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ABSTRACT

The dominant Internet protocol, TCP, does not work as well as

it could over the wide-variety of networks facing today’s applica-

tions. Bottleneck Bandwidth and Round-trip time (BBR) conges-

tion control has been proposed as an improvement, with the promise

of higher throughputs and lower delays as compared to other TCP

congestion control algorithms. While BBR has been implemented

for Linux, unfortunately, there is not yet an implementation for

ns-3, a powerful, �exible and popular simulator used for network

research. This paper presents BBR’, an implementation of BBR for

ns-3. BBR’ extends ns-3 in a fashion similar to other TCP conges-

tion control algorithms, re-using existing interconnection mecha-

nisms and making BBR’ extensible. Preliminary validation shows

BBR’ behaves and performs similarly to BBR, and preliminary per-

formance evaluation shows BBR’ has similar throughputs but sig-

ni�cantly lower round-trip times than CUBIC in some wired and

4G LTE wireless scenarios.
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1 INTRODUCTION

The Transmission Control Protocol (TCP), the dominant network

protocol in use on the Internet, was developed for traditional wired

networks in an erawith limited network resources (low bandwidths

and small router queues). As such, TCP was intentionally designed

so that lost packets indicate congestion, even though today’s wire-

less networks may see packet loss due to signal corruption instead

of congestion. In addition, traditional TCP determines congestion

limits by �lling router queues until they drop, but today’s queues

can be quite large, causing considerable delays when �lled. For-

tunately, TCP has proven adaptable to emerging networks, with

many improvements to TCP’s congestion control being proposed,

implemented, evaluated and, eventually, widely deployed. This has
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proven successful through major TCP versions such as TCP New-

Reno [8] and TCP CUBIC [9], today’s dominant congestion control

algorithm for TCP.

A recently proposed congestion control algorithm for TCP is

Bottleneck Bandwidth and Round Trip (BBR) [2, 3]. BBR seeks to

keep router queues at the bottleneck link empty by sending at

exactly the bottleneck link rate limit. To do so, the BBR sender

infers the delivery rate at the receiver and uses this estimate as

the bottleneck bandwidth. BBR also uses an estimated minimum

round-trip time in order to keep exactly enough packets in �ight to

maximize throughput andminimize delay. Compared to loss-based

congestion control algorithms such as Reno [1] or CUBIC [12],

BBR has the potential to o�er higher throughputs for bottlenecks

with shallow bu�ers or random losses, and lower queuing delays

for bottlenecks with deep bu�ers (avoiding “bu�erbloat”). Google

has already deployed BBR in its data centers, claiming signi�cant

throughput increases and latency reductions for internal backbone

connections.

Despite a promising start, BBR has not been thoroughly vetted

through the many network scenarios facing TCP connections in

today’s networks. In particular, the BBR has yet to be evaluated

over 4G LTE wireless, and such networks have characteristics not

faced by traditional wired networks, e.g., lossy channels, variable

bitrates, potentially high latency, large per-user queues, and mo-

bile end devices.

While BBR has recently been added to the Linux kernel,1 many

advances in network research have been made through simulation,

speci�cally the family of network simulators (ns). Unfortunately,

there is not yet an implementation of BBR for ns-3,2 meaning the

power and �exibility of ns-3 cannot be brought to bear on evaluat-

ing, and potentially improving, BBR.

This paper presents our design, implementation and evaluation

of BBR’, an implementation of BBR for ns-3. Like other TCP con-

gestion control algorithms in ns-3 (and Linux), BBR’ is a separate

module from the core TCPmechanisms, allowing full compatibility

with all the existing TCP mechanisms (e.g., connections, retrans-

missions, and �ow control), and interfacing with application and

Internet layers as does any other version of TCP. Also like BBR,

BBR’ only requires changes to the sender side, not to the network

nor to the receiver side.

