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ABSTRACT

Computer games are often rendered with inconsistent frame timing
(frame jitter), particularly in cloud-based game streaming where
frames traverse network bottlenecks before being rendered. While
previous studies have helped understand the Quality of Experience
(QoE) with frame jitter, derived models have tended to be limited
in their prediction ability for conditions not yet tested. This paper
combines results from four different user studies that assess QoE
based on frame jitter, the studies differing in games, game systems,
and methods of induced frame time variation. Analysis of the results
shows the degree to which frame jitter degrades QoE, and that
playout interruption sizes matter while interrupt frequencies do
not. The rich user study-based data set provides the basis for models
for predicting game player QoE with frame jitter - models which
should be predictive for both cloud-based game streaming and
traditional games, and for a wide range of player actions and game
genres.
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1 INTRODUCTION

Computer games are one of the world’s most popular forms of
entertainment, with global sales increasing at an annual rate of 10%
or more [35]. Computer games are typically dominated by visuals,
where a key factor impacting player experience is the frame rate.
Generally, a higher frame rate yields smoother, more immersive
visuals and is preferred over a lower frame rate. However, a high
average frame rate alone does not always ensure good quality
since variation in frame rates can degrade the player’s experience
even while the average stays high [12]. Unfortunately, smooth
frame delivery is a challenge faced by many game systems as new
games continually push the graphics and processing capabilities of
today’s computers. This is particularly true for cloud-based game
streaming systems, where the server renders the game frames at
60 Hz with up to 4k resolution and streams video to the client over

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MMSys 24, April 15-18, 2024, Bari, Italy

© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-0412-3/24/04...$15.00
https://doi.org/10.1145/3625468.3647625

the Internet, adding network variation to any frame playout. While
traditional displays may use client-side buffers to smooth video
playout, for games, playout buffers need to be small in order to
minimize delay and preserve system interactivity, making residual
frame jitter likely.

Previous studies have looked at relationships between network
conditions and QoE for games and streaming video. Studies of
traditional streaming video have equated the impact of delay from
buffering with that of an interrupt in playback [2-4, 33], while
studies in interactive media have found the types of interaction
matter when determining the impact of delay and loss on QoE [1,
10, 19]. Building upon this research with nsights into the effects of
frame jitter on QoE can be helpful for optimizing playout buffer
sizing where frame jitter can be smoothed out by delay.

This paper presents results from four separate user studies that
assess QoFE based on frame time variation, the studies differing
in games, game systems, and method of inducing frame jitter. We
setup test beds that control the variation in frame delivery times
and either selected or developed games, giving us control over the
game types and frame jitter conditions. Study participants played
short rounds of one or more games under different frame jitter
conditions, providing a QoE rating each round. While the results
from the individual studies is of interest with each providing a
detailed analysis of the study results’ assessment of frame jitter
on QoE, combined the data sets provide a base for more powerful,
generalizable models of game player QoE with frame jitter than can
be done by any one study. Our models of QoE based on frame time
standard deviation, average frame rate, and interrupt magnitude
have high predictive power over the range of 11 games tested and
are robust in the face of 10x cross fold validation and leave one out
cross validation.

A quantitative understanding and model of the effects of frame
jitter can be helpful for: (1) players to make informed decisions on
computer system upgrades and for adjustments to game display
settings; (2) game developers to implement display-related optimiza-
tions where appropriate to provide better experiences for game
players; and (3) computer system developers to provide frame rate
variation targets while improving computer processors and graph-
ics cards and their software.

The rest of this paper is organized as follows: Section 2 intro-
duces research work related to our paper; Section 3 describes our
methodology to measure and assess game player QoE with frame
jitter; Section 4 analyzes the results and derives models of QoE with
frame display variation; Section 6 mentions limitations of our work
and suggests possible future work; and Section 7 summarizes our
conclusions.
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2 RELATED WORK

This section describes related work in three main areas: jitter and
video streaming (Section 2.1), jitter and cloud-based game streaming
(Section 2.2), and frame rates and computer games (Section 2.3).
The specific methodologies used vary, but generally all measure
user QoE via user questionnaires similar to our study.

2.1 Jitter and Video Streaming

Previous studies have examined the effects of jitter on users pas-
sively watching video streams. Packet-level delay jitter can perturb
the video delivery and, hence, frame playout times causing frame
jitter. Orosz et al. [21] investigate the correlation between subjec-
tive QoE assessment via a Mean Opinion Score (MOS), measuring
QoS parameters (packet loss and delay jitter) and objective video
performance metrics. From a case study they find linear combina-
tions of some QoS metrics such as jitter, packet loss and reordering
can correlate well with QoE. Guan-Ming et al. [14] find wireless
networks, like 3G and 4G LTE, can be unstable for video streaming.
They point out delay jitter due to the network can harm playback
smoothness which significantly degrades viewing comfort, thus
impacting QoE. Rao et al. [22] introduce a framework for correlat-
ing network QoS metrics with streaming video QoE metrics. They
conducted a measurement study and find delay jitter can be the
main source of QoE degradation.

While these previous works shows relationships between video
QoE and network degradation (e.g., delay jitter), they do not apply
to games which typically have more interactivity than does typical
streaming video and even video conferencing.

