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Abstract—Cloud-based game streaming requires low-latency
and high-throughput networking to support real-time interac-
tivity and high-quality visuals critical to such platforms. How-
ever, the capacity of local networks to meet these demands is
challenged by the simultaneous presence of other bandwidth-
intensive applications, such as Dynamic Adaptive Streaming
over HTTP (DASH) for video content. While some aspects of
network congestion for cloud-based game streaming have been
studied, missing are comparative performance and congestion
responses for cloud-based game streams competing with video
flows – a common scenario for users on a home Local Area
Network (LAN). This paper presents results from experiments
that measure how two commercial cloud-based game streaming
systems – NVIDIA GeForce Now and Amazon Luna – respond
to DASH flows on a congested network link. Analysis of bitrates,
frame rates and round-trip times for the game streaming flows
and analysis of media throughput and interrupts for the DASH
flows show markedly different responses to the arrival and
departure of competing DASH traffic.

I. INTRODUCTION

Cloud computing infrastructures combined with high-
capacity networks have enabled the emerging market of cloud-
based game systems that stream game frames as video, letting
the player experience high quality graphics and gameplay with
only a lightweight client. Systems that seek to capitalize on the
opportunity afforded by cloud-based game streaming systems
include Sony PlayStation Now, Microsoft xCloud, NVidia
GeForce Now, and Amazon Luna with Meta’s Facebook
gaming arriving soon.

Unlike in traditional computer games, cloud-based game
streaming clients do not run full versions of the game engine.
Instead, only the cloud-based server handles the relatively
heavyweight game and graphics tasks – applying physics,
resolving collisions, processing AI, and rending the game
frames – streaming the game as video to the game client.
This allows the game client to be fairly lightweight, needing
only the capability to play the streamed game frames similarly
to a streaming video player. However, unlike for streaming
video, the cloud-based game player interacts with the stream
frequently and the client sends the player’s game input back
up to the server to be acted upon in the game. This means a
significant disadvantages of cloud-based game streaming over

traditional games is the increased traffic required – bitrates
for frequent player actions and high-quality video frames
can cause congestion, degrading player quality of experience
especially in the presence of co-located network traffic.

Previous work has compared the congestion response for
cloud-based game streaming systems competing with bulk-
downloads [1], whereas a common potential congestion sit-
uation is when a cloud-based game stream shares a bottleneck
link with a Dynamic Adaptive Streaming over HTTP (DASH)
flow, as might happen in a home network where one person
is playing a cloud-based game while a housemate streams a
YouTube or Netflix video. Moreover, the bitrate requirements
for video streaming services have significantly increased as
well, with more support for 4K UHD content and live sports,
including e-sports, that can be as high as 35 Mb/s [2], on par
with cloud-based game streaming bitrates [3].

This paper presents an analysis of the network congestion
response for two commercial cloud-based game streaming sys-
tems – NVIDIA GeForce Now and Amazon Luna – providing
a direct comparison of their bitrates over time and impact
on network congestion when competing for scarce capacity
with DASH flows over a range of network conditions. We
configure and host a DASH server and client in our testbed.
Our methodology launches the client and streams the video
automatically while running the game systems via a script
playing the same game on each system to ensure similar player
actions across runs. By necessity, the commercial cloud-based
game streaming servers are on the Internet, so as to be as
comparable as possible we: 1) interlace runs of each game
system serially to minimize temporal differences, and 2) do
15 runs for each test condition to provide for a large sample.

The results show both game systems do not have self-
induced congestion when there are no competing flows, but
do suffer from congestion when competing with DASH flows.
How fairly bottleneck capacity is shared depends primarily
upon the game system and bottleneck queue sizes, with small
bottleneck queues favoring Luna, while GeForce is more fair
but less so with a typical bottleneck queue size.

The rest of this paper is organized as follows: Section II
provides related work; Section III describes our methodology;
Section IV analyzes the experimental results; Section V dis-
cusses the implications; Section VI mentions limitations and
future work; and Section VII summarizes our conclusions.979-8-3503-5209-2/24/$31.00 ©2024 IEEE



II. RELATED WORK

This section describes related work: 1) measurements of
cloud-based game streaming systems and Quality of Ex-
perience (QoE), and 2) performance of Dynamic Adaptive
Streaming over HTTP.

A. Cloud-based Game Streaming

Suznjevic et al. [4] measure network traffic for NVIDIA
GeForce Now and find GeForce requires bitrates significantly
higher than earlier systems (about 25 Mb/s compared to 6
Mb/s previously [5]). Marc et al. [6] limit link capacities
for Google Stadia during gameplay, finding Stadia adjusts the
resolution and/or frame rates in response to a bitrate reduction.
An extension of this work [7] measures the responses of three
commercial systems, finding the three systems have different
adaptations to network congestion and vary in their fairness
to competing TCP flows sharing a bottleneck link.