Validation shows BBR’ behaves as does BBR under controlled

simulation conditions, and comparisonwith published BBR results [3]

shows that BBR’ in simulation performs similarly to BBR in the real

world. Performance evaluation comparing BBR’ to CUBICover sim-

ulated wired and 4G LTE wireless networks shows BBR’ achieves

1https://patchwork.ozlabs.org/patch/671069/
2https://www.nsnam.org/overview/what-is-ns-3/
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Figure 1: BBR State Transition Diagram

similar throughputs, but with dramatically lower round-trip times

owing to BBR’s ability to keep bottleneck queue occupancy low.

The rest of this paper is organized as follows: Section 2 gives

an overview of BBR, including the protocol’s states; Section 3 de-

tails our BBR’ implementation, with code explained for the major

functionality; Section 4 validates BBR’ through analysis of protocol

behavior and comparison with previously published BBR results;

Section 5 evaluates BBR’ compared with CUBIC in basic wireless

and 4G LTE wireless scenarios; Section 6 summarizes our conclu-

sions; and Section 7 presents possible future work.

2 BBR

BBR [4] attempts to run a TCP connection at the bottleneck band-

width rate with minimal delay. This happens only when the total

data in �ight is equal to the bandwidth-delay product (bandwidth×

delay), or BDP.

To compute the BDP, BBR determines the minimum round-trip

time (Rmin ) and the maximum delivery rate (called the bottleneck

bandwidth, Bmax ) on the path from the sender to the receiver.

To determine Rmin , BBR keeps a window of round-trip time esti-

mates for the past 10 seconds. Rmin is then selected as the smallest

value in this window.

To determine Bmax , BBR keeps a window of receiver delivery

rate estimates (bandwidth estimates) [5] for the past 10 round-trip

times. Bmax is then selected as the largest value in this window.

BBR uses Bmaxand Rmin to determine the number of bytes to

have in �ight (the BDP) via BDP = Bmax × Rmin , allowing the

TCP congestion window to grow to a small multiple of the BDP.

BBR paces sending packets at a rate that matches the bottleneck

bandwidth (Bmax ) – the pacing rate is BBR’s primary control pa-

rameter.

Every timeBBR receives a packet3 acknowledgment, it estimates

the round-trip (Rt ) and bandwidth (Bt ) for that packet. It then adds

Rt and Bt to the round-trip time and bandwidth windows, respec-

tively.

BBR uses the above behavior (estimate round-trip time and bot-

tleneck bandwidth, pace packets, and have only a BDP-multiple

in�ight) at all times, allowing a shared code-base for all implemen-

tation aspects. However, BBR goes through 4 distinct phases that

govern adjustments to the pacing rate and congestion window in

order to quickly reach steady state conditions and to probe for any

network changes to bottleneck bandwidth and/or round-trip time.

BBR’s state transition diagram is shown in Figure 1.

(1) A BBR �ow begins in the STARTUP state and quickly ramps up

its sending rate. While in STARTUP, BBR sets the pacing rate and

3Actually, a segment, but packet is used synonymously in this document.

the congestion window to the BDP × 2
ln (2)

, roughly doubling the

bitrate each round-trip time.

(2) When a BBR �ow estimates the network pipe is full (the maxi-

mum bandwidth has not increased by more than 25% for the past

3 round-trip times), it enters the DRAIN state to drain the queue

built up during STARTUP. While in DRAIN, BBR reduces the pac-

ing rate to Bmax×
ln (2)
2 , but keeps the congestion window high.

BBR drains long enough to remove the built-up queue, then enters

PROBE_BW.

(3) A long-lived BBR �ow remains primarily in the PROBE_BW

state, sending at the bottleneck rate, but repeatedly probing and

attempting to fully utilize any additional network bandwidth, all

while maintaining a small, bounded queue. PROBE_BW does this

by cycling, once per round-trip time, through a series of 8 gain val-

ues: [1.25,0.75,1,1,1,1,1,1], where the gain values are applied as

multiples to the bottleneck rate. For example, when the gain is 1.25,

BBR deliberately sends 25% more packets than the BDP for one

round-trip time. If Bmax increases prior to this phase, the BDP, and

thus overall sending rate, increases correspondingly. But if Bmax is

unchanged, the gain of 0.75 in the subsequent phase drains any

queue build-up caused by the previous higher gain.