2.2 Jitter and Cloud-based Game Streaming

There are some, albeit fewer, studies analyzing the effects of net-
work jitter on QoE for users actively playing cloud-based games.
Rossi et al. [23] ran a user study to investigate the subjective QoE
of cloud-based game streaming over mobile networks played on
smartphones. Their results indicate that game streams are affected
differently by network QoS attributes such as packet loss, round-
trip time and delay jitter compared to traditional network games
and online mobile games. Suznjevic et al. [32] conducted a user
study to evaluate the impact of the GeForce Now cloud-based game
service adaptation algorithm on player QoE under various network
conditions. They found added delay jitter can cause the system to
abruptly reduce the amount of data sent and drop the frame rate
and frame resolution to their minimal supported values.

While these previous works examine game QoE and network
degradation, they do not directly analyze QoE and frame jitter nor
produce models of the same.

2.3 Frame Rate and Computer Games

Previous studies have analyzed the effects of system and game
configurations on player performance and QoE, generally focusing
on frame rate as an independent variable in their analysis. Spjut
et al. [29] demonstrate that a 30-millisecond reduction in latency
benefits first-person targeting tasks more than frame rates above 60
f/s. Claypool and Claypool [6] show that player actions requiring
precise, rapid response, such as shooting, are significantly impacted
by frame rates below 30 {/s in first-person shooter games. Claypool

Xu and Claypool

et al. [9] find that frame rate affects player performance and game
enjoyment, while frame resolution has little impact on performance
and some on enjoyment in first-person shooter games. Slivar et
al. [27] find that lowering frame rates to 25 f/s does not significantly
degrade the gaming experience across different game types, but first-
person shooter games are more sensitive to frame rate degradations.
Zadtootaghaj et al. [42] investigate the impact of frame rates and
bitrates on QoE and find no significant difference in quality and
performance ratings between 25 f/s and 60 f/s. Most similar to
our work, Liu et al. [12] induce frame jitter directly and conduct
a user study with three commercial games. They propose models
of QoE-based on different metrics of variation, with frame rate
floor the one they recommend. While somewhat broad (a study of
3 games with 7 variation conditions), game genres are considerably
broader than those studied as are the type and variety of frame
jitter distributions.

Our work extends the above approaches by studying the effects
of frame jitter on QoE, with analysis that develops predictive models
of player QoE with frame jitter. Compared to Liu et al. [12], our
analysis uses an additional 3 data sets and validates the derived
models.

3 METHODOLOGY

To approach finding a robust model for predicting game quality
with frame jitter that works across many game types and works
for both traditional games and cloud-based streamed games, we
gathered data from four different user studies and then derived
models of player QoE from their data. The user studies are similar
in that they are within subjects, using a balanced, playable game
in a laboratory environment. However, they differ in their games
used, participant sample, and methods of adding frame jitter, which
should help a derived model that generalizes beyond the game and
system tested.

The overall approach used for each study has the main steps in
common:

(1) Select games. While games come from a variety of genres, it
has been shown that traditional classification of game genres are
not sufficient for assessing game QoE [26]. In addition to genre,
considerations include visual effects (temporal complexity and spa-
tial complexity [7]), perspectives (camera angle [8]) and degree and
type interactivity [24].

Screenshots of games selected for all four studies are shown in
Figure 2.

(2) Setup testbed. A laboratory setting is used to insulate partic-
ipants and their game systems from uncontrolled experimental
variation. The dedicated lab houses computers powerful enough so
as not to induce frame jitter save for the amount controlled.

(3) Induce frame jitter. Frame time variation (frame jitter) occurs
when the playout time between successive frames is inconsistent.
By focusing on the variation in the frame timings that the user
experiences (versus, say, network packet delay jitter), analysis and
derived models should pertain to both traditional games and cloud-
based game streaming.
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Figure 1: Frame jitter — interrupt frequency and interrupt
magnitude.

The individual interrupts in an otherwise smooth playout can be
quantified by both magnitude and frequency. Figure 1 depicts inter-
rupts in a frame playout for a game playing at 60 Hz. The x-axis is
time and the y-axis is the frame time (the time between the display
of consecutive frames). Without any interrupts, the frame display
times would all be displayed 16.7 ms apart. However, the “spikes”
in the playout are evident, resulting in interrupts that have a mag-
nitude of 70 - 100 ms in this figure and that occur at a frequency of
about 1.5x per second.

Causes of frame interrupts include varied processing times and
rendering of the images themselves, but also include variance from
processing other game-related tasks (e.g., game world updates).
Cloud-based game streams have an additional source of frame jitter
from the network, particularly significant when there is congestion
due to the high bitrate requirements of the stream [41]. For tradi-
tional games, local clients handle the processing and rendering, so
client hardware, especially for an underpowered client, can also be
a contributor to frame jitter.

For all studies, Presentmon [13] — a lightweight tool that captures
performance metrics for graphics applications - is used to record
the time between frames displayed to the user while the games are
running.

(4) Select parameters. Pilot studies are used to set fixed values for
the games under test (e.g., game length) and to choose the range
of values for the variables of interest (e.g., frequency of interrupts
in frame playout). All participants for a single study play through
each of the parameter values for a within-subjects comparison for
that study.

