
The Impact of Latency on Target Selection
in First-Person Shooter Games

Shengmei Liu and Mark Claypool
sliu7,claypool@wpi.edu

Worcester Polytechnic Institute, Worcester, MA
USA

ABSTRACT
While target selection in a 2D space is fairly well-studied, target
selection in a 3D space, such as shooting in first-person shooter
(FPS) games, is not, nor are the benefits to players for many latency
compensation techniques. This paper presents results from a user
study that evaluates the impact of latency and latency compensa-
tion techniques on 3D target selection via a bespoke FPS shooter.
Analysis of the results shows latency degrades player performance
(time to select/shoot a target), with subjective opinions on Quality
of Experience (QOE) following suit. Individual latency compensa-
tion techniques cannot fully overcome the effects of latency but
combined techniques can, letting players perform and feel as if
there is no network latency. We derive a basic analytic model for
the distribution of the player selection times which can be part of a
simulation of a full-range of FPS games.

CCS CONCEPTS
• Applied computing→ Computer games; •Human-centered
computing → User studies.

KEYWORDS
gamer, FPS, user study, lag, shooting

ACM Reference Format:
Shengmei Liu and Mark Claypool. 2023. The Impact of Latency on Target
Selection in First-Person Shooter Games. In Proceedings of the 14th ACM
Multimedia Systems Conference (MMSys ’23), June 7–10, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3587819.3590977

1 INTRODUCTION
Computer games are one of the world’s most popular forms of
entertainment, with global sales increasing at an annual rate of
10% or more [45]. The largest esports prize pools are about $25
million USD [10], larger even than traditional sports who’s prize
pools range from about $2 to $20 million USD [36]. By 2023, there
are expected to be about 300 million frequent viewers of esports
worldwide, an increase from 173 million in 2018 [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0148-1/23/06. . . $15.00
https://doi.org/10.1145/3587819.3590977

Among the myriad game genres available and played with es-
ports, the first-person shooter is one of the most popular. In first-
person shooter games, players take a first-person perspective of
an avatar and then move and shoot targets to accomplish game
goals, often playing with other people as teammates or opponents.
Latency – delay between a player’s input and the game responding
with audible or visual output – makes first-person shooter games
less responsive, degrading player performance and hurting the
quality of experience. There are two main sources of latency in
first-person shooter games: 1) from the local system, such as from
the mouse, OS and monitor, and, 2) from the network between
the client and the server. While both sources of latency affect the
player, they manifest differently -– local latency lags all player in-
put until game output, while network latency lags communication
with the server. This means local latency makes game controls feel
unresponsive, while network latency makes player actions resolve
later by the server. Latency compensation techniques can mitigate
the effects of network latency on players and may improve player
performance and quality of experience [31].

There have been numerous studies on latency and commercial
games [13, 15], especially network latency and first-person shooter
games [1–3, 22, 25, 29, 30, 40] owing to the sensitivity of first-
person shooter games to network latency and the popularity of
first-person shooter games in the competitive and esports scenes.
The most common approach to assess latency is via user studies,
but these can be expensive and time-consuming. Moreover, given
the wide-variety of games even within a single genre (e.g., consider
the scope of first-person shooter games available today) it is not
practical nor probably even possible to cover all current and future
game configurations with user studies.

An alternate approach is to study the effects of latency on in-
dividual game actions [25, 32, 41] which has the potential to gen-
eralize to many games and even other interactive applications.
For example, the study of 2D target selection can yield results
that generalize to player performance in games with the same ac-
tion [24]. Studies assessing the impact of latency on target selection
in 2D space have varied target parameters (e.g., target size and
distance) [12, 16, 34, 44] and target motion (e.g., velocity and ac-
celeration) [6, 35, 38, 39], as well as pointing device [5, 33]. A key
outcome of these approaches are analytic models that can explain
and predict the effects of latency for a wide-range of games and
latency conditions. But these approaches have generally fallen short
in evaluating the impact of latency compensation techniques, par-
ticularly those used in first-person shooter games. Moreover, in
3D target selection, such as shooting in a FPS game, the 2D size
and speed of the target on the screen changes with the position
and orientation of the target in the virtual 3D space. We isolate the
target selection action in a first-person shooter game and study the

https://doi.org/10.1145/3587819.3590977
https://doi.org/10.1145/3587819.3590977
https://doi.org/10.1145/3587819.3590977

MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Shengmei Liu and Mark Claypool

impact of local latency, network latency and latency compensation
techniques on player performance and quality of experience. Then,
we provide models of the player selection times given the latency
and latency compensation. A model of 3D selection can potentially
be combined with a model of first-person navigation [25] to sim-
ulate FPS game performance over a range of game and latency
conditions.

This paper presents the results of a 39-person user study where
each participant plays a custom target selection game that isolates
andmimics aiming and shooting in a first-person shooter gamewith
controlled amounts of latency and latency compensation techniques.
The local latencies experienced by the users range from 25 ms to 100
ms and network latencies range from 0 ms to 150 ms, covering the
range of latencies players typically experience over the Internet [16,
37]. Game logs provide objective performance measures and player
input actions, while surveys provide a Mean Opinion Score (MOS)
questionnaire after each game round.

Analysis of the results indicates both subjective Quality of Ex-
perience (QoE) and objective player performance degrade linearly
with total latency over the range of latencies studied. A 100 ms
increase in latency results in about an 2 second increase in time
to select (shoot a target) and a 0.4 decrease in QoE (on a 5 point
scale). Both latency compensation techniques investigated – time
warp and self-prediction – can improve player performance and
QoE and, when applied together, can nearly completely overcome
the negative effects of network latency. We derive analytic models
of the distributions of the times to select that generalize with la-
tency and latency compensation and may be useful in subsequent
first-person shooter simulations.

The rest of this paper is organized as follows: Section 2 describes
previous work on latency and games related to this paper; Section 3
details our methodology, including game and user study design
and execution; Section 4 presents participant demographics and
analysis from the user study; Section 5 discusses some of the impli-
cations of our findings; Section 6 mentions some limitations of our
approach; and Section 7 summarizes our conclusions and possible
future work.

2 RELATEDWORK
This section describes related work in four main areas: target selec-
tion (Section 2.1), local latency and games (Section 2.2), network
latency and games (Section 2.3), and latency compensation tech-
niques (Section 2.4).

