR

Figure 4: Adaptiveness versus fairness. Adaptiveness is the average of the normalized response and recovery
times, flipped so higher is better. Fairness is the ratio of the bitrate difference between the game system and the
competing TCP flow – 0 is the most fair, positive means the game system has a higher bitrate, negative means the
competing TCP flow has a higher bitrate.

within one standard deviation of the adjusted bitrate. Sim-
ilarly, recovery time is the number of seconds it takes the
game system from time 370s until the bitrate is within one
standard deviation of the original bitrate.
We combine4 response time and recovery time into one

measure of adaptiveness (A):

𝐴 =
1
2
(1 − 𝐶

𝐶𝑚𝑎𝑥

) + 1
2
(1 − 𝐸

𝐸𝑚𝑎𝑥

)

where 𝐶 is the response time to contract the game system
bitrate when a TCP flow arrives and 𝐸 is the recovery time
to expand the game system bitrate to the previous level
when the TCP flow departs.𝐶𝑚𝑎𝑥 and 𝐸𝑚𝑎𝑥 are the maximum
observed response time and recovery time, respectively, to
normalize the results. Adaptiveness ranges from 0 to 1 and
oriented so 0 is the worst (least adaptive) and 1 is the best
(most adaptive).

Fairness is computed as the difference in throughput for
the game system minus the competing TCP flow, shown
normalized by the capacity (thus ranging from -1 to 1). A
0 indicates equal sharing of the link capacity between the

4A breakdown of the individual response and recovery times is available in
our technical report [31].

game system and a competing TCP flow, a -1 indicates the
competing TCP flow gets all the capacity, and a +1 indicates
the game system gets all the capacity.
Figure 4 shows scatter plots of adaptiveness versus fair-

ness, with Figures 4a and 4b showing the game system com-
peting with TCP Cubic and TCP BBR flows, respectively.
For each graph, the x-axis is the ratio of bitrate differ-

ence, and the y-axis is the adaptiveness (the average of the
response and recovery times, each normalized by the maxi-
mum across the three tested systems and flipped so higher
is better).

Each point is a single game system and network configu-
ration, with - indicating a 0.5x BDP queue, • a 2x BDP queue,
and + a 7x BDP queue. The encompassing colored circles rep-
resent the general areas of operation (Stadia - blue, GeForce
- red, and Luna - green). The grey dashed line in the middle
(𝑥 = 0) is where both the game system and the competing
TCP flow get an equal share of the capacity.

From the graphs, GeForce always gets less of the link
capacity (the pink ovals are to the left of the vertical center
line) than does the competing TCP flow and GeForce has
medium adaptiveness (ranging from about 0.35 to 0.8). Stadia
has generally the best adapativeness, being slightly better
when competing with TCP Cubic than when competing with
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Table 3: Round-trip time (ms) without a competing
TCP flow.

BDP 0.5x BDP 2x BDP 7x
Capacity Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

15 Mb/s 16.0
(1.7)

16.8
(1.5)

17.2
(2.1)

19.2
(8.8)

17.4
(8.1)

17.3
(8.6)

20.0
(11.5)

20.1
(9.5)

19.7
(9.4)

25 Mb/s 16.6
(2.2)

16.8
(1.6)

17.0
(1.5)

20.6
(10.2)

16.9
(5.8)

17.2
(5.6)

22.0
(13.9)

20.7
(9.5)

18.1
(10.9)

35 Mb/s 17.1
(1.4)

18.2
(1.8)

16.4
(1.6)

20.6
(10.5)

18.6
(5.2)

16.8
(5.7)

20.9
(12.3)

20.9
(9.6)

17.3
(9.5)

TCP BBR. Stadia is slightly unfair when competing with TCP
Cubic, but Stadia is the most fair when competing with TCP
BBR (the blue ovals are slightly to the right and centered on
the vertical center line, respectively). Luna is the most fair
(the green oval is centered on the vertical center line) with
a range of adaptations (high to low) when competing with
TCP Cubic, but is visibly less responsive when competing
with TCP BBR and also generally unfair in that the TCP BBR
flow gets more capacity (the green oval is to the left of the
vertical center line).