(4) If BBR has not received an RTT sample that decreases the min-

imum round-trip time (Rmin ) for 10 seconds, then it brie�y enters

the PROBE_RTT state to quickly, greatly reduce (by 98%) the pack-

ets in�ight in order to re-probe the path’s two-way propagation

delay. The BBR �ow stops probing after one round-trip time or

200 milliseconds, whichever is longer.

(5) When a BBR �ow exits the PROBE_RTT state, if the full band-

width estimate of the pipe has been reached, then it enters PROBE_BW;

otherwise, it enters STARTUP to try to re-�ll the pipe.

3 BBR’

BBR’ (pronounced BBR-prime) is an implementation of BBR for ns-

3. Figure 2 depicts the control �ow for BBR’ in relation to other

components in ns-3 with which BBR’ interacts. The large colored

boxes, TCP, APP and BBR’, represent major components. TCP cor-

responds to TcpSocketBase and TcpSocketState objects in ns-3, BBR’

to TcpBbr and the BBR’ state objects, and APP to any throughput-

intensive application layer object (e.g., BulkSendApplication).

Each time TCP receive an ACK, it 1© calls BBR’s PktsAcked()

which computes and updates the congestion window, stores the

RTT estimate (for computing Rmin ), computes and stores the esti-

mated BW (for computing Bmax ), 2© sets the pacing rate via Set-

PacingRate(), and 3© sets theTCP congestionwindow via tcb->m_cWnd.

When an ns-3 virtual device is ready to enqueue a packet, a

DataSend() callback 4© is made to the App. The App then 5© calls

Send() one or more times to give packets to TCP for transmission.

TCP’s SendDataPacket() 6© enqueues the packet for sending, re-

turning to the App with an indication that packet is on the way.

The packet is actually transmitted based on the pacing ratewhere

TCP sets an ns-3 timer that 7© triggers PacePackets() at the pacing

interval. PacePackets() �rst 8© invokes BBR’ Send() which records

information needed to estimate the BW (in PktsAcked()). Then,



Figure 2: Overview of BBR’ Control Flow

PacePackets() 9© sends the next packet in the queue via SendData-

PacketReal(), resetting the timer to achieve paced sending.

3.1 BBR’ Code

In terms of code, BBR’ resides at the same software layer as other

TCP congestion control versions, such as TCPNewReno, TCPWest-

wood, TCP Vegas, and TCP BIC. This allows BBR’ �ows to use

the same TCP code as do all other ns-3 TCP versions and BBR’

�ows can interface with lower layers, such as the IP layer, without

requiring special code. Where the TCP versions, including BBR’,

primarily di�er is after a connection is established and the con-

gestion control mechanism takes e�ect. In ns-3, this is de�ned in

the TcpCongestionOps class,4 sub-classed for each TCP version. The

most important BBR’ method in this class is PktsAcked() which,

when TCP receives an ACK, stores the estimated round-trip time

and bandwidth and then computes and sets the pacing rate.

The interested reader (and developer) is encouraged to read the

technical report [7] for signi�cantly more details on BBR’ and the

git repository [6] for the actual source code.

3.2 ns-3 Code Modi�cations

While BBR’ was designed to avoid modi�cations to the existing

ns-3 code base as much as possible, some slight modi�cations are

required to support the unique features required by BBR. In total,

the changes to support BBR’ require about 75 new lines of code to

3 di�erent �les. This section describes the required changes, with

patches available for ns-3.27 available in the associated git repos-

itory [6].

In order to support controlling the cwnd and pacing rate via

BBR’ Send(), the TcpCongestionOps class is extended with a virtual

Send()method that is called at the top of TcpSocketBase::SendData-

Packet(). This code hook invokes a Send()method each time a TCP

socket sends data, with BBR’ (and any other TCP version that pro-

vides a custom Send() method) invoking a custom Send() that per-

forms appropriate congestion actions before sending. BBR’s Send()

records information to estimate the bandwidth.