2.1 Target Selection
Target selection in games is when a player moves a pointing device
to an object on the screen and then “clicks” on it (e.g., by pressing
a mouse button). In most cases, selecting a target as fast as possible
is desirable, but accuracy is often considered, too.

Long and Gutwin [32] study the effects of latency on selecting a
moving target. They find target speed directly affects the impact
of latency, with selecting fast targets affected by latency as low as
50 ms, but selecting slower targets resilient to latency as high as
150 ms. Their follow-on study [33] measures selection times for
different sized moving targets. They find that the effects of latency
on selection are exacerbated by fast target speeds. Claypool et al. [6]

investigate selecting a moving target with a mouse in the presence
of latency. Their analysis shows target selection times are impacted
exponentially by latency and target speed for constant-velocity
targets. Janzen and Teather [17] conduct a study with 12 users
playing a target selection game with frame rates from 15 to 60 f/s
and latencies from 0 to 100 ms. Their work reveals low frame rates
have a significant performance cost, and that in the lowest frame
rate conditions latency does not significantly affect performance.
Liu et al. [24] combine datasets [26] to model target selection times
based on target size, target speed and player skill.

In general, while these approaches and previous work have
helped understand latency and target selection, they have not de-
rived models of the distributions of the selection times. Moreover,
the previous work is for target selection in a 2D environment where
the target sizes stay the same over the entire round. In contrast,
for 3D target selection, the focus of our work, the 2D size of the
target changes over the round as the target (e.g., a moving opponent
avatar) moves further and closer.

2.2 Local Latency and Games
Understanding the effects of local latency on games and game-like
actions can help motivate the design and development of end-host
systems that benefit game players and other users doing interactive
tasks.

Ivkovic et al. [16] find significant effects for local latency on
target tracking and acquisition tasks, both with and without aim
assistance, and with a greater effect for higher target speeds. Inves-
tigating using a full game, Liu et al. [29] measure performance and
quality of experienced for skilled players in Counter Strike: Global
Offensive (Valve, 2012) showing degradations with local latency –
both subjective and objective scores decrease about 20% with a 100
ms increase in local latency. Since for cloud-based game streaming,
local latency and network latency manifest similarly in their delay
from player input to visual output, Claypool and Finkel [7] find both
quality of experience and user performance degrade linearly with
an increase in latency for cloud-based game streaming systems.

While useful for understanding and even modeling the effects of
local latencies on some gaming tasks and even a first-person game,
the impact of local latency on first-person target selection has not
been isolated and studied.

2.3 Network Latency and Games
Understanding the effects of network latency on games can help
motivate deployment or development of latency compensation
techniques [4, 31] to improve user experience when interacting
with other players over a network. This section concentrates on
first-person shooter games.

Dick et al. [8] show via a survey that players generally think
about 120 ms is the maximum tolerable latency for a network game,
regardless of game genre, but their user study shows players find
150 ms acceptable for the two first-person shooter games tested.
Amin et al [1] find player expertise defines and determines the
sensitivity to latency for the first-person shooter game Call of Duty
(Activision, 2003), with competitive gamers more adept at com-
pensating for impaired conditions. Armitage et al. [2] estimate the
latency tolerance threshold for the first-person shooter game Quake

Latency and Target Selection in First-Person Shooters MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

3 (id, 1999) to be about 150-180 ms. Quax et al. [40] show players for
the first-person shooter game Unreal Tournament 2003 (Epic, 2003)
that latency and latency jitter under 100 ms can degrade player
performance and quality of experience. Liu et al. [28, 30] show
that while local latency in the first-person shooter game CS:GO
(Valve, 2012) has higher impact than network latency on players,
reductions in network latency also benefit player performance and
quality of experience.

While such work has been instrumental in better understanding
the effects of network latency on first-person shooter games, their
results are for specific games and may not generalize, nor do they
provide an opportunity to study, much less model, the effects of
latency on 3D target selection.

2.4 Latency compensation Techniques
There are numerous software techniques designed to compensate
for the effects of latency on game players [4, 31]. Techniques com-
mon to first-person shooter games include: self-prediction where
the client predicts game state based on player input before getting
confirmation from the server; extrapolation (e.g., dead reckoning)
and interpolationwhere a client predicts states for objects controlled
by the server or other players based on past state; and time warp
where the server rolls back the game state to when the player action
occurred on the client, applies the action, then rolls the game state
forward to the current time.

Lee and Chang [22] evaluate how interpolation in CS:GO im-
proves player accuracy, and their follow-on work [21] suggests
keeping network latencies below 250 milliseconds when using
CS:GO latency compensation. Liu et al. [30] evaluate latency com-
pensation for CS:GO, showing it can significantly improve player
performance with network latency.

There is little formal evaluation of individual latency compen-
sation techniques for first-person shooters in general, nor of the
benefit of latency compensation to 3D target selection. Our paper
takes steps to start to address these shortcomings.

3 METHODOLOGY
To assess the effects of latency on 3D target selection in a first-
person game, we built a custom game that isolates the shooting
action, implemented two latency compensation techniques, added
controlled amounts of latency, recruited participants, and measured
player performance and quality of experience.

3.1 3D Target Selection Game
We designed and implemented a custom game in Unity1 that iso-
lated the action of 3D target selection in a first-person shooter-type
setting. In the game, the player stays at a fixed position at a corner
of the map and can rotate to change orientation and aim, but cannot
move or otherwise change positions. The opponent is a bot that
spawns at a random location moving along one of three possible
linear paths in the field of view and changes directions to avoid
being hit. The opponent’s 3d avatar size is fixed throughout, but the
2d size as seen by the player on the screen changes as the bot moves
towards or away from the player. Specifically, movements away

1https://unity.com/

Figure 1: 3D target selection game screenshot. The player
tries to shoot the avatar by moving the reticle (in red) to
the avatar and clicking the mouse. The avatar moves and
jumps to avoid being shot. The “health” bar shows player
health remaining and decreases with time. “Score” shows the
cumulative points over all rounds – the faster the kills, the
higher the score. “Kill” shows the cumulative kills over all
rounds. “Time” shows the seconds left for the current round.

from the player result in a decreasing 2d target size while move-
ments towards the player are an increase. While the well-known
Fitts’ Law [11] provides for a relationship between target selection
time and distance to move the selection device (here, the reticle),
it applies to fixed-size targets and does not consider targets that
change size (e.g., 2d sizes changes as the 3d avatar moves). The 2d
sizes of the opponent bot recorded in our custom game ranges from
1.6 𝑐𝑚2 where the bot is far away and appears small on screen to
2105 𝑐𝑚2 where the bot is close and takes most part of player’s
sight.