4.3 Indicators of Quality of Experience
Indicators of the player quality of experience (QoE) of a cloud-
based game are delay (which manifests when the bottleneck
router queue becomes filled with excess traffic) and frame
rate.

Another indicator of QoE is loss rate [24], where lost game
frames can degrade visual quality for the player. For all net-
work conditions and all game systems, loss rates are near 0
when there is no competing TCP flow. Evenwith a competing
TCP flow, loss rates are well under one percent in all cases,
albeit slightly higher for small queues and when competing
with TCP BBR – the latter does not treat loss as an indicator
of congestion. Tables of the loss rates for all systems and
each network condition, both with and without competing
TCP flows, can be found in our technical report [31].

Games played over a cloud-based game streaming system
are sensitive to delay since all player input needs to be sent
to the server, acted upon by the game engine, rendered, and
then sent back to the client before the player can see the
outcome of their actions. There are inherent delays in the
end systems – e.g., input delay from the mouse and monitor
on the client, game engine updates and rendering on the
server – but the network round-trip time is “extra” delay
that would not be present if the game was played entirely
locally. Table 3 (without a competing TCP flow) and Table 4
(with a competing TCP flow, either Cubic or BBR) have the
round-trip times for the 3 systems for each condition (ca-
pacity, queue size and congestion control algorithm). Each

value is the mean for the 3 minutes gameplay with standard
deviations shown in parentheses.
For all systems, when there is no competing TCP flow,

the round-trip times are low, near minimal (about 16 ms)
for small queues, but increasing by about 25% for Stadia and
GeForce for larger queues. The small differences in delays
between systems may be noticeable to users, but are small
enough to not appreciably affect performance or QoE [1].
These round-trip times do not reach even the delays that
would be caused by 0.5x BDP queueing suggesting that, un-
like TCP Cubic, the systems themselves do not saturate avail-
able capacity until there is loss.
When there is a competing TCP Cubic flow, the round-

trip times are consistently at the limit dictated by the queue
size both for TCP Cubic and TCP BBR, which makes sense
given that TCP Cubic generally increases sending rates until
there is packet loss. This illustrates how large router queues
in the presence of competing flows during congestion re-
sult in added delay for game-streaming systems. Note that
this holds for competing TCP BBR flows, as well, but for
game systems competing with TCP BBR over large queues
(7x BDP), all three systems have about half the round-trip
times experienced when competing with TCP Cubic. This
difference is explained by the BBR protocol that caps the
maximum congestion window to twice the BDP which, in
turn, limits the number of packets that can build up in the
queue to about the BDP. For the large queues (7x BDP), the
delay differences when competing with TCP Cubic versus
TCP BBR (about 110 ms vs. 55 ms) are meaningful and would
result in about a 10% decrease in QoE for users [24].
Frame rate is another key indicator of the game quality,

where higher frame rates can improve player performance
and are generally associated with a better player quality
of experience (QoE) [8, 17, 18, 33]. Without a competing
TCP flow, the frame rates of all systems for all network
conditions are near 60 f/s, so only frame rate analysis with
competing TCP flows is presented. Table 5 shows the mean
frame rates for the 3 systems under each network condition,
with standard deviation in parentheses, computed for the
3 minutes when the competing TCP flow runs. The game
system competing with TCP Cubic is shown adjacent to TCP
BBR.
In general, game system frame rates are independent of

the capacity. For both Cubic and BBR, frame rates are higher
with greater capacity and larger queues. When competing
with TCP Cubic, frame rates are generally high (50+ f/s), al-
though frame rates tend to be lower (about 50 f/s) for Stadia
with small (0.5x BDP) and medium (2x BDP) queues than
the frame rates for Luna or GeForce with the same condi-
tions. When competing with TCP BBR, with small (0.5x BDP)
and medium (2x BDP) queues, frame rates degrade for all
game systems. Stadia and Luna in particular have frame rates
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Table 4: Round-trip time (ms) with a competing TCP flow.