While the above papers are helpful for characterizing net-
work characteristics for cloud-based game streaming systems,
they do not measure system congestion response when faced
with competing DASH flows.

B. Dynamic Adaptive Streaming over HTTP

There have been numerous works assessing the Quality
of Experience of DASH video, including survey results by
Seufert et al. [8] and Garcia et al. [9]. In particular, Garcia et
al. [10] investigate the quality impact of the combined effect of
initial loading, interrupts, and compression for high definition
sequences, from which they observe an additive impact of
interrupts and compression on QoE. Based on these subjective
user studies, the video quality and number of interrupts in the
video playout are key factors in our assessment of DASH QoE.

There are numerous evaluations of DASH, as well. A
core aspect of DASH performance is the bitrate adaptation
algorithm deployed. Bentaleb et al. [11] provide a survey of
bitrate adaptation techniques. Bhat et al. [12] evaluate DASH
using QUIC versus DASH using TCP with different quality
adaptation algorithms. Our work is complementary in that
while our focus is on the cloud-based game streaming system,
we evaluate the quality of a reference DASH implementation
when it competes with a game stream.

III. METHODOLOGY

To assess the response of cloud-based game streaming sys-
tems to competing DASH flows, we selected two commercial
systems and a game common to both (Section III-A), config-
ured a client and server for DASH streaming (Section III-B),
setup a measurement testbed that allowed for controlling
congestion conditions (Section III-D), gathered network traces
(Section III-E), and analyzed the data (Section IV).

A. System and Game Selection

We selected two cloud-based game streaming systems –
NVIDIA GeForce Now, and Amazon Luna – based on their
current popularity for game players. While Luna and GeForce
offer native applications for client-side players, since both

support play via the Google Chrome browser, we use Chrome
as the game client for a fair comparison across systems.

For game selection, as for the platform, we sought a game
that could be played on each system to allow for a fair
comparison. We selected one of the few games available on
both: Ys VIII: Lacrimosa of Dana (Nihon Falcom, 2016) – a
third person action/exploration game.

Since gameplay visuals (i.e., what is streamed to the client
and the player sees) depend upon the player’s actions, we
wrote scripts to play the game automatically, thus providing
identical, repeatable gameplay conditions across runs and
across platforms. Our scripts open the game (with input
appropriate for each system), load the same game map, and
then play the game automatically as might a human player.

B. DASH Configuration

The server runs Apache on Linux, hosting a manifest and
segments for the DASH configuration of the video Big Buck
Bunny1 encoded into 5 different quality levels for adaptive
bitrate scaling. The encoding levels, resolutions and bitrates
are shown in Table I. The DASH client is DASH.js2 – a
reference client implementation for playback of DASH via
JavaScript – running on Firefox. The reference client uses the
DYNAMIC [2] Adaptive Bitrate Streaming (ABR) algorithm
by default.

TABLE I: DASH quality levels.

Level Res. (pixels) Bitrate (Mb/s)
1 480x270 2.0
2 640x360 3.0
3 960x540 5.0
4 1280x720 10.0
5 1920x1080 17.5

C. Network Conditions

Our goal is to assess the congestion response for the cloud-
based game streaming systems considering congestion arising
from both network capacity limits and competing DASH
traffic. The network capacity limits alone allow comparison of
system responses to possible self-induced congestion arising
from various “last-mile” network conditions provided, say, by
an Internet Service Provider (ISP), as well as provide baseline
performance for constrained conditions without competing
DASH flows. Adding competing traffic allows comparison of
system congestion responses for co-induced congestion caused
by the presence of other network flows on the bottleneck link.
We consider link capacities that are within the range of many
U.S. residential connections, one of: 1) above the maximum
required for each system, but that are less than twice the
needed capacity when competing with another flow, 2) right
at the maximum capacity required, or 3) less than half (40%)
of the maximum capacity required.

1https://en.wikipedia.org/wiki/Big Buck Bunny
2https://github.com/Dash-Industry-Forum/dash.js/



The dynamics of TCP congestion control algorithms (used
by the DASH streams) are influenced by the size of the queue
at the bottleneck router. A general rule of thumb is that the
bottleneck link’s buffer queue size should be a small multiple
(typically 1x) of the product of the bottleneck capacity and
the round-trip delay, otherwise known as the bandwidth-delay
product (BDP) – i.e., the BDP is computed by taking the link
capacity (bottleneck) in bits per second and multiplying it
by the round-trip time (delay) in seconds. Other guidelines
suggest a “good” queue size is (BDP )/

√
n, where n is the

number of flows at the bottleneck link. However, there are
also routers that have considerably larger buffers, a phenomena
known as “buffer bloat” [13]. We consider a range of queue
sizes, including those that are one of: 1) shallow, at about one-
half the BDP, 2) typical, at about 1x the BDP, or 3) bloated,
at about 7x the BDP.