Each user study explores three levels of frame jitter: low, medium,
and high. To determine the parameters for each condition, pilot
studies are used with various combinations of frame playout in-
terrupt frequency and magnitude to determine perceptibility of
each combination - that determines the low point — and maximum
tolerance of each combination - that determines the high point. As
such parameters differ by game and to a lesser extent the method of
inducing frame jitter, we test each game in every user study. Table 1
outlines the specific parameters used.
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(5) Recruit users. All studies are approved by our University’s In-
stitute Review Board (IRB). Volunteers are solicited through univer-
sity mailing lists and interested game-centric groups, with various
incentives to participate (e.g., remuneration or course credit).

(6) Conduct study. Participants sign consent forms, provide de-
mographic data, and familiarize themselves with the setup before
practicing each game. They then play short rounds for each game
condition while the system records frame display timings. The or-
der of games and frame jitter conditions is randomly shuffled for
each participant, who completes all rounds for one game before
moving on to the next.

After each game round, participants provide a QoE rating via a Mean
Opinion Score (MOS) type question — “Please rate your experience”
- with a text box for a 1.0 to 5.0 point numeric entry, shown along
with a scale: Bad, Poor, Fair, Good, Excellent. MOS testing has been
used for decades for traditional interactive voice calls and adapted
to Voice over IP (VoIP) in the ITU standard [34].

Longer questionnaires, while offering comprehensive game experi-
ence evaluations [5, 11], are impractical for user studies examining
multiple parameters within a short timeframe. These question-
naires, with dozens of questions, are better suited for evaluating
game design and participation. In contrast, commercial cloud-based
game streaming providers like Amazon Luna use a single MOS-type
question, which we also employ in our studies.

Participants can pause between rounds for as long as needed before
starting the subsequent round and are free to quit the study at any
time.

After completing all the game rounds, participants are given an
additional questionnaire with demographics questions about overall
gamer experience — average time spent playing games and self-rated
expertise with computer games.

(7) Analyze data. The studies each gather a variety of data, but the
primary focus in this paper is the relationship between QoE and
frame jitter.

Subsections 3.1-3.4 below provide a brief description of the
methodology for each of the four studies that provide our com-
bined dataset, providing specifics for items #1-#5 above, with item
#6 (analysis) in Section 4.

3.1 Study 1(S1)

In Study 1, we examined four games that had different camera
types and spatial information (SI) / temporal information (TT) val-
ues. The games included: 1) Bloons Tower Defense 6 (BTD6) [38]
(Figure 2d) — This is a tower defense game where players place
monkeys to pop balloons before they can travel across a track. The
game has a top-down, fixed camera view. 2) Hollow Knight [37]
(Figure 2c) — This is a platforming, combat, and exploration game
with a 2D camera in a side-scrolling view. 3) Hades [39] (Figure 2b)
— This is a rogue-like fighting game where players navigate through
randomly ordered rooms. The game has a 2D isometric camera
pointed down at the player avatar. 4) Counter-Strike: Global Offen-
sive (CS:GO) [36](Figure 2a) — This is a first-person shooter game
with a first-person camera perspective.
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Figure 2: Screenshots of games selected across the four user studies (S1 to S4).

Each game required players to complete a specific task or mis-
sion. In BTD6, players placed monkey towers to defend against
balloons. In Hollow Knight, players navigated through platforming
challenges and encountered enemies in the tutorial. In Hades, play-
ers aimed to defeat as many enemies as possible with the default
sword, starting a new run upon death. In CS:GO, players completed
timed shooting challenges in a training course without human or
NPC enemies.

The open-source system Moonlight [15] and Sunshine [18] pro-
vided for a cloud-based gaming system setup that: 1) hosted the
game server and controlled frame jitter over the network, and 2)

had a quality akin to commercial systems — streaming 60 Hz @
1080p.

The testbed setup is depicted in Figure 3. The cloud-game client
was a PC running Windows 10 Pro, connected to the cloud-game
server via Moonlight. The PC was an Intel i7 eight-core CPU @ 2.0
GHz with 64 GB RAM with a Gb/s Ethernet NIC and a 1920x1080
LED monitor running at 60 Hz. The cloud-game server PC had the
same hardware as the client and streamed the game via Sunshine.
The game client connected to the server via a Gb/s switch to a
Raspberry Pi 4 configured to act as a network router. The Pi had a
1.5 GHz 64-bit quad-core CPU with 8 GB of RAM and ran Ubuntu
20.04 LTS, Linux kernel version 5.4, using netem to control the
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Table 1: Target frame jitter conditions for S1, S2 and S$4. Study
$3 did not have explicit frame jitter targets.

User study Frame Jitter Perfect Low Medium High
s1 frequency (/s) 0 1.6 2.5 5
magnitude (ms) 0 60 120 180
o sz © frequency (/s) 0 S o
magnitude (ms) 0 60 - 120
'”’S;’”fie’qllehé;?(]sj”"0””()5””65””1’”
magnitude (ms) 0 30 115 200

network conditions. The router connected to the cloud-game server
via a Gb/s switch. The server and client were on the same local area
network, so the baseline ping round-trip time measurements from
our client to server were consistently around 1 ms.