4This class mimics the Linux tcp_congestion_ops structure

Listing 1: SendDataPacket() (in tcp-socket-base.cc)✞ ☎
0 / / I f pac ing , queue u n t i l t ime t o s end e l s e s end now .
1 uint32_t TcpSocketBase :: SendDataPacket (SeqNum32 seq ,

2 uint32_t maxSize , bool withAck )

3

4 / / I f n o t pac ing , s end now .
5 if ( m_pacing_rate == 0.0)

6 return SendDataPacketReal(seq , maxSize , withAck);

7

8 / / S t o r e p a c k e t .
9 tcp_pacing_struct packet{seq , maxSize , withAck };

10 m_pacing_packets .push(packet);

11

12 / / I f no pending even t , immed i a t e l y s c h e d u l e .
13 if ( m_pacing_event .IsExpired ())

14 m_pacing_event = Simulator :: ScheduleNow (

15 & TcpSocketBase :: PacePackets , this);
✝ ✆

Listing 2: SendDataPacketReal() (in tcp-socket-base.cc)✞ ☎
0 / / R e a l l y s end t h e data p a c k e t .
1 uint32_t TcpSocketBase :: SendDataPacketReal (

2 SeqNum32 seq , uint32_t maxSize , bool withAck ) {

3

4 / / Hook t o do c o n g e s t i o n c o n t r o l a c t i o n s .
5 m_congestionControl ->Send(this , m_tcb);

6

7 / / R e s t i s same as o r i g i n a l S endDa t aPa c k e t ( ) . . .
✝ ✆

An unrelated change is needed to make public the TcpSocket-

Base method BytesInFlight() so that BBR’ can decide when to exit

the DRAIN state.

Packet pacing, as required by the BBR speci�cation [4], requires

a somewhat more substantial change to the ns-3 code. In general,

packet pacing to support BBR’ in ns-3 is implemented by “hijack-

ing” the normal TCP send and, instead of sending the packet, putting

that packet in a queue. Packets are removed from this queue and

sent with a �xed time-gap (i.e., paced), with the inter-packet time

computed from the pacing rate and controlled by an ns-3 timer.

TcpSocketBase is extendedwith a structure for the packets queued

for pacing (tcp_pacing_struct), stored in a queue (m_pacing_packets).

The inter-packet timing is stored in an ns-3 event (m_pacing_event).

The packet is actually hijacked in SendDataPacket() by storing

the packet rather than sending it, shown in Listing 1.

The SendDataPacketReal() method, shown in Listing 2, does the

“real” sending by pulling the next packet o� the queue and sending

it, e�ectively doing the work of the original TCP SendDataPacket()

method.

The pacing rate (once computed by BBR’) is stored as an at-

tribute of the TcpSocketState class with methods to get and set

it.

The actual pacing of packets is done by a PacePackets()method

that is repeatedly triggered with an ns-3 timer every inter-packet

interval, sending a packet, as shown in Listing 3.

4 VALIDATION

To validate BBR’, key protocol statistics are observed under a ba-

sic bottleneck condition (Section 4.1). Then, simulated BBR’ per-

formance results are compared with published BBR performance

results [3]. For the latter, three scenarios are examined: steady state



Listing 3: PacePackets() (in tcp-socket-base.cc)✞ ☎
0 / / Send p a c k e t i n queue and s e t t im e r f o r n ex t s end .
1 void TcpSocketBase :: PacePackets ()

2

3 / / Get n ex t p a c k e t t o s end .
4 tcp_pacing_struct p = m_pacing_packets .front ();

5 m_pacing_packets .pop ();

6

7 / / Send i t .
8 SendDataPacketReal(p.seq , p.maxSize , p.withAck );

9

10 / / Get s i z e f o r c omput ing pa c i ng i n t e r v a l .
11 double size = p.maxSize ;

12

13 / / S c h e d u l e n ex t s end e v e n t .
14 if ( m_pacing_rate > 0) {

15 size *= 8 / 1000000.0; / / t o Mb i t s .
16 double delta = size / m_pacing_rate ; / / t o s e c .
17 delta *= 1000000000; / / t o nano s e c .
18 m_pacing_event = Simulator :: Schedule (Time(delta),

19 & TcpSocketBase ::PacePackets , this);

20 }
✝ ✆

where the bottleneckbandwidth is unchanging (Section 4.2), steady

state with an abrupt increase in the bottleneck bandwidth (Sec-

tion 4.3), and steady state with an abrupt decrease in the bottle-

neck bandwidth (Section 4.4). Additional validation analysis and

scenarios are shown in the technical report [7].