D. Measurement Testbed

Figure 1 depicts the general setup for our measurement
testbed. Our testbed automatically plays the game YS via
Chrome on the game client depicted in the figure, connecting
through our custom router to the appropriate cloud-service
provider (either NVIDIA GeForce Now or Amazon Luna). For
experiments with competing traffic, the bottleneck link (from
the router down to the clients) is shared by a DASH client.
The game client is a PC running Windows 10 Pro, connecting
to the cloud-based game streaming service via Chrome version
98.0.4758.102 (64-bit). The PC hardware is an Intel i7 eight-
core CPU @ 2.0 GHz with 64 GB RAM with a 1 Gb/s
Ethernet NIC. The PC has an LED monitor with 1920x1080
pixels running at 60 Hz. The DASH client and server are both
Alienware PCs each with an 4-core Intel i7-4790K CPU @
4 GHz with 16 GB RAM running Ubuntu 20.04 LTS, Linux
kernel version 5.4 and connect with 1 Gb/s Ethernet NICs.

The game client and DASH client PCs connect via a 1 Gb/s
switch to a Raspberry Pi 4 configured to act as a network
router. The Pi has a 1.5 GHz 64-bit quad-core CPU with 8 GB
of RAM and runs Ubuntu 20.04 LTS, Linux kernel version 5.4,
using tc [14] and netem to constrain the network capacity
and add delay. Wireshark is used to gather all network traces
for throughput analysis, gathering the game streaming traffic
on the router and the DASH traffic on the DASH client.

Based on ping measurements from our client, round-trip
times to GeForce servers average 4 ms and Luna servers
average 16 ms. For equal comparison across systems, our
router adds 12 ms to GeForce and 15 for the DASH client
to provide about a 16 round-trip time for all flows.

E. Experiments

Our pilot studies determined 3 minutes of gameplay pro-
vided for a steady state bitrate for the cloud-based game
streams. Our Wireshark traces begin after the game is being
played (i.e., loading, menus, etc. are not included — just
gameplay).

We measured the steady-state bitrates for our systems
(GeForce and Luna) and selected game (Ys) on an uncon-

Fig. 1: Measurement testbed.

strained network, and the averages are shown in Table II with
the standard deviations in parenthesis. Both game systems
have the same quality settings – 1080P resolution and a 60
f/s framerate. Based on these rates, we tested 3 network
conditions: a “good” connection with a capacity limit of
35 Mb/s which is above the baseline bitrates, a “normal”
connection with a capacity limit of 25 Mb/s which is right at
the baseline bitrates, and a “bad” connection with a capacity
limit of 15 Mb/s which is below the baseline bitrates.

TABLE II: Game system bitrates without capacity constraints
or competing traffic. Units are Mb/s. Mean values are reported
with standard deviations in parentheses.

System Bitrate (Mb/s)
GeForce 27.5 (4.8)
Luna 23.7 (0.9)

Additional scripts automatically: 1) connect to the router
to: a) set the queue size and bottleneck capacity limit, as
appropriate, and b) launch Wireshark; 2) launch a ping
command from the client to the game server3; and 3) start
presentmon4 to record frame rates at the client.

In summary, for each round, the fully-automated experiment
procedure is:

1) Connect to the DASH server.
2) Start the game in the browser and wait for the game to

load.
3) Connect to the router to set the capacity limit, delay and

queue size and start Wireshark.
4) Initiate a ping from the client to the appropriate game

server and start presentmon.
5) Run the script on the game client which launches and

then plays the game Ys.
6) After 3 minutes, start to play the video streaming to the

DASH client.
7) Continue the script which plays the game Ys for 3 more

minutes, then stop the DASH video streaming.
8) Continue the script which plays the game Ys for a 3

final minutes.
9) Close the game and all data collection tools and reset

the router to the unconstrained conditions.

3Identified automatically in a script via the Wireshark trace.
4https://github.com/GameTechDev/PresentMon



(a) GeForce bitrates with capacity 35 Mb/s (b) GeForce bitrates with capacity 25 Mb/s (c) GeForce bitrates with capacity 15 Mb/s

(d) Luna bitrates with capacity 35 Mb/s (e) Luna bitrates with capacity 25 Mb/s (f) Luna bitrates with capacity 15 Mb/s

Fig. 2: Game system bitrate versus time with a simultaneous DASH flow from 190s to 380s. Each line shows a separate run
with a different bottleneck queue size (0.5x, 1x, or 7x) in multiples of the bandwidth delay product (BDP).