BDP 0.5x BDP 2x BDP 7x
Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

Capacity Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR

15 Mb/s 17.4
(2.5)

20.7
(2.8)

17.7
(2.3)

24.7
(8.3)

17.7
(2.1)

23.4
(3.3)

40.1
(6.8)

45.8
(10.1)

38.3
(5.7)

44.2
(7.9)

40.0
(5.7)

41.8
(9.2)

111.6
(12.4)

77.8
(15.9)

110.7
(10.9)

59.8
(14.5)

108.9
(14.7)

57.1
(14.8)

25 Mb/s 17.8
(2.6)

20.7
(2.6)

17.8
(2.4)

24.7
(8.3)

18.6
(3.8)

23.4
(3.3)

40.0
(6.0)

44.2
(7.5)

39.3
(5.9)

42.4
(8.3)

40.6
(5.8)

39.6
(9.1)

110.6
(9.3)

55.9
(15.7)

109.2
(10.8)

54.9
(12.9)

106.1
(16.7)

52.0
(12.8)

35 Mb/s 18.3
(2.9)

20.2
(5.4)

19.5
(3.7)

20.6
(2.5)

17.7
(2.3)

24.3
(7.3)

39.0
(8.1)

43.5
(8.3)

42.0
(6.8)

39.7
(10.1)

40.8
(5.1)

37.0
(7.5)

110.6
(12.5)

54.4
(10.7)

114.5
(14.0)

49.8
(10.8)

109.9
(10.9)

40.3
(9.7)

Table 5: Frame rate (f/s) with competing TCP flow.

BDP 0.5x BDP 2x BDP 7x
Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

Capacity Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR Cubic BBR

15 Mb/s 50.8
(1.83)

38.8
(1.50)

57.9
(0.46)

51.7
(1.10)

53.7
(1.02)

22.3
(3.14)

50.9
(0.27)

40.2
(1.14)

59.1
(0.22)

53.9
(0.43)

56.5
(0.94)

44.8
(1.04)

56.9
(0.43)

57.5
(2.07)

59.8
(0.09)

59.5
(0.35)

58.1
(0.59)

59.3
(0.15)

25 Mb/s 50.5
(0.65)

40.2
(1.47)

57.9
(0.28)

54.9
(0.21)

53.7
(0.66)

39.0
(1.53)

51.0
(0.61)

40.5
(0.52)

59.3
(0.16)

55.6
(0.34)

56.9
(0.18)

53.9
(1.09)

58.7
(0.22)

59.4
(0.08)

59.9
(0.06)

59.6
(0.05)

58.1
(0.11)

59.5
(0.19)

35 Mb/s 51.0
(1.94)

41.2
(1.83)

59.9
(0.15)

56.5
(0.37)

56.9
(0.36)

47.3
(0.71)

51.5
(1.73)

47.2
(1.87)

59.9
(0.05)

57.2
(0.19)

58.0
(0.22)

57.5
(0.34)

58.8
(0.30)

58.9
(0.81)

59.9
(0.03)

59.7
(0.05)

58.6
(0.21)

59.7
(0.14)

around 40 f/s when competing with BBR, and Luna has an
average frame rate as low as 22 f/s with 15 Mb/s capacity.
In contrast, GeForce has more resilient frame rates, always
averaging above 50 f/s. For BBR, compared to Cubic, GeForce
has slightly lower frame rates. Stadia and Luna have much
lower frame rates, and Luna has the lowest frame rates of
only 22.3 f/s at low capacity (15 Mb/s) and a small queue
(0.5x BDP).