4.1 Basic Bottleneck

A bulk-download over BBR’ was run over a single bottleneck (10

Mb/s, 22 ms RTT, queue size 100 packets) for 12 seconds, with

hooks to record round-trip time estimates, bandwidth estimates,

and protocol states. Traces were analyzed to measure the bottle-

neck queue occupancy and throughput.

BBR’ went through it’s states (see Section 2) at the following

times:
State Time (seconds)

STARTUP [0.000, 0.134)

DRAIN [0.134, 0.200)

PROBE_BW [0.200, 10.001)

PROBE_RTT [10.001, 10.205)

PROBE_BW [10.205, 12.000]

As expected, given the relatively short round-time and modest

bottleneck bandwidth, BBR’ spends little time in the STARTUP and

DRAIN states (about 150 milliseconds total). Most of the time is

spent in the PROBE_BW state (about 14.5 out of 15 seconds). Since

the base RTT never changes, BBR’ enters the PROBE_RTT state

once about 10 seconds in, stays there for 200milliseconds, and then

returns to the PROBE_BW state.

Figure 3 graphs the two key BBR’ statistics, estimated RTT (top)

and estimated BW (bottom), for the �rst second (the x-axis). In

both graphs, the thick lines in red are the BBR’ predictions at the

sender-side transport layer, while the thinner blue lines are the

actual system-level measurements of the queue occupancy (top)

and the bottleneck throughput (bottom). The system-level mea-

surements are to assess whether or not BBR’ accurately predicts

the underlying network state.

In Figure 3-top, the round-trip time during BBR’ STARTUP over-

shoots the bottleneck bandwidth and �lls the bottleneck queue, but

after draining the queue built up during the DRAIN state, at about
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Figure 3: BBR’ RTT and BW Estimates

0.15 seconds the round-trip returns to near the minimum of 0.022

seconds. BBR settles into PROBE_BW where the small “spikes” in

the round-trip times are due to the gain rate cycling. BBR’s round-

trip time measurements closely match the actual queue occupancy.

The minimum round-trip time (not shown), picked out by BBR’

over all round-trip time estimates over the last 10 seconds, stays

�xed near the minimum 0.022 seconds.

In Figure 3-bottom, the bandwidth estimates during STARTUP

andDRAINvary between about 0.3 and 9.7Mb/s and during PROBE-

_BW vary between 9.4 and 9.6 Mb/s. BBR’s BW measurements

closely match the actual delivery rates. The maximum bandwidth

(not shown), picked out by BBR’ over all bandwidth estimates over

the past 10 round-trip times, stays �xed at about 9.7 Mb/s.

4.2 Steady State, No Bandwidth Change

Cardwell et al. published results depicting BBR steady-state behav-

ior (i.e., in the PROBE_BW state) of a 700 ms of a 10Mb/s BBR �ow

with a round-trip time of 40 ms, shown in Figure 4 of [3]. Figure 4

shows their graph on the left, with a graph for an equivalent BBR’

�ow on the right. The BBR graphs were annotated by the authors

to illustrate protocol behavior.