To control the frequency and magnitude of frame playout in-
terrupts for our user study, a Raspberry Pi configured as a router
with netem [40] manipulated network traffic. We configured netem
with customized distribution files that controlled the frequency and
magnitude of packet delays, translating to controllable frequency
and magnitude of frame playout interrupts. Table 1 shows the target
frequency (interrupts per second) and magnitude (milliseconds) for
study S1 for 3 conditions: low, medium and high.

Each round lasted 50 seconds and the entire study took about
an hour to complete. Participants received remuneration of $10 for
their time and were eligible for class-credit, as appropriate.

3.2 Study 2 (S2)

Study 2 did not use commercial games, but instead we developed a
bespoke shooter game called Robot Rampage (RR) that allowed the
same game to be played with three different camera perspectives:
first-person (Figure 2e), third-person (Figure 2f) and overhead (Fig-
ure 2g). As in S1, the game also ran at a resolution of 1920x1080 at
60 Hz.

In Robot Rampage, players aim to score points by defeating
robots, collecting power-ups, and minimizing damage taken. The
game featured endless room and robot generation for continuous
play across all rounds.

The study deployed the game in the same cloud-based gaming
system setup as Study 1 and on the same testbed. Frame jitter was
induced the same way, too — via a network middlebox — although
with different frequency and magnitude targets (Section S2 in Ta-
ble1).

Each round lasted 30 seconds and the entire study took about 40
minutes to complete. Participants received remuneration of $10 for
their time and were eligible for class-credit, as appropriate.
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3.3 Study 3 (S3)

Study 3 was conducted previously by a different research team [12],
having gathered data on QoE with frame jitter for three games.

Rocket League and Strange Brigade offered players a third-person
viewpoint, allowing them to see the avatar they controlled, whereas
Valorant provided a first-person perspective. Rocket League took
place in a spacious virtual arena, while Valorant was set in a smaller
indoor room, and Strange Brigade took place in a large outdoor area.
In all three games, players controlled their avatars using continu-
ous input, such as holding down keys to move. However, Strange
Brigade and Valorant also incorporated discrete input for shooting.

Each player did the same task/mission in each game. In Rocket
League, players controlled cars to score goals against computer-
controlled opponents in a 1v1 user study setting. In Valorant, play-
ers engaged in combat using various projectile weapons in a tuto-
rial setting where they planted a “spike” and defended it against
computer-controlled opponents. In Strange Brigade, players navi-
gated a fictional world, combating enemies with various weapons.
In the user study, gameplay focused on a single area where players
continuously fought waves of zombies.

Participants played on a gaming PC with an NVIDIA GeForce
RTX 2080 graphics card, 11th Gen Intel Core 19-11900k @ 3.50 GHZ
CPU, Samsung SSD 70 EVO Plus 2 TB disk driver, 32 GB RAM that
ran Microsoft Windows 10 Pro. The PC had a gaming mouse: a
Logitech G502, 12k DPI with a 1000 Hz polling rate; and a high
refresh rate monitor: a 25" Lenovo Legion, 1920x1080 16:9 pixels @
240 Hz with AMD FreeSync (Gsync compatible) and a 1 ms response
time.

Each game was tested with two target frame rates, 60 Hz and
120 Hz, capped using Rivatuner Statistics Server (RTSS) [20] - a
multi-function tool that supports frame rate limiting.

Frame rate variation was added using extra load for the CPU
via an infinite Fibonacci number counter written in Python. The
counter ran as a separate process infinitely computing sequences
of numbers (i.e., it is CPU bound) and so competed for use of the
CPU with the game. By controlling the number of counters running
simultaneously with the game, different amounts of frame rate
variation were observed in the display, although unlike in studies
S1, S2 and S4, there was not an explicit target for frequency and
magnitude of interrupts. The frame rate variation had 4 conditions
for each target frame rate (60 Hz and 120 Hz) based on the number
of counters: a “perfect” condition without any counters, a “low”
condition where the counters caused frame jitter that was just
noticeable to players, a “high” condition where the counters cause
severe frame variation but the game was still barely playable and
one “mid” point between “low” and “high”.

Users were invited to participate in the study based on their
familiarity with the three games studied and overall gaming expe-
rience, favoring participants that played games regularly and had
played the three games over those that did not.

Each game round lasted for 1 minute and it took each user about
60 minutes to complete all the tasks in the study. Participants re-
ceived remuneration of $15 for their time and were eligible for
class-credit, as appropriate.
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3.4 Study 4 (S4)

Study 4 used an open source game SuperTuxKart [30] (Figure 2k)
that mimicked a popular commercial 3D racing game (MarioKart).
In SuperTuxKart, players raced against Al-controlled opponents
on fictional race tracks filled with obstacles and player collisions.
In the user study, the gameplay was limited to a single map, Zen
Garden, which could be completed in approximately one minute.

Participants played on a gaming PC with an 11th Gen Intel I9
processor with 32 GB of RAM and an NVIDIA GeForce RTX 2080
graphics card, running Microsoft Windows 10 Pro. The peripherals
were a Logitech G502 gaming mouse (12k DPI and 1000 Hz polling),
a 240 Hz Lenovo Legion, monitor with 1920x1080 16:9 pixels and
AMD FreeSync.