To mimic opponent movement in first-person shooter games, we
extracted playermovements patterns from data from a previous user
study on Counter Strike: Global Offensive (CS:GO, Valve, 2012) [29].
Specifically, we obtain the frequency of direction changes and jumps
and the distribution of intervals between the same and use these
values as the basis for our bot. From the data, the bot changes
direction randomly every 3.0 - 8.7 seconds with a standard deviation
of 1.4 seconds and jumps randomly every 1.4 - 10.0 seconds with
a standard deviation of 2.4 seconds. The player tries to shoot the
bot on the screen as fast as possible using a pistol with unlimited
ammunition and a firing rate of 1 shot every 250 ms. It takes two
hits to kill the bot. While the bot cannot shoot or otherwise damage
the player, in order to provide some urgency for the player to shoot
the bot quickly, the player’s health is shown to decrease the longer
the player takes to kill the bot.

The update rate for the game engine is fixed at 50 Hz. Each
frame, the game logs the ongoing score for the player, the position
of the enemy, the 2D distance of the reticle to the avatar, and the
3D distance between the player’s position and the bot’s position.
The game logs every shot as a hit or miss with corresponding
timestamps.

A game round is over after the bot is killed (2 hits) or after 40
seconds, whichever comes first.

The game has one map – a single, square room, 36 meters in
length and width, without any cover or obstacles. The player is
always at a fixed location on the map in a corner. Before the round
starts, the player is given a countdown timer whereupon a bot

https://unity.com/

MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Shengmei Liu and Mark Claypool

Figure 2: Client and server configuration.

spawns at one of three different locations in the field of view. Fig-
ure 1 shows a screenshot of the game where the player is aiming at
the target.

The game has a client-server architecture typical ofmost network
games where an authoritative server keeps the master world state
and communicates state updates to the clients. In the default state,
without latency compensation, all player input is sent to the server,
the server applies the input to the game world and sends the new
world state to the client which renders the state for the player.

3.2 Testbed Setup
We setup the game for our user study in a dedicated, on-campus
computer lab. The testbed setup is depicted in Figure 2. The server
hosts the game and is connected via high-speed LAN to the client.
The client and server are Alienware PCs with Intel i7-4790K CPUs
@4 GHz with 16 GB RAM and an Intel HD 4600 graphics card.
The client is equipped with a gaming mouse and monitor so as
to minimize local system latency and maintain consistency. The
client has a 25" Lenovo Legion monitor running at 1920x1080 pixels
displayed at 16:9 and 240 Hz, with AMD FreeSync and a 1 ms
response time. The mouse is a Logitech G502 12k DPI with a 1000
Hz polling rate. The clients and the server run Ubuntu 20.04 LTS,
with Linux kernel version 5.4.

The local latency was measured with a 1000 frame/s camera (a
Casio EX-ZR100) setup to capture the moment a user presses the
mouse button and the resulting screen output. By manually exam-
ining the video frames, the frame time when the mouse is clicked
is subtracted from the frame time the result is visible, giving the
local system latency. This measurement method was done 10 times
on our client, yielding an average base latency of 22 milliseconds,
with a standard deviation of 5 milliseconds.

Local latency delays all input until resulting rendered output,
whereas network latency delays receipt of the player’s action at
the server and subsequent server response to the client. Since the
game server is authoritative, the client cannot update the position
of an avatar until the server response has arrived. Thus, for the
selection game without latency compensation techniques (as for all
client-server games without latency compensation), local latency
manifests similarly to network latency. Player orientation input
until resulting avatar orientation change seen on the screen is
delayed by at least the sum of the local latency and the network
latency.

Our intent is to assess local latencies over ranges that might
typically be found in personal computers, which range from about
25 milliseconds for a fast gaming system to around 100 milliseconds
for a typical computer system [16]. We added latency to all mouse

and keyboard input using EvLag [23] – an open-source tool for
Linux that adds a constant amount of latency to any input device.
Given our client has an average local latency of 22 milliseconds,
EvLag adds either 3, 28, 53 or 78 milliseconds of latency for resulting
total local latencies of 25, 50, 75, 100 milliseconds, respectively.

Similarly, our intent is to assess network latencies over ranges
typically experienced by PC network game players, which can be
near 0 milliseconds for a local area network (LAN) game, 100 mil-
liseconds for a reasonable Internet connection, and 200 milliseconds
for a slower Internet connection [37]. We added network latency to
the server uplink and downlink equally using Linux tc with Netem2

– a network control tool. The total round-trip network latency added
to the client was either of 0, 50, 100 or 150 milliseconds.

Latency compensation techniques can mitigate the effects of
network latency on game players. While there are many different
types of latency compensation techniques, time warp and self-
prediction are among the most commonly used in first-person
shooter games [31]. To better understand and quantify how much
each helps users in 3D selection tasks with network latency, we
investigated four different latency compensation conditions: none,
time warp only, self-prediction only, and both time warp and self-
prediction. We implemented the different latency compensation
techniques in our custom selection game. With self-prediction, the
client predicts self movement and orientation. With time warp, the
server resolves actions based on previous client game states when
the action is triggered on the client. In commercial first-person
shooter games played over the Internet, to avoid cheating, the
server always makes decisions on game outcomes instead of the
clients. Since our game is monitored by a proctor, cheating is not
an issue, so for time warp, the client calculates the outcome of
the frame based on the game state on the client. The client then
notifies the server of the outcome. Upon receipt of the notification,
the server updates the game state according to the outcome and
synchronizes with the clients. In both our implementation and com-
mercial implementations, timewarp effectively allows the player
aim directly at the target – rather than “leading” a moving target
by aiming in front of them as is required without timewarp – in
order to hit the target. Either way, players need to wait a round-trip
time from the client to the server to see the outcome displayed on
the screen.

While the game is single player in that the player shoots a
computer-controlled opponent, the lag compensation algorithms
are experienced by the player as they would if they were playing
against a human. The client-side prediction is made independently
of the opponent action, and the time-warp state rollback on the
server happens tomatch the player’s game state. In other words, nei-
ther the client notification nor rollback state would change if there
was a human controlled opponent. The actions of the opponent
would likely change, but not the latency (and latency compensation)
experienced by the player.