Generally, the performance results for BBR and BBR’ look quite

similar, with nearly the same round-trip times, bandwidths and

bytes in�ight. More speci�cally, both sets of graphs have the same



Figure 4: Comparison of BBR (left, from [3]) with BBR’ (right). Graphs are round-trip time in blue, in�ight in green and

delivery rate in red

vertical structures resulting from the PROBE_BW cycling to deter-

mine if the bottleneck bandwidth has increased. In both scenarios,

the bottleneck capacity does not change, so the increase in the data

rate when the pacing gain is 1.25 results in a buildup of the bottle-

neck queue and an increase in the round-trip time. The immedi-

ately following cycle with a reduced pacing gain of 0.75 lowers the

data rate and drains the queue, before returning to a gain rate of

1.0 until the next increase. Since the round-trip time is about 40

milliseconds, these vertical “spikes” are about 320 (8 × 40 = 320)

milliseconds apart.

4.3 Bandwidth Increase

Cardwell et al. published results (Figure 5-top of [3]) depicting a

10 Mb/s, 40 ms RTT network with a long-lived BBR �ow where

there is a sudden doubling of bandwidth (up to 20 Mb/s) at time

20 seconds. Figure 5 shows their graph on the left, with graphs for

an equivalent BBR’ scenario on the right. Again, the BBR graphs

were annotated by the authors to illustrate protocol behavior.

From the graphs, BBR and BBR’ generally behave the same, de-

tecting the change in bandwidth at time 20 seconds and quickly

doubling the bytes in�ight to utilize the new found capacity. For

both BBR and BBR’, the round-trip time stays low, near the chan-

nel minimum, with only occasional increases during PROBE_BW

gain cycles.

4.4 Bandwidth Decrease

Cardwell et al. also published results (Figure 5-bottomof [3]) of the

same �ow in Section 4.3 with a sudden halving of bandwidth (from

20 Mb/s down to 10 Mb/s) at time 40 seconds. Figure 6 shows their

graph (and annotations) on the left, with graphs for an equivalent

BBR’ scenario on the right.

From the graphs, again, BBR and BBR’ generally behave the

same. The abrupt decrease in bandwidth at time 40 results in a

marked increase in the round-trip time as the bytes in�ight �ll the

bottleneck queue. Once the high bandwidth readings are pushed

out of the bandwidth window at around time 41.75, BBR and BBR’

both settle into the new in�ight amount, draining the built up

queue and returning the round-trip times to near the channel min-

imum.

4.5 Summary

In summary, observations of BBR’ behavior in a basic, single-bottle-

neck with known parameters align with expectations, giving some

con�dence in the implementation. Further visual con�rmation show-

ing published BBR results are similar to equivalent BBR’ results

helps validate the BBR’ implementation. While the validation has

only been undertaken for the steady-state behavior in the PROBE_BW

state, long-lived, throughput intensive �ows (BBR’s target) by far

spend most of their time in this state.

5 EVALUATION

This section evaluates BBR’ (v1.7) compared with CUBIC �rst for

a basic wired connection with the bottleneck at the router (Sec-

tion 5.1) followed by a basic 4G LTE con�guration with the bottle-

neck at the eNodeB (Section 5.2).
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5.1 Wired

The intent is to represent the canonical congestion scenario of a

network constrained by an interior bottleneck of a router between

a client and a server. This often means a server connected by a

high capacity, modest latency connection to a router with a lower

capacity, lower latency connection to the client (e.g., a head-end

to a residential PC). A throughput-intensive �ow runs down from

the server to the client.

The topology used is shown in Figure 7. The variables ds and

dc represent the one-way delay from the Server to the Router and

from the Router to the Client, respectively. The variables bs and bc
represent the bandwidth (capacity) from the Server to the Router

and from the Router to the Client, respectively.

For this evaluation, the network conditions are as follows:

Figure 7: Wired Topology

Parameter Value

ds 10 milliseconds

dc 1 millisecond

bs 150 Mb/s

bc 20 Mb/s

packet size 1000 bytes

queue size 60 packets

The router queue size of 60 packets is about the bandwidth-

delay product.

The scenario is run �rst with a single BBR’ �ow doing a bulk

download from server to client and then re-run, replacing the BBR’



�ow with a CUBIC �ow. Since ns-3 does not come with a built-in

version of TCP CUBIC, the latest TCP CUBIC (version 3.275) by

Levasseur et al. [10] is used.