For frame jitter, the frequency and magnitude of frame display
interrupts were controlled by modifying the game engine (hence,
our choice of an open-source game). We added a sleep time in the
game loop that caused frame playout interrupts. The magnitude
was controlled by the duration of the sleep time and the frequency
was controlled by how often the sleep time is added (e.g., sleeping
once every 250 ms provides a frequency of about 4 interrupts per
second, each about 250 ms long). We combined the magnitude and
frequency to get different settings of “low”, “medium” and “high”
frame jitter (Section S4 in Table 1), tuned based on pilot studies.
The SuperTuxKart game engine ran at 60 Hz.

3.5 Summary of Studies

Table 2 summarizes the 4 user studies, highlighting key differences.
The common methods used to gather data (e.g., the same QoE ques-
tions) coupled with the differences (e.g., different games and frame
display variation, i.e., frame jitter, methods) provide for a broad
dataset from which to derive a robust model for predicting player
QoE. Game session durations were determined from pilot stud-
ies, considering the genre of the game. Fast-paced games favored
shorter sessions for focused feedback, while narrative or strategy
games required longer sessions. Levels or rooms were chosen to
ensure consistentcy in gameplay across participants. Rounds lasting
30-60 seconds allowed for enough time for players to evaluate the
interactivity and visual characteristics for the games.

Table 3 summarizes the information for each game in the 4
user studies. We measured spatial information (SI) and temporal
information (TI) [17] for a representative 30-second video recording
of each game as played on the PC used in their respective studies.
Sl is calculated by computing the brightness of each pixel in the
filtered image of a given frame. The variation in brightness across
all pixels determines the SI value for one frame, with the maximum
SI computed for all frames being the game’s SI value. Games with
high contrast visuals tend to have high SI values. TI is computed
by comparing the change in brightness for each pixel in a given
frame from its brightness in the previous frame. As with SI, the
variation in change in brightness for all pixels in a given frame is
the frame’s TI, with the maximum TI computed for all frames being
the game’s TI value. Games with sudden visual changes tend to
have high TI values. Figure 4 depicts the SI-TI data from Table 3 in
a scatter plot. From the graph, the selected games cover the range
shown by typical commercial games [3].
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Figure 4: Spatial information (SI) and temporal information
(TI) for games across all 4 user studies (S1 to S4). Colors
differentiate camera type and shapes differentiate games.

4 ANALYSIS

Section 4.1 provides summary demographics for the user study
participants; Section 4.3 analyzes the QoE for several predictive
measures of QoE - 95% frame rate floor, frame rate average, playout
interrupts, and frame time standard deviation; Section 4.4 cross-
validates and compares the models to each other; and Section 4.5
provides a model summary.

4.1 Demographics

Table 4 summarizes the demographic information of participants for
the 4 user studies. Gamer self-rating is in response to the question
“rate your experience as a gamer” on a five-point scale, 1-low to
5-high. For age and gamer self-rating, the mean values are given
with standard deviations in parentheses. Since participants are
recruited from on-campus students for all user studies, the age,
and gamer demographics are similar. The participants ranged from
18-26 years old, encompassing a typical college age range (18-22).
The user self-rating of experience playing computer games trended
above the mid-point for S1, S2 and S3, and lower for S4. Most of the
participants majored in Computer Science or Game Development.

Participants indicated their familiarity with the games under test
in pre-screening questionnaires. All were experienced with gaming
in general, and most with related games in the same genres as the
games being tested.

Across most games, QoE scores given by the participants for base
conditions (games played without induced frame jitter) clustered
between 4 and 5, with mean values between 4.2 and 4.3. The only
exception was the Robot Rampage game played with the overhead
view (RR overhead) which had QoE scores lower by about a point,
likely due to the unclear visuals and the challenging gameplay from
the top perspective. Overall, this suggests that QoE models derived
from our datasets do not need to be normalized to an individual
game baseline, with the possible exception of uniquely bad games,
like RR overhead.

4.2 QoE versus Frame Display Variation

We analyze QoE versus 5 different measures of frame jitter:
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Table 2: Summary of 4 user studies (S1 to S4).

User Study ~ System Games Frame Jitter Method Jitter Settings Round Time Rounds
S1 cloud-streaming 4 network middlebox 10 50 seconds 10 for each game
S2 cloud-streaming 1 w/3 modes network middlebox 3 30 seconds 15 for each mode
S3 traditional 3 CPU load 7 1 minute 7 for each game
S4 traditional 1 game engine 10 ~ 1minute 2 for each setting

Table 3: Summary of game information.

User study Game Genre Perspective SI  TI

Bloons TD 6 Tower defense Overhead 59.3 21.2
s1 Hades Action 2Dtop 949 725
CS:GO Shooter  First-person  40.1 30.7
Hollow Knight Action 2Dside 416 258
RR first-person Shooter  First-person 41.3 41.8
S2 RR third-person Shooter Third-person 41.7 22.2
RR overhead Shooter Overhead 47.1 17.1
Rocket League Sports  Third-person 66.3 84.5
S3 Strange Brigade Shooter Third-person 66.7 67.6
Valorant Shooter  First-person 86.7 83.0
S4 SuperTuxKart Racing Third-person 69.8 46.5

Table 4: Participant demographics.