Target movement can change the game difficulty and affect
player experience [35]. To better understand the effects of target
movement, we studied three forms of motion for the enemy bot
– normal that includes the movement described above (direction

2https://wiki.linuxfoundation.org/networking/netem

https://wiki.linuxfoundation.org/networking/netem

Latency and Target Selection in First-Person Shooters MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

changes and jumping), normal but without jumping, and stationary
without movement or jumping.

Table 1 summarizes the user study parameters.

Table 1: Experimental parameters for the user study.

Parameters Values
Local latency 25, 50, 75, 100 (ms)
Network latency 0, 50, 100, 150 (ms)
Latency compensation none, time warp, self-prediction, both
Opponent motion stationary, normal without jump, normal

3.3 User Study Procedure
The study was approved by our University’s Institute Review Board
(IRB). Interested participants first filled out a screener questionnaire
with questions on first-person shooter (FPS) game experience to
help select participants with some prior familiarity with FPS games.
Selected users were invited to the lab at a pre-set time. Users then
signed a consent form and positioned themselves at the test com-
puter.

Users first did a custom reaction-time test written in Javascript
and launched via a Chrome Web browser. In the test, users waited
for a screen color change then clicked the mouse as quickly as
possible, doing this 10 times. The average of the 10 values provides
a measure of reaction time.

Users started by playing a practice round without any added
latency to get familiar with the game. This data was not analyzed.
Users next played additional rounds, each with options for local
latency, network latency, latency compensation techniques, and
target motion, randomly shuffled. The conditions tested include:

A) Local latency: There are 3 conditions investigating local latency
only (network latency of 0ms, no latency compensation, and normal
bot motion): local latencies of 50, 75 or 100 ms.

B) Network latency and latency compensation: There are 12 con-
ditions investigating network latency with and without latency
compensation (with local latency of 25 ms and normal bot motion):
all combinations of network latencies of 50, 100 or 150 ms and four
latency compensation conditions: none, time warp, self-prediction
or both.

C) Local latency and network latency: There are 3 conditions assess-
ing latency compensation with local latency and network latency
(network latency of 100 ms, local latency of 100 ms and normal bot
motion): time warp, self-prediction or both.

D) Target motion: There are 3 conditions investigating target motion
(network latency and local latency of 100 ms, no latency compen-
sation): normal bot motion, normal bot motion without jumping,
or stationary bots.

Each condition above was repeated 3 times, for a total (3 + 12 +
3 + 3) × 3 = 63 rounds plus the practice round. In addition to these
64 rounds, users play 5 baseline rounds with no latency, no latency
compensation techniques and normal motion only. The 5 baseline

rounds are uniformly distributed between all other rounds to ensure
the consistency of player performance and test if there is fatigue
giving the large number of game rounds. In total, each participant
played 64 + 5 = 69 rounds.

After each round, users provided a subjective Mean Opinion
Score (MOS) rating on a discrete 5-point Likert scale about their
experience: “Rate the quality of the previous game round”. Players
chose from 5 options: Excellent, Good, Fair, Poor or Bad. After
completing the survey, the next round would commence when the
user was ready, but users could take as much time as needed before
starting the subsequent round.

It took each user about one hour to complete all the tasks in
the study. A user study proctor was available for questions and
trouble-shooting for the duration.

After completing all the game rounds, users were given a ques-
tionnaire with additional demographics questions about gamer
experience – average time spent playing games and self-rated ex-
pertise with computer games.

Study participants were solicited via university email lists. All
users were eligible for a raffle to win a $25 USD Amazon gift card
upon completion of the study, and many users received academic
credit for relevant classes in which they were enrolled.

4 ANALYSIS
This section first summarizes the demographics of our participants,
then analyzes player performance and QoE for latency conditions
without latency compensation, followed by analysis of latency com-
pensation, and lastly, the effects of target motion on player perfor-
mance.

4.1 Demographics
Thirty-nine (39) users were recruited and participated in total. This
section provides summary demographics for the participants.

Table 2: Demographic information

Gaming / Gamer FPS Reaction-
Users Age (yrs) Gender week (hrs.) Self-rating Self-rating time (ms)

39 20.0 (3.0) ♂31 ♀7 o1 12.5 3.4 (1.3) 3.0 (1.2) 198.4 (16.9)

Table 2 summarizes the demographic information for the user
study participants. Gamer and first-person shooter (FPS) self-rating
are on a five-point scale, 1-low to 5-high. For age, gamer self-rating,
FPS self-rating, and reaction times, the mean values are given with
standard deviations in parentheses. Ages ranged from 18-32 years
old but with the large majority of typical college age. Gender break-
down is predominantly male (31 males), but does reflect the gender
breakdown of first-person shooter game players (only about 7%
of first-person shooter gamers are women [20]) and our sample
pool of students at our university. Half of the participants played
10 or more hours of computer games per week. User self-ratings
in general computer games slightly skews towards above the mid-
point (mean 3.4), with self-rating in FPS games slightly lower (mean
3.0). Most participants majored in Robotics Engineering, Computer
Science, or Game Development. For the reaction time, the base local
latency (22 ms) was subtracted from all reaction time trials and the

MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Shengmei Liu and Mark Claypool

resulting reaction times averaged for each user. Reaction times are
mostly fast (with an average of about 200 ms), typical of computer
game players [9].

Table 3: Player skill, first hit time and QoE

FPS First
Skill Self-rating N hit time QoE
Low 1,2 15 4.2 (2.4) 3.1 (1.1)
Medium 3 11 3.9 (3.5) 3.4 (1.1)
High 4, 5 13 3.7 (3.1) 3.3 (1.2)

Table 3 summarizes first hit elapsed time and QoE of players
from different skill groups. Players with FPS self-rating at 1 and
2 are classified as low skill, players with FPS self-rating at 3 are
classified as medium skill and players with FPS self-rating at 4 and
5 are classified as high skill as suggested by earlier work [27]. From
this table, higher skill players tend to have shorter first hit time on
average and medium and high skill players generally have higher
QoE than low skill players.

4.2 Without Latency Compensation
We first analyze player performance without latency compensa-
tion. Analysis is for conditions where the opponent bot moves
normally (test conditions A-C, but not D in Section 3). Since previ-
ous work [28] shows that local latency and network latency have
an equivalent impact on players in the absence of latency compen-
sation, we combine the conditions of local latency and network
latency into seven different total latencies: 25, 50, 75, 100, 125, 175
and 200 ms. Thus, the analysis in this section pertains to select-
ing a moving, 3D target where all input – whether from the local
computer system or from the network and remote servers – is
delayed.