Figure 8 depicts the results of both the BBR’ and CUBIC runs

plotted together, showing the �rst 3 seconds. The BBR’ trendlines

are all thick and red and the CUBIC trendlines are thin and blue.

The horizontal axis for all graphs is the elapsed time in seconds.

The left graph shows the throughput, with both CUBIC and

BBR’ quickly reaching and maintaining the maximum capacity of

nearly 20 Mb/s.

However, amajor di�erence can be observed in themiddle graph

which shows queue occupancy. Here, CUBIC quickly saturates the

router queue and keeps the queue persistently �lled. BBR’, on the

other hand, after initially saturating the queue, drains the queue

to nearly 0 and maintains low queue occupancy throughout. The

small, periodic spikes in the queue for BBR’ are due to the gain

cycling in the PROBE_RTT state (see Section 2).

The e�ect of the router queue on round-trip time is observed

in the right graph. CUBIC, by persistently �lling the router queue,

has a round-trip that is consistently about 35 milliseconds higher

than that of BBR’.

5.2 4G LTE

For 4G LTE evaluation, a similar topology is used but the “last

mile” is setup for LTE, shown in Figure 9. The router is replaced by

an eNodeB and a packet gateway (PGW), the client with the User

Equipment (UE, e.g., a mobile phone), and the �nal wired link be-

comes a 4G LTE connection. The UE is stationary, but positioned

at di�erent �xed distances from the eNodeB. The server to PGW

bandwidth and latency are as for the wired setup in Section 5.1.

Parameter Value

ds 10 milliseconds

bs 150 Mb/s

packet size 1000 bytes

mode RLC AM

max tx bu�er 512 Kbytes

resource blocks 50

HARQ enabled

UE to eNodeB distance varies

5.2.1 MediumDistance. For the �rst simulation, theUE is placed

5 kilometers from the eNodeB. The results are depicted in Figure 10,

with the left graph showing throughput and the right graph show-

ing round-trip time. For both graphs, the x-axis is the elapsed time

in seconds. Unfortunately, the corresponding eNodeB queue occu-

pancy is not readily available but, based on Figure 8, can be inferred

from the round-trip time.

For throughput, both CUBIC and BBR’ perform about the same,

with both protocols achieving about 11.5 Mb/s during steady-state.

The overall mean throughput for CUBIC is 10.8 Mb/s and the mean

throughput for BBR’ is 11.0Mb/s. This slightly lower CUBIC through-

put is due to BBR’ more quickly ramping up to the bottleneck band-

width during STARTUP versus CUBIC’s slowstart.

As in the wired network case (Section 5.1), there is a bigger

di�erence between CUBIC and BBR’ in their round-trip times. In

5http://perform.wpi.edu/downloads/#cubic

the beginning, both BBR’ and CUBIC have a low round-trip time,

about 30 milliseconds, which quickly increases for about 100 mil-

liseconds as the �ows startup during slow start for CUBIC and

STARTUP for BBR’. However, after about 0.75 seconds, BBR’ has

settled into its target empty-queue, high-bandwidth conditionwith

the round-trip times back to their initial, minimal values whereas

the queue (and, hence, round-trip time) for CUBIC remains full.

5.2.2 Versus Distance. In order to analyze performance over a

range of 4G LTE conditions, additional simulations were run with

the UE at di�erent distances from the eNodeB, ranging from ex-

tremely close (0 meters) to extremely far (over 20 kilometers).6

Each simulation consisted of a single, 5-second bulk download,

with separate runs for both CUBIC and BBR’.

The results are depicted in Figure 10, with the left graph show-

ing the average throughput and the right graph showing the aver-

age round-trip time. For both graphs, the x-axis is the distance in

meters from the UE to the eNodeB.

From the throughout graph, both CUBIC and BBR’ achieve sim-

ilar throughputs.