Study Users Age (yrs) Gamer Self-rating

s1 28 20 (2.0) 4.2 (0.8)
2 35 20.8 (1.8) None

s3 31 20.1 (2.0) 3.6 (1.2)
S4 38 20.2 (2.3) 2.4 (1.1)

AFR Average frame rate. Frame rate is a commonly used indicator
of video and game-display performance. The average frame
rate is calculated from the total number of frames displayed
divided by the round duration (units are frames / second).

FTSD Frame time standard deviation. Since standard deviation is a
commonly used measure of variation for any kind of numer-
ical data, the frame time standard deviation as a measure of
frame jitter is computed by taking the standard deviation of
the frame times across all frames displayed in a round.

FRF Frame rate floor. Earlier work [12] (using study S4) recom-
mended the 95% frame rate floor for predicting QoE with
frame jitter since that metric fit the data from their single user
study. The 95% frame rate floor is computed by taking the
distribution of frame times, selecting the top 5th-percentile
value and converting that to a frame rate.

IM, TF Frame playout interrupts. Another previously used indicator
of visual quality, particularly used for streaming video, are
interrupts to the playout stream [2] — gaps larger than the
frame time (e.g., 60 Hz has a frame time of 16.7 ms, so a frame
time larger than 33.3 ms is a gap) — which can be measured
by both their frequency and magnitude. Interrupt frequency
(IF) is the total number of frame gaps divided by the round

time (units are interrupts per second). Interrupt magnitude
is the total of all interrupt times (in milliseconds) greater
than the frame time divided by the round time (units are
milliseconds per second).

Figure 5 depicts the results, one graph for each measure of frame
jitter. For each graph, the y-axis is the QoE with a x-axis specific to
each measure. The data in each graph are grouped by frame jitter
condition for each study (based on the “Jitter Setting” column in
Table 2) — S1 has 10 groupings, S2 has 3, S3 has 7 and S4 has 10.
The QoE values for all users in each group are averaged and shown
with a 95% confidence interval. Colors and shapes differentiate the
different studies: blue triangles are from S1, red circles are from S2,
orange crosses are from S3, and grey stars are from S4. The green
line in each graph is the linear regression trendline through the
mean values of all four user studies, with the adjusted R? shown in
the legend. The adjusted R? for each user study’s data individually is
also shown in the legend, although those trendlines are not shown
in the graphs to keep them readable.

From Figure 5a, the average frame rate correlates pretty well with
QOE across all games, R? 0.92. This confirms that average frame
rate has merit as an indicator of QoE even when there is frame jitter
i.e., the average is preditive overall even though it “hides” variation
in frame delivery times. However, given that underlying frame
jitter is not accounted for in an average and such variation (e.g., a
temporal gap in playout, illustrated in Figure 1) can degrade quality,
we look to metrics that are still accurate in predicting QoE but also
incorporate an explicit measure of the underlying variation.

From Figure 5b, the 95% frame rate floor model does not fit all
the data well, at least with a linear relationship. While a 95% frame
rate floor model had been espoused as a good model for predicting
QOE since it fit the data from S3 by itself quite well (R? of about
0.96), when modeling data from all four user studies, the R? is only
about 0.61. The weakness of the frame rate floor model for all data
may be due to the wider range of frame variation and game types
when used for all studies. Either way, it motivated our exploration
to find a more accurate model that is robust across all games and
conditions studied.

From Figure 5c, interrupt frequency has little visual correlation
with average QoE over the range of interrupts tested, R? 0.18. This
may be because the range of frequencies tested by themselves do
not cover a range that is differentiable by the users. In contrast, from
Figure 5d, interrupt magnitude correlates with the mean values
well, R? 0.93. This indicates that the size of the interrupt matters to
the QoE more than how often an interrupt happens.

From Figure 5e, frame time standard deviation — perhaps the
most straightforward measure of frame display variation — also
correlates with the mean values well, R? 0.92.
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Figure 5: QoE models: Average frame rate (AFR), 95% frame rate floor (FRF), interrupt frequency (IF), interrupt magnitude (IM),

and frame time standard deviation (FTSD).

4.3 Models

We also analyzed how each measure of frame jitter model fits the
individual games in each study. Table 5 has the results. Most games
approximately match the R? of the user study they belong to (see
the legend of Figure 5e for the overall R? for each study), with the
notable exception of the overhead mode for Robot Rampage (RR
overhead) in S2 (R? 0.19). However, RR overhead had low average

QOE ratings for all rounds, even the “perfect” rounds with no frame
display variation, perhaps because the game looked awkward from
a top-down view and was more difficult to play, as well.

When viewed across all games, AFR, IM and FTSD all have similar
overall fits (adjusted R?0.90, 0.91 and 0.92, respectively). However,
AFR has a weak fit for several games — CS:GO 0.37, Hollow Knight
0.19 and Strange Bridgade 0.26 — whereas IM and FTSD have fewer
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Table 5: Model fits per individual game (adjusted R?): aver-
age frame rate (AFR), 95% frame rate floor (FRF), interrupt
frequency (IF), interrupt magnitude (IM) and frame time
standard deviation (FTSD).