Figure 3a depicts the elapsed time required to select (hit) the tar-
get versus the total latency. The x-axis is the total latency (network
plus local) in milliseconds and the y-axis is elapsed time in seconds.
The circles are the mean elapsed times bounded by 95% confidence
intervals and the dashed lines are linear regressions through the
mean values. The blue points and line are for the first hit and the
green points and line are for the second hit (the target takes 2 hits
for a kill and the round to end). From the graph, the elapsed times
increase with latency, indicating that latency makes it harder for
players to shoot an opponent. The linear regressions fit the means
well, with 𝑅2 0.96 and 𝑝 < 0.001 for the first hit (blue) and 𝑅2 0.94
and 𝑝 < 0.001 for the second hit (green). The blue line is above
the green line meaning the first hit takes longer, on average, than
does the second hit and the difference in slopes suggest the first
hit is impacted slightly more by latency than the second hit. As a
take-away, an increase in total latency by 100 ms increases elapsed
time by about 2 seconds for the first hit, and 1.5 seconds for the
second hit.

Figure 3b depicts accuracy versus total latency. The x-axes and
trendlines are as for Figure 3a, but the data here for the y-axis is
the accuracy (shots fired divided by shots taken) as a percent. From
the graph, player accuracies for first and second hits degrade with
latency, and the steeper slope of the blue line indicates that latency

has higher impact on the first hit. The linear regressions fit the
means well, with 𝑅2 0.92 and 𝑝 = 0.001 for the first hit (blue). 𝑅2
0.87 and 𝑝 = 0.002 for the second hit (green). As a take-away, an
increase in total latency by 100 ms degrades accuracy percent by
about 13% for the first hit, and about 8% for the second hit.

Note, the second hit times are affected by the weapon firing
rate (i.e., the minimum time between successive shots – 250 ms in
our study). Moreover, many first-person shooter games (although
not ours) have weapon recoil that reduces accuracy and increases
elapsed time for successive shots. While both factors – firing rate
and recoil – are important for first-person shooter game perfor-
mance for second and subsequent shots, they are not the focus of
our current study. Hence, for all subsequent analysis, we analyze
the first hit only.

Figure 3c shows an analysis of quality of experience (QoE) versus
total latency. The QoE is from answers to the question “Rate the
quality of the previous game round” from 1 (low) to 5 (high). The
y-axis is the QoE and the x-axis is the total latency. Each point
is the QoE averaged over all users, bounded by 95% confidence
intervals. The line is a regression through the mean values with
an 𝑅2 of 0.62, 𝑝 = 0.064. From the graph, latency degrades player
experience, dropping about 0.4 points (on a 5-point scale) every 100
ms.

Player QoE and first hit elapsed time has a medium correlation
with an 𝑅 at -0.32.

4.3 With Latency Compensation
Latency compensation techniques can mitigate the impact of net-
work latency on players and are widely used in computer games,
and self-prediction and time warp are commonly used latency com-
pensation techniques in first-person shooter games [31]. We com-
pare four different latency compensation condition: none, only
self-prediction, only time warp, and both self-prediction and time
warp. Local latency is kept at a minimum (25 ms), and network
latency varies: 0 ms, 50 ms, 100 ms and 150 ms.

Self-prediction [18] estimates game state based on player input,
but before getting confirmation from the server. In first-person
shooter games, self-prediction primarily helps a player’s movement
in the presence of network latency where an avatar moves and
changes direction in response to player input as if there is no net-
work latency. In our first-person shooter game, player prediction
provides immediate feedback to the player for changing orientation
(aiming) without having to get confirmation from the server.

Time warp [43] rolls back game state on the server to when the
player action occurred on the client, applies the action, then rolls
the game state forward to the current time. In first-person shooter
games, the server decides whether a player hits a target based on
the previous game state when the player fired the shot, allowing
players to aim directly at the target as if there is no network latency.

Figure 4a depicts elapsed time versus network latency where the
axes and data are as for Figure 3a. The data is separated out (means
and trendlines) by the four latency conditions: blue is without la-
tency compensation, red is for self-prediction, purple is for time
warp, and black is for both self-prediction and time warp. In the
graph, the blue line has the steepest slope, showing that latency

Latency and Target Selection in First-Person Shooters MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

(a) Elapsed time (b) Accuracy (c) QoE

Figure 3: Versus network latency without latency compensation

(a) Elapsed time (b) Accuracy (c) QoE

Figure 4: Versus network latency with latency compensation

has the most impact on elapsed time when there is no latency com-
pensation. The red line and the purple lines have shallower slopes
and are comparable, indicating that each technique individually has
about the same ability to mitigate network latency. The black line
is almost flat, indicating that both techniques together can nearly
completely overcome the effects of network latency on elapsed time.
The blue, red and purple lines fit their respective mean values well,
with 𝑅2 0.95, 0.89 and 0.88 and 𝑝 = 0.025, 0.057, 0.061 respectively.
The black line is almost flat with 𝑅2 0.03 and 𝑝 = 0.82, indicating
that with both self-prediction and time warp, latency does not have
statistically significant effect on elapsed time.

Figure 4b depicts the same data, but for accuracy. As for the
elapsed time analysis, the uncompensated line (blue) is steeper
than self-prediction (red) and time warp (purple), and with both
self-prediction and time warp (black) the trend line is flat. The blue,
red and purple line-fits have 𝑅2 0.88, 0.32 and 0.49 and 𝑝 = 0.060,
0.43, 0.30 respectively, while the black line has 𝑅2 0.57 and 𝑝 = 0.24

– with both self-prediction and time warp, network latency does
not have significant impact on accuracy.

Figure 4c depicts QoE versus network latencywith compensation
techniques. The graph is the same as Figure 3c but the x-axis is only
network latency and the data is separated by latency compensation
condition. From the graph, as for player performance, QoE degrades
the most with latency without compensation (blue), while self-
prediction (red) and time warp (purple) both ameliorate the effects
of network latency on QoE. The slightly steeper slope of the purple
line compared to the red line indicates self-prediction helps QoE
more than does time warp. The blue, red and purple lines have 𝑅2
0.99, 0.99 and 0.99 and 𝑝 = 0.048, 0.073, 0.058, respectively. The
black line for QoE is almost flat with 𝑅2 0.25 and 𝑝 = 0.67 – with
both time warp and self-prediction, latency has little impact on
QoE.