10) Repeat the above procedure for both systems (GeForce
and Luna).

We repeat the above procedure 15 times for each network
condition (capacity constraint and router queue size combi-
nation). Since Internet conditions from the campus network
to the game servers can change over time, we stripe across
game service to keep system comparisons as temporally close
as possible. For consistency, all this is done by the scripts
automatically, without manual intervention. Thus, the order of
experimental runs through the parameters from outer loop to
inner loop is: [1 to 15 iterations] [B35, B25, B15 capacity
constraint] [7x, 1x, 0.5x BDP router queue size] [GeForce,
Luna game system].

A complete run of all iterations for both systems takes about
24 hours providing for performance that accounts for any time-
of-day affects.

Table III provides a summary of the key experimental
parameters.

TABLE III: Experimental parameters.

Game system GeForce or Luna
Game Ys VIII: Lacrimosa of Dana
Capacity limit 15, 25, or 35 Mb/s
Queue size 0.5x, 1x, or 7x BDP
Competing connection DASH video streaming
Trace length 9 minutes (3 with DASH)
Iterations 15 runs per condition

IV. ANALYSIS

This section compares the different cloud-based game
streaming systems with capacity and queue limits, considering:
1) game streaming bitrates and DASH video streaming bitrates
(Section IV-A), and 2) bitrate fairness (Section IV-B).

A. Bitrates

We start analysis with a bitrate comparison (computed every
0.5 seconds) for both cloud-based game streaming systems for
each queue size (0.5x, 1x and 7x BDP) where the competing
DASH flow runs for 3 minutes in the middle of the 9
minute game run. Figure 2 depicts the results for all capacity
constraints (35, 25 and 15 Mb/s). For each graph, the x-axis
is gameplay time, in seconds, and the y-axis is the measured
bitrate, in Mb/s. The mean bitrate for the game system is
shown with a colored line with the shading depicting 95%
confidence intervals across the 15 runs. There is one line for
each queue size: 0.5x BDP - red, 1x BDP - green, and 7x
BDP - blue. The left vertical dotted line at 190s shows when
the DASH flow starts and the right vertical dotted line at 380s
shows when the DASH flow stops.

Before the competing DASH flow arrives (i.e., up to time
190s), mostly the two systems have similar maximum bitrates
near the capacity limit except for Luna when the capacity is 35
Mb/s because the maximum bitrate of Luna is around 25 Mb/s.
Overall, Luna exhibits lower bitrate variation, while GeForce
tends to have higher bitrate variation.

When the DASH flows arrive (at 190s), the bitrates for both
systems decrease, indicating they respond to the presence of



Fig. 3: Ratio of bitrate difference (i.e., difference ÷ capacity) for a game system competing with a DASH flow.

traffic competing for the available capacity and, similarly, the
systems recover to their original bitrates after the DASH flows
leave (after time 380s). When competing with DASH flows,
the Luna bitrates depend upon the bottleneck queue sizes, with
a larger queue (7x BDP) resulting in a lower bitrate by the
game system than with a small queue (0.5x BDP). GeForce
bitrates are always highest with the typical queue (1x BDP)
and lowest with the small queue (0.5x BDP) and the larger
queue (7x BDP).

B. Fairness

We next analyze bitrate fairness measured as the difference
in bitrates between each game system and the competing
DASH flow from time 220s to 370s, normalized by the
capacity. This provides fairness measures that range from -1 to
+1, with positive values indicating the game system receives a
higher portion of the bottleneck capacity and negative numbers
indicating the DASH flow receives a higher portion of the
bottleneck capacity.

Figure 3 uses heatmaps to depict the results. There is one
large box for each game system (GeForce on the left, Luna on
the right), with the smaller boxes within each representing one
network condition – 35, 25, and 15 Mb/s capacities as rows
and 0.5x, 1x and 7x BDP queues as columns. The numbers in
the boxes are the average difference in throughput for the game
system minus the competing TCP flow, shown normalized by
the capacity (thus ranging from -1 to +1). The warm, red tones
show where the game system has a higher bitrate than the
DASH flow and the cool, blue tones where the game system
has a lower bitrate.

Visually, GeForce has more “cool” areas where it gets
slightly less than the fair share, with GeForce having one
“warm” column for the typical queue (1x BDP). Luna has
half “warm” areas for the small queue (0.5x and 1x BDP) and
half “cool” areas for the larger queues (1x and 7x BDP).