User study Game AFR FRF IF IM FISD
Bloons TD 6 0.82 033 0.13 0.86 0.83

s1 Hades 0.96 072 025 096 0.92
CS:GO 0.37 0.60 037 095 092

Hollow Knight 0.19 058 0.19 090 0.95
RR first-person  0.90 0.59 054 0.89 0.79
S2 RR third-person 0.85 0.54 0.37 0.87 0.74
RR overhead 034 0.18 096 023 0.19

Rocket League 0.74 0.72 0.60 0.52 0.63

S3 Strange Brigade 0.26 0.80 0.26 0.72 0.75
Valorant 0.68 041 087 059 0.75
S4 SuperTuxKart 0.73 037 0.09 077 0.93
Overall 090 063 0.16 091 092

weak fits for individual games. However, IM is slightly weak for
Rocket League 0.52 and Valorant 0.59, while FTSD is only weak for
Rocket League 0.63.

4.4 Cross-Validation and Comparison of Models

Model over-fitting is when a model performs well on the observed
data but fails to generalize to new, unseen data (e.g., for our frame
jitter models this can be to users, games and jitter conditions not
yet tested). Overfitting can occur when the model is overly complex
relative to the size of the dataset.

Table 6 summarizes the adjusted R? for the models explored,
ordered in increasing order of model complexity. For the equations,
the k parameters (e.g., k1) are constants, e is the exponential func-
tion and s is the frame time standard deviation. The first model,
ki, is just the average QoE value which provides the simplest of
predictions. The third model uses an exponential (Equation #3) but
does not fit as well as a linear model (Equation #2) and using a
2nd-order term (Equation #4) does not improve the adjusted R?
over linear. Using both the first- and second-order terms (Equation
#5) does bring up the adjusted R? a little bit higher than that of a
linear model (Equation #2). Comparing across models, IF and FRF
do not fit well for any equations whereas AFR, IM and FTSD do
well in both Equation #2 and Equation #5. Since the differences in
adjusted R? between Equation #2 and Equation #5 is minimal in all
cases, the linear model (Equation #2) is recommended and used for
the rest of this analysis.

Cross-validation is used to check if the proposed models over-
fit the data. With 10-fold cross validation, the data is first split
into 10 subsets (folds). Then, the first fold is used as a test, and a
regression model is built from data in the other 9 folds and evaluated
against the first test fold. This process is repeated for each fold,
resulting in 10 evaluations, with the adjusted R? averaged across
all folds. Since our sample pool is only 30 points (one for each jitter
condition), to avoid imbalanced sampling, we used stratified 10-fold
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Table 6: Comparison of models predicting QoE (average ad-
justed R? over 10-fold cross validation) - e is the exponential
function, and k’s are constants (different for each model) fit
to data gathered through the user studies.

model AFR  FRF IF IM FTSD
1 Kk 0 0 0 0 0
2 ky+kys 0.921 0612 0.185 0.930 0.915
3 ky+kge’ 0.219 0.126 0.059 0324 0.300
4 Ky +kos? 0912 0.617 0.097 0747 0.875
5 ki+kys+kss? 0925 0621 0353 0949  0.922

cross-validation where the folds are striated across the QoE scores.
Leave-one-out cross validation (1-out) is a special case of cross fold
validation where only one data point is held out, the regression
model built from the remaining data, and the mean squared error
(MSE) computed for the held-out point. The validation results are
summarized in the next section (Section 4.5).

4.5 Summary

The linear regression models (Equation #2) explored are summa-
rized in Table 7, ordered low to high by adjusted R? and also shown
with the mean square error (MSE). From the table, the AFR, FTSD,
and IM models all fit the mean QoE data well, with an R? 0f 0.92,
0.92 and 0.93, respectively. Conversely, the IF model does not, with
an R? 0f 0.18, and the FRF model is in-between with an R% of 0.61.
The cross-validation results (columns “10-fold” and "leave-one-out”)
suggest the IM and AFR models are over-fitting the data slightly
more so than the FTSD model.

Table 7: Linear prediction models: QoE = slope - x + intercept.

10-fold 1-out
Predictor R>  Slope Intercept R?> MSE MSE
Interrupt freq. (/s) 0.18  -0.023 3.7 0.18 057  0.52
95% Frame rate floor (f/s) 0.61 +0.026 2.8 0.53 0.13 0.11
Average frame rate (f/s)  0.92 +0.061 0.4 0.78 0.06 0.05
Frame time std. dev. (ms) 0.92 -0.056 4.6 0.84 0.05 0.05
Interrupt mag. (ms/s) 0.93  -0.004 4.0 0.81 0.06 0.05

5 DISCUSSION

The experiments focused on how frame jitter affects players’ QoE in
games. It was expected that the visual aspects of individual games
would influence this effect, but all 11 tested games showed similar
trends with frame jitter, mostly independent of visual content such
as graphics fidelity or camera perspective. Additionally, while it
was assumed that visual QoE would worsen with more frequent
playout gaps, little degradation was observed within the tested
range. Instead, the size of the gaps emerged as a key factor affecting
QoE, suggesting that humans are more sensitive to large gaps in
frem playout than smaller, if more frequent, gaps in playout.
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The expectation was that average frame rate would only loosely
reflect QoE based on previous work [12], presumably since the
average hides the underlying variance. Yet somewhat surprisingly,
the average frame rate correlated well with player QoE overall.
Conversely, we expected that the 95% frame rate floor (FRF) would
be predictive of QoE based on those earlier results — yet when ana-
lyzed across all games the FRF was not effective. These two results
emphasize the importance of studies that reproduce other’s work.
Our results do confirm previous results that frame time standard
deviation is an effective predictor of QoE.