As a take away, with both self-prediction and time warp together,
latency does not appreciably affect player performance nor QoE
for 3D target selection.

MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Shengmei Liu and Mark Claypool

4.4 Local Latency and Network Latency
The latency compensation benefits from Section 4.3 can only miti-
gate the network latencies experienced in Section 4.3 but cannot
help with the local latencies. We analyze how effective latency com-
pensation is when there are also high local latencies (test condition
C from our methodology).

For Figure 5 the network latency is fixed at 100 ms, while the
local latency – either 25 ms or 100 ms – is on the y-axis.

From these graphs, the relative trends in player performance
are the same – performance is worse without compensation and
using both techniques helps more than each individually. However,
even when using both latency compensation techniques together,
performance with a local latency of 100 ms is still worse than with
a local latency of 25 ms since the latency compensation techniques
only mitigate the network latency and not the additional 75 ms of
local latency.

In Figure 5a, without latency compensation, there is a significant
difference between player elapsed time for 25 ms and 100 ms with
𝑝 < 0.001. With only self-prediction or time warp, there is no sig-
nificant different between player elapsed time at 25 ms and 100 ms
with 𝑝 = 0.17 and 𝑝 = 0.005, respectively. With both compensation
techniques on, there is significant difference between player elapsed
time at 25 ms and 100 ms with 𝑝 < 0.001. In Figure 5b, without
latency compensation, there is significant difference between 25
ms and 100 ms with 𝑝 < 0.001. With only self-prediction or time
warp, there is no significant different between 25 ms and 100 ms
with 𝑝 = 0.12 and 𝑝 = 0.36, respectively. With both compensation
techniques, there is no significant difference between 25 ms and
100 ms with 𝑝 = 0.094.

For QoE, the individual techniques cannot fully overcome the 100
ms of network latency so player QoE is about the same, although
both techniques together improve QoE from about 3.25 to 3.75
when there is only 25 ms of local latency. In Figure 5c, without
latency compensation, there is no significant difference between
25 ms and 100 ms with 𝑝 = 0.92. With only self-prediction or time
warp, there is no significant different between 25 ms and 100 ms
with 𝑝 = 0.75 and 𝑝 = 1.0, respectively. With both compensation
techniques, there is significant difference between 25 ms and 100
ms with 𝑝 = 0.041.

4.5 Target Motion
While players in first-person shooter games usually shoot at moving
opponents, some opponents deliberately jump to avoid being shot
while others deliberately stand still, either unaware they are being
shot at or to better aim their own weapons.

The data from test condition D in our methodology lets us assess
how much these motion variants impact target selection. For this
condition, only the motion varies – normal, normal without jump-
ing, and stationary – whereas local latency and network latency
are fixed at 100 ms, each.

Figure 6a depicts elapsed time versus the target motion condition.
The x-axis is the motion condition and the y-axis is the elapsed
time. The circles are mean values and the bars are 95% confidence
intervals. Figure 6b is as for Figure 6a, but the y-axis is accuracy
instead of elapsed time. From the graphs, player performance is

significantly better – about 1/2 the elapsed time and twice the ac-
curacy – when the target is still. Moreover, jumping – a commonly
used tactic by first-person shooter opponents – does not signifi-
cantly degrade the shooting performance of players shooting at
the jumper. While we believe these results likely hold in other first-
person shooter games, the degree to which they hold will depend
upon the avatar speeds, and frequency and height of the jumping
and frequency of direction changes.

4.6 Models
Analytic models can help generalize results beyond the necessarily
narrow range of conditions tested in a user study. In our case, this
means generalizing to latencies other than one of the 7 discrete
values used in our experiments. Analytic models can also be used
to help with game design, where predicting player performance
with latency can be used to adjust the game parameters [32] and
change in-game attributes [19, 42, 46] in order to accommodate
latency. Moreover, analytic models may be useful for discrete event
simulations [24], where game performance can be selected using
the model and applied to a simulated game outcome. In our case, a
model of 3D target selection with latency could be combined with
models of navigation with latency [25] in order to simulate mov-
ing and shooting in a first-person shooter game. This may enable
predictions of player performance over a broad range of latency
conditions, as well as other in-game conditions such as specific
game parameters (e.g., weapon attributes, movement speeds).

Since the intent of 3D target selection is to click on the target
as fast as possible, we analyze and then model the elapsed time
distributions with latency. For now, we only consider the rounds
with normal target movement and without latency compensation.

Figure 7a depicts the cumulative distribution functions (CDFs) of
elapsed time. The x-axis is length of elapsed time in seconds and the
y-axis is the cumulative distribution. The data is grouped for three3
different total latency conditions. From the graph, there is some
visual separation of the lines based on latency, with lower latencies
generally having shorter elapsed times (the lines are shifted up and
to the left).

Figure 7b depicts the CDFs of elapsed time with latency com-
pensation at 175 ms, as an example. In the graph, blue is for no
compensation, red is for self-prediction, purple is for time warp, and
black is for both techniques. Since there is no latency compensation
in Figure 7a, the blue line in Figure 7b is the same as the green line
in Figure 7a. From the graph, there is some visual separation of the
lines based on latency compensation techniques, with the “both”
condition having the shortest elapsed times, self-prediction only
and time warp only having slightly longer elapsed times and “none”
having the longest elapsed times.

Since the CDF distributions appear have an exponential shape,
we fit an exponential function to the data. The CDF (p) of the
exponential distribution is described by:

𝑝 = 1 − 𝑎 ∗ 𝑒𝑥𝑝−(𝑏 ·𝐿+𝑐)∗𝑇 (1)

where 𝐿 is the total latency (in milliseconds), 𝑇 is the elapsed time
(in seconds) and a, b and c are constants.

3The other latency conditions are not shown on the graph to make it readable.

Latency and Target Selection in First-Person Shooters MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

(a) Elapsed time (b) Accuracy (c) QoE

Figure 5: Versus local latency with 100 ms network latency

(a) Elapsed time (b) Accuracy

Figure 6: Versus target motion

(a) Without latency comp. (b) With latency comp. and 175
ms network latency

Figure 7: Distributions of first hits

The exponential functions fit the distribution data well, with
an average 𝑅2 0.98 and average root mean-square error (RMSE) of
0.041. For reference, the model parameters are provided by Table 4.