V. DISCUSSION

Previous work [1] examines cloud-based game streaming
system response to competing bulk-downloads. The results

show competing bulk-downloads impact game streams’ QoE
considerably, especially for GeForce and Luna. Large bottle-
neck queues and limited capacities especially degrade QoE,
increasing round-trip times 7-fold and halving frame rates. In
contrast, competing DASH flows have far less impact. While
QoE degrades somewhat with bloated queue capacities that
cause higher round-trip times, round-trip times are usually low
and frame rates generally high, near 60 f/s for all scenarios (not
shown due to space constraints). The competing DASH flows
do not fare as well, typically getting less than half the capacity
and frequent quality switches, although interrupts remain low.

In general, there are significant differences in congestion
response across both systems – i.e., there is no “one size, fits
all”. This suggests measurement studies should consider more
than one system in order to determine representative behavior.
The good news is that both of the streaming systems do, in
fact, appear to respond to congestion, even if competing DASH
flows tend to get less than their fair share of the bottleneck
capacities in most cases. However, the ability (and perhaps
willingness) of cloud-based game streaming systems to adapt
when the capacities are more restricted (15 Mb/s) is limited,
and generally small bottleneck queues result in a less adaptive
cloud-based game streaming flow.

VI. LIMITATIONS AND FUTURE WORK

Our focus is on the game player when a cloud-based game
streaming system must compete with an arriving streaming
video in the middle of gameplay. The converse scenario –
a streaming video started first, then later competing with
an arriving game session – may yield different results for
both flows. A future study could use the same methodology
employed here, just swapping the timing for the game system
with the DASH video.

Our experiments are for one game only (Ys VIII) and prior
work has shown that the bitrates for different games on the
same cloud-based game streaming system can vary consider-
ably [3]. Future work could see if the comparative differences
illustrated in our paper hold for other games, as well. Similarly,
whether the results hold for other prominent cloud-based game



streaming systems such as those by Microsoft or Sony is not
known and could be studied.

This paper focuses on competition from only one DASH
flow since this is a reasonable starting point and likely experi-
enced by cloud-based game streams in many households. Fu-
ture work could consider more complicated network scenarios
with multiple DASH flows, or even mixtures of different types
of network flows (e.g., DASH and Web browsing and bulk-
downloads). Other experiments could consider other local- or
metropolitan-area networks including 4G and 5G.

Our router uses only a drop-tail queue, whereas Active
Queue Management approaches (AQM) that signal congestion
earlier (e.g., Flow Queue CoDel [15] or PIE [16]) might yield
different results and could be considered for future study.

Our experiment setup allowed us to keep the same DASH
configuration across runs, but commercial systems may behave
differently, even while using DASH. Future work could involve
using commercial DASH video such as Netflix or YouTube.
Similarly, our current testing setup is limited to only two sys-
tems whereas there are other commercial systems in use that
may behave differently. Future work could broaden testing to
other platforms, such as Sony Playstation Now and Microsoft
XCloud for comparative performance evaluation.

VII. CONCLUSIONS

Emerging cloud-based game streaming systems hold the
promise of providing a convenient gaming experience for
players as long as the network conditions can meet the
challenge. In particular, streaming computer games need high
definition frames sent at high rates (typical targets are HD
and 60 f/s). This, in turn, requires high bitrates that have the
potential to congest last mile residential networks, particularly
when competing for capacity with other network flows. This
paper compares two commercial systems – NVIDIA GeForce
Now and Amazon Luna – with repeated runs of the same
game on network links with different capacity constraints and
bottleneck queue sizes, while the game systems compete for
bottleneck capacity with a DASH flow.

Analysis of the results shows the two game systems have
similar bitrates that operate near the capacity constraints, and
even for constrained conditions (lower capacity, smaller queue
size) none has self-induced congestion, keeping packet queu-
ing low and packet loss minimal in the absence of competing
traffic. When competing with a DASH flow, GeForce generally
shares the available capacity fairly, and Luna takes more
than it’s fair share of capacity for small router queues but
less than its fair share for large queues and high capacities.
Large bottleneck queues (buffer bloat) result in larger delays
for the game systems, which is bad for game player quality
of experience. The competing DASH flows mostly operate
without interruptions in their playout, except for capacity
constrained conditions, especially when competing with Luna.

These results provide a better understanding of game system
interactions with constrained network links when competing

with DASH flows and should be useful to better plan for, and
hopefully deter, resulting network congestion, thus potentially
improving game player and video viewer quality of experi-
ence.
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