5 LIMITATIONS AND FUTUREWORK
Our experiments are for one game only and prior work has
shown that the bitrates for different games on the same cloud-
based game streaming system can vary considerably [30].
Future work should see if the comparative differences illus-
trated here hold for other games, as well. Similarly, whether
the results hold for other prominent cloud-based game stream-
ing systems such as those by Microsoft or Sony is not known
and could be studied.
Our router uses only a drop-tail queue, whereas Active

Queue Management approaches (AQM) that signal conges-
tion earlier (e.g., Flow Queue CoDel [16]) might be consid-
ered.
As analyzed in Section 4.3, beyond bitrates, round-trip

times and frame rates provide some indication of player
experience, but Quality of Experience (QoE) is impacted by

other aspects, such as frame resolution and visual quality,
as well. Future work might assess and compare QoE across
systems and games.
Our system comparisons focus on throughput fairness,

but could instead consider harm-based analysis [25] where
responses to congestion would be assessed based on their
impacts to throughput, loss and round-trip time compared
to the impacts the competing traffic has on itself (e.g., how
much harm TCP Cubic flows cause to other TCP Cubic flows).

Our congestion scenarios are only a single, bulk-download
TCP flow whereas many if not most congestion scenarios
are be more varied. In particular, cloud-based game streams
may often compete with streaming video (e.g., Netflix) over
last-mile residential networks. Our future work is to consider
HTTP-based streaming, live video conferencing and multiple
flows and mixtures of flows.

6 CONCLUSIONS
Emerging cloud-based game streaming systems hold out the
promise of providing a convenient gaming experience for
players, as long as the network conditions are sufficient. In
particular, streaming computer games need high definition
frames sent at high frame rates (typical targets are 60 f/s).
This, in turn, requires high bitrates that have the potential to
congestion last mile networks, particularly when competing
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for capacity with other network flows. While network flows
use TCP and most of those TCP flows use Cubic [15] as their
congestion control algorithm, there are alternate congestion
control algorithms in use, such as Bottleneck Bandwidth
and Round-trip time (BBR) [6]. This paper compares three
commercial systems – Google Stadia, NVidia GeForce Now
and Amazon Luna – with repeated runs of the same game
across capacity constraints and bottleneck queue sizes, while
the game systems compete for capacity with a TCP Cubic or
TCP BBR flow.

Analysis of the results show the three systems have similar
bitrates near capacity at 25 Mb/s, and even for constrained
conditions (lower capacity, smaller queue sizes) none of the
three systems has self-induced congestion, keeping packet
queuing low and packet loss minimal in the absence of com-
peting traffic. When competing with a bulk-download TCP
Cubic flow, Luna generally shares the available capacity
fairly, but GeForce defers and lets the TCP flow have about
twice what is fair and Stadia dominates taking about twice
what is fair. When competing with a bulk-download TCP
BBR flow, Stadia generally shares the available capacity fairly,
but GeForce reduces its bitrate even more than for TCP Cu-
bic for all network conditions, and Luna, too, has bitrates
considerably below what is a fair share. Stadia is generally
the most adaptive of the three systems, responding quickly
to arriving TCP flows and recovering when the flows depart
for both TCP Cubic and TCP BBR. GeForce tends to have

the slowest response to arriving TCP flows, particularly for
TCP BBR. Luna has fast response and recovers fairly fast for
when competing with TCP Cubic, but has greatly reduced
recovery times when competing with TCP BBR. Trends for
long response/recovery times are generally exacerbated by
large bottleneck queues (buffer bloat), whereas trends for
unfairness are exacerbated by small queue sizes. In some
cases of constrained capacity and small queues, Stadia never
responds or recovers to the competing TCP flow, while Luna
never recovers from a competing TCP BBR flow once it de-
parts at high capacity.

Large bottleneck queues (buffer bloat) also result in larger
delays for the game systems, which is bad for player quality
of experience; this effect is more pronounced when the game
system is competing with TCP Cubic whereas a competing
TCP BBR flow limits the extent to which the bottleneck
queue grows. More constrained network conditions also
result in lower frame rates displayed by the game system,
most noticeably for Stadia. Frame rate decreases are most
pronounced when the game system is competing with TCP
BBR, with frame rates down from the target 60 f/s to as low
as about 22 f/s.

These results provide a better understanding of game sys-
tem interactions with constrained and competitive network
links both for competing TCP Cubic and competing TCP BBR
flows and should be useful to better plan for, and hopefully
deter, resulting network congestion.
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