Table 4: Models for elapsed time distributions (Equation 1)

Latency compensation 𝑎 𝑏 𝑐 𝑅2 RMSE
None 1.34 -1.57 0.51 0.99 0.033
Self-prediction 1.33 -0.97 0.50 0.98 0.039
Time warp 1.39 -1.16 0.53 0.98 0.042
Both 1.54 -0.52 0.60 0.97 0.049

5 DISCUSSION
The analysis of the first versus second shot matches expectations
based on Fitts’ Law [11]. The distance the player must move the
reticle is farther for the first hit than the second, since for the second
shot the mouse starts on the target and only has to move (track)
until the weapon cooldown (250 ms) before firing again.

The performance of the player with latency compensation some-
whatmatches expectations, aswell. Specifically, with self-prediction,
the player’s input is immediately acted upon by the client making
the game responsive as if there is no additional network latency.
With time warp, the player can aim directly at the opponent en-
abling shot resolution as if there is no additional network latency.
Combined, the game feels as if there is no extra latency and this
is reflected in the QoE scores. Corresponding to this, the player
performs as well as they would without latency.

However, the fact that self-prediction or time warp by them-
selves provide less benefit is expected, but had not been measured.
Basically, each technique provides about “half” the performance
benefit of the combined pair, albeit neither provides much in the
way of QoE benefit which is somewhat surprising. This lack of
QoE benefit when used individually may be because even a little
bit of latency has a detrimental effect on how the game feels, so
compensation needs to overcome all latency for players to perceive
the benefit.

MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Shengmei Liu and Mark Claypool

As noted, FPS players often jump during a firefight to avoid being
shot (i.e., presuming a randomly moving target is more difficult
to aim at). However, based on our results, the selection times for
hitting a moving and jumping target versus just hitting a moving
target without jumping are similar, so this casts doubt on jumping
as a dodging technique. In fact, jumping may make it harder to
aim, an aspect we did not assess, and so players should consider
jumping as an avoidance technique carefully before using in-game.

The analytic models provided, although simple, reveal that selec-
tion times are heavy-tailed in that average times can be relatively
low – meaning hitting a target can happen quickly – but sometimes
it takes a long time to sight and hit an opponent. And these tails get
heavier with latency, which may inform players in their expecta-
tions and planning in play. On a related note, Fitts’ Law [11] relates
elapsed time to select a target with target distance and size. But in
Fitts, the target size is fixed whereas our 2D size varies with the
relative movement of the 3D target. Our results could provide a
foundation for a revised law that relates elapsed time to 3D distance
(and 3D size).

Considering moving and shooting are the main player actions in
first-person shooter games, the analytic model of 3D target selection
can be combined with 3D navigation model from our previous
work [25] to simulate a wide range of first-person shooter game
scenarios. Combat could be simulated as follows: moving to shoot
and avoid being shot are done with successive, alternative “in-sight”
and “out-of-sight” time windows generated with the navigation
models. In each of the in-sight windows, the time to aim and shoot
at the opponent is generated from the elapsed time models. If the
elapsed time is containedwithin the in-sight window, the player hits
the shot whereas if the elapsed time is longer than the end of the in-
sight window, the player misses the shot. The simulations should
be validated using actual first-person shooter game data. Once
validated, the model-based simulation could be used for exploration
of the first-person shooter games without the need for expensive
and time-consuming user studies.

6 LIMITATIONS
Our methodology intentionally had users play against a bot. The
movement of the target can alter the difficulty of the game and
hence affect player performance and experience. Although the
movement of the bot is simulated from real player data from the
first-person shooter game (CS:GO), the results may not generalize
to all FPS games which may differ in their target motion parameters.

In our custom game, the player only has a pistol as the weapon.
However, play style and strategy can vary with type of weapon,
which, in turn, may result in different elapsed times and accuracies.
Similarly, weapon accuracies and firing rates different than the ones
in our study may have alternate performance data.

As noted in Section 4.1, our sample is skewed towards young
males.While this may reflect the gender and age breakdown present
in some first-person shooter games today, the results reported may
not be indicative of players outside of this demographic.

There might be learning effects where players become more
familiar with the game and perform better at later rounds, regardless
of the latency. While we did not explicitly observe learning effects

in our five baseline values, our shuffled test conditions across all
rounds should minimize any learning effects on specific conditions.

Serious game players often customize the software settings on
their computers and games to suit their personal play preferences.
However, since customizations would have created a difference in
test conditions between users, we did not allow any changes to the
computer settings. This holds for other game configurations, too,
such as other mice, keyboards or monitors.

7 CONCLUSION
Understanding the effects of latency on first-person selection can
help inform game design and development techniques to mitigate
latency’s effects, and also generalize results to a broad range of
first-person shooter games through modeling and simulation. This
paper presents results from a user study on first-person selection
under controlled latency conditions. We isolated selection in first-
person games via a custom 3D target selection game where players
took a fixed position, then selected (shot at) avatars in a matter
akin to first-person shooter games We also investigated common
latency compensation techniques applied in first-person shooter
games and studied different types of target movement. We setup
our game in a private, local area network and control the local
latency and network latency. Thirty-nine (39) participants played
our custom game for 69 rounds across 22 different latency, latency
compensation techniques and target motion conditions (a total of
about 60 minutes of gameplay each), providing objective player
performance data (elapsed time, hit/miss ratio) via log files and
subjective opinion data. (Quality of Experience) via surveys.

Analysis of the results shows that across the range of total la-
tencies studied, player performance and quality of experience both
degrade linearly as latencies increase from 25 ms to 200 ms. Specif-
ically, elapsed times to select at 25 ms of latency average about 60%
shorter than elapsed times at 200 ms. Over this same range, Quality
of Experience (QoE) decreases about 0.4 (on a 5-point cale) with ev-
ery 100 ms of latency. Time warp and self-prediction both mitigate
the effects of latency, and, when applied together, can eliminate
the effects of latency on both player performance and QoE – i.e.,
players can feel and perform as if there is no network latency when
time warp and self-prediction are both used.

Our future work is to investigate the impact of latency on first-
person shooter games by simulating first-person shooter behavior
using themodels in this paper and additional models for first-person
navigation [25]. Once developed, such simulations would need to
be validated before being used to generalize performance over a
wide range of first-person shooter game configurations. Other fu-
ture work could explore how first-person selection performance
varies by player skill, using either self-rated skill [27] or measures
of proficiency in a selection task. Other future work can investigate
first-person selection with different types of weapons, target mo-
tion and map features. Our methodology could be used for gaming
actions in other games genres, e.g., Multiplayer Online Battle Arena
(MOBA) games like DOTA 2 (Valve, 2013) and League of Legends
(Riot Games, 2009), and Real-Time Strategy (RTS) games like Star-
craft (Blizzard, 1998). In such a case, individual game actions would
need to be isolated for the game and then evaluated.