Previous cloud-based QoE studies often focus on the network
conditions for individual game systems, hindering comparison with
predictive models for traditional games. However, our findings cross
cloud-based systems and traditional game systems and suggest
frame variation’s impact on QoE is mostly independent of the
underlying system. This simplifies predictive modeling, allowing
focus on frame jitter irrespective of game system, eliminating the
need for separate models for cloud-based and traditional games.

Frame jitter in cloud-based game streaming is typically smoothed
out by a client-side playout buffer, a highly effective technique used
in traditional video streaming [31]. However, sizing playout buffers
for game streaming is tricky since the buffers must be small to avoid
degrading interactivity and the player experience [24]. This sets up
an interesting trade-off between delay and frame jitter worthy of
exploring, where buffer delay smooths out the frame playout but
decreases the interactivity.

Our models can provide guidance for players, game developers,
and computer system developers: (1) players could use the models
for their own game systems to pick graphics settings that reduce
frame jitter, or even decide whether or not to do a computer upgrade;
(2) game developers could use the models for their target systems
to decide if additional optimizations are needed to smooth out the
frame playout; (3) computer system developers could use the models
with reference games to decide if and how much the hardware and
software improvements they are developing improve visual QoE. To
be used in practice, a sample of the gameplay would be recorded and
the frame times measured (we use Presentmon [13], but other tools
should be usable including hooks directly in a game engine), metrics
computed (average frame rate, frame time standard deviation, or
interrupt magnitude) and plugged into the models.

6 LIMITATIONS AND FUTURE WORK

From the graphs, the range of frame jitter for some user studies is
small with data concentrated in a narrow area (i.e., little spread of
the data points along the x-axis). This is caused by the parameters
used to produce the frame jitter where a broader range of settings
may increase the spread. More specifically, the range of pertur-
bations in frame jitter in our study were notably controlled for
studies S1, S2 and S4 (fixed magnitude, fixed frequency), whereas
real-world frame jitter is likely more varied. Future work could
gather frame jitter values “in the wild” as traces and replay the
frame jitter values observed in a testbed experiment.

The lack of familiarity of some of our users with the games
tested could affect the QoE ratings. Previous work [28] shows that
players with more skill in a game are more sensitive to network
perturbations, and this could hold for game familiarity and frame
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jitter. Future studies could control for user familiarity with the
games under test.

The studies all used a single QoE question for the assessment.
Future research could investigate the effects of frame jitter with a
more comprehensive assessment of QoE, perhaps using tools such
as the Gaming Input Quality Scale (GIPS) questionnaire [25]. While
the study format used here with questions after a short game round
would need to change, the multiple-question approach could offer
additional information useful for improving QoE in game systems
with frame jitter.

The QoE models presented here focus on frame jitter, but con-
sider interactivity necessary for users to play the games. However,
missing is any additional system latency, say, that may arise from
networking delays. Other factors like visual effects [8] and control-
display gain [16] could also influence QoE. Future work could study
frame jitter combined with other factors where there may be con-
founding effects on QoE.

7 CONCLUSIONS

Computer games continue to push the boundaries of display tech-
nologies with better graphics and higher frame rates. This often
results in frames displayed with inconsistent timing (frame jitter).
Cloud-based game streaming, in particular, can have frame jitter as
rendered frames must also traverse the network before being ren-
dered. While it is well-known that higher, smoother frame rates for
games provide a better QoE than lower frame rates, how frame jitter
display is perceived by users is not well-known. Predicting QoE
with frame jitter can help gamers, game developers and game sys-
tem developers with understanding and improving the experience
for players and also practitioners of interactive media.

Our paper presents results from four different user studies that
assess game player QoE with frame jitter, testing 11 games with a
variety of visual and interactive characteristics, using 3 different
techniques to control frame jitter across 30 different settings with
both cloud-based and traditional game systems. Over 130 partici-
pants played short rounds with different frame jitter characteristics,
providing QoE opinions each round via a survey.

Analysis of the results shows the frame time standard deviation
and interrupt magnitude are good predictors game player QoE (R?
of 0.92 and 0.91, respectively), with linear models being the most
parsimonious. The models fit most individual games well, too, de-
spite the differences in the visuals across the games tested. While
average frame rate is also a good overall predictor of game player
QOE, it fails to accurately predict QoE for some games. Average
frame rate and interrupt magnitude may also slightly overfit the
data. Interrupt frequency is not a good predictor of QoE and, con-
trary to previous recommendations [12], a model based on frame
rate floor is not effective at predicting QoE for all games and game
conditions.
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