For the round-trip time graph, however, there are marked di�er-

ences, with CUBIC having higher round-trip times for all distances

above 1000 meters. Moreover, CUBIC’s round-trip time increases

fairly consistently with an increase in distance as sending packets

from the saturated LTE queues takes longer as the channel con-

ditions worsen. BBR’, however, maintains a relatively low average

round-trip time that is about the same at all distances since it keeps

a relatively empty LTE queue regardless of the LTE channel condi-

tions. Broadly the throughput similarities for CUBIC and BBR’ and

the round-trip time bene�ts for BBR’ re�ect real-life experiments

comparing CUBIC and BBR over LTE [11].

6 CONCLUSION

The evolution of networks demands continued improvements to

TCP, the dominant protocol on the Internet. Unfortunately, the pre-

dominant congestion control algorithm for TCP, CUBIC [9], sat-

urates congested router queues, leading to dropped packets and

higher than necessary round-trip times. The new congestion con-

trol algorithm BBR [2, 3] promises to improve TCP performance

compared to CUBIC by keeping about one bandwidth-delay prod-

uct of data in �ight, maximizing receiver delivery rates while min-

imizing bottleneck queue occupancies. Despite this potential and

claimed success in Google’s own networks, BBR has yet to be fully

vetted, particularly through simulation in ns-3, a popular, �exible

simulator used for network research.

This paper presents BBR’, an implementation of BBR for ns-3.

BBR’ integrates with TCP in ns-3 as do other congestion control

algorithms, such as NewReno, Westwood and Vegas. This allows

lower layers (e.g., IP) and higher layers (e.g., bulk-download appli-

cations) to use TCP BBR’ as they would any other version of TCP,

making it easy to deploy and test. Preliminary validation of BBR’

shows the protocol behaves as per the BBR speci�cation [4] and

performs similarly to previously published BBR results [3]. Perfor-

mance evaluation comparing BBR’ with CUBIC shows that BBR’

6At 22 kilometers, neither TCP CUBIC nor TCP BBR’ was able to get any packets
delivered in 5 seconds.

http://perform.wpi.edu/downloads/#cubic


 0

 5

 10

 15

 20

 0  1  2  3

T
h

ro
u

g
h

p
u

t 
(M

b
/s

)

Time (seconds)

Throughput

BBR’
CUBIC

 0

 20

 40

 60

 0  1  2  3

Q
u
e
u
e
 (

p
a
c
k
e
ts

)

Time (seconds)

Queue Size

BBR’
CUBIC

 0

 0.02

 0.04

 0.06

 0  1  2  3

R
T

T
 (

s
e
c
o
n
d
s
)

Time (seconds)

Round-Trip Time

BBR’
CUBIC

Figure 8: Wired Network

Figure 9: Wireless Topology
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Figure 10: 4G LTE Network (UE Distance is 5k)
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Figure 11: 4G LTE Network versus UE Distance

achieves comparable throughputs, while keeping congested queue

occupancy’s low thus having lower round-trip times.

7 FUTUREWORK

While a promising start, there are several areas of future work for

extending BBR’ in ns-3.

The current BBR’ implementation assumes the application al-

ways has data to send. BBR has speci�cations that deal with �ows

that are rate-limited by the application which could be incorpo-

rated (and validated and evaluated) into BBR’.

BBR’ estimates the bottleneck bandwidth by computing the es-

timated receiver delivery rate based on Cheng et al. [5]. While the

core BBR’ implementation appears to work as expected, challenges

that face the technique, such as packet reordering, packet loss, and

ACK loss, could be built and tested in BBR’.

While pacing is indicated asmandatory for BBR [4], preliminary

tests with BBR’ without pacing suggest decent performance solely

by controlling rates with the congestion window. Further evalu-

ation can help determine when pacing bene�ts performance and

when it might not be needed. BBR’ includes two alternate con�gu-

ration options to disable pacing [6] that could be used for this.

Futurework also includes BBR’ evaluation over awider-range of

network conditions, including but not limited to capacities, topolo-

gies, protocols and application types. Evaluation on modern wire-

less networks such as 4G LTE, could include UEs with mobility, en-

vironments having mixed TCP versions and diverse applications.

Since many simulations target large scale networks, the e�-

ciency of the BBR’ ns-3 module could be analyzed and improved,

as necessary.
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