Latency and Target Selection in First-Person Shooters MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

REFERENCES
[1] Rahul Amin, France Jackson, Juan E. Gilbert, Jim Martin, and Terry Shaw. 2013.

Assessing the Impact of Latency and Jitter on the Perceived Quality of Call
of Duty Modern Warfare 2. In Proceedings of HCI – Users and Contexts of Use.
Springer-Verlag, Berlin, Heidelberg, 97–106.

[2] Grenville Armitage. 2003. An Experimental Estimation of Latency Sensitivity in
Multiplayer Quake 3. In Proceedings of the 11th IEEE International Conference on
Networks (ICON). Sydney, Australia, 137–141.

[3] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu,
and Mark Claypool. 2004. The Effects of Loss and Latency on User Performance
in Unreal Tournament 2003. In Proceedings of ACM Network and System Support
for Games Workshop (NetGames). Portland, OR, USA.

[4] Yahn W. Bernier. 2001. Latency Compensating Methods in Client/Server In-
game Protocol Design and Optimization. In Proceedings of the Game Developers
Conference (GDC). CMP Media, LLC, San Francisco, CA, USA, 13 pages.

[5] Mark Claypool. 2018. Game Input with Delay—Moving Target Selection with a
Game Controller Thumbstick. ACM Trans. Multimedia Comput. Commun. Appl.
14, 3s, Article 57 (June 2018), 22 pages. https://doi.org/10.1145/3187288

[6] Mark Claypool, Ragnhild Eg, and Kjetil Raaen. 2017. Modeling User Performance
for Moving Target Selection with a Delayed Mouse. In Proceedings of the 23rd
International Conference on MultiMedia Modeling (MMM). Springer International
Publishing, Reykjavik, Iceland, 226–237.

[7] Mark Claypool and David Finkel. 2014. The Effects of Latency on Player Per-
formance in Cloud-based Games. In Proceedings of the 13th ACM Network and
System Support for Games (NetGames). Nagoya, Japan.

[8] Matthias Dick, Oliver Wellnitz, and Lars Wolf. 2005. Analysis of Factors Affecting
Players’ Performance and Perception in Multiplayer Games. In Proceedings of 4th
ACMWorkshop on Network and Systems Support for Games (NetGames). Hawthorn,
NY, USA, 1–7.

[9] Matthew Dye, C. Shawn Green, and Daphne Bavelier. 2009. Increasing Speed of
Processing with Action Video Games. Current Directions in Psychological Science
18, 6 (Dec. 2009), 321–326.

[10] E$ports Earning. 2019. Prize Money, Results, History, Statistics. Online: https:
//www.esportsearnings.com/. (Accessed January 5, 2021).

[11] Paul M. Fitts. 1954. The Information Capacity of the Human Motor System in
Controlling the Amplitude of Movement. Journal of Experimental Psychology 47,
6 (June 1954), 381–391.

[12] Sebastian Friston, Per Karlström, and Anthony Steed. 2016. The Effects of Low
Latency on Pointing and Steering Tasks. IEEE Transactions on Visualization and
Computer Graphics 22, 5 (May 2016), 1605–1615.

[13] Tobias Fritsch, Hartmut Ritter, and Jochen H. Schiller. 2005. The Effect of La-
tency and Network Limitations on MMORPGs: a Field Study of Everquest 2. In
Proceedings of the 4th ACM Network and System Support for Games (NetGames).
Hawthorne, NY, USA, 1–9.

[14] Christina Gough. 2020. eSports Audience Size Worldwide from 2018 to 2023.
Statista. Online: https://tinyurl.com/y3tffxzo. (Accessed September 17, 2020).

[15] Oliver Hohlfeld, Hannes Fiedler, Enric Pujol, and Dennis Guse. 2016. Insensitivity
to NetworkDelay:Minecraft Gaming Experience of Casual Gamers. In Proceedings
of the International Teletraffic Congress (ITC). IEEE, Würzburg, Germany, 31–33.

[16] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven Sutcliffe. 2015. Quantifying
and Mitigating the Negative Effects of Local Latencies on Aiming in 3d Shooter
Games. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI). Seoul, Republic of Korea, 135–144.

[17] Benjamin F Janzen and Robert J Teather. 2014. Is 60 fps better than 30? The impact
of frame rate and latency on moving target selection. In Extended Abstracts on
Human Factors in Computing Systems. 1477–1482.

[18] Huy Viet Le, Valentin Schwind, Philipp Göttlich, and Niels Henze. 2017. Predic-
Touch: A System to Reduce Touchscreen Latency Using Neural Networks and
Inertial Measurement Units. In Proceedings of the ACM International Conference
on Interactive Surfaces and Spaces (ISS ’17). Association for Computing Machinery,
Brighton, United Kingdom, 230–239. https://doi.org/10.1145/3132272.3134138

[19] Injung Lee, Sunjun Kim, and Byungjoo Lee. 2019. Geometrically Compensating
Effect of End-to-End Latency in Moving-Target Selection Games. In the ACM
Computer-Human Interaction Conference (CHI). Glasgow, Scotland, UK.

[20] Nick Lee. 2017. Beyond 50/50: Breaking Down The Percentage of Female Gamers
by Genre. Online: https://quanticfoundry.com/2017/01/19/female-gamers-by-
genre/. (Accessed September 5, 2021).

[21] Steven WK Lee and Rocky KC Chang. 2017. On ‘Shot Around a Corner’ in
First-person Shooter Games. In Proceedings of the IEEE International Workshop on
Network and Systems Support for Games (NetGames). Taipei, Taiwan.

[22] Wai-Kiu Lee and Rocky KC Chang. 2015. Evaluation of lag-related configurations
in first-person shooter games. In Proceedings of the IEEE International Workshop
on Network and Systems Support for Games (NetGames). Zagreb, Croatia.

[23] Shengmei Liu and Mark Claypool. 2021. EvLag - A Tool for Monitoring and
Lagging Linux Input Devices. In Proceedings of the ACM Multimedia Systems
Conference (MMSys). Istanbul, Turkey.

[24] Shengmei Liu and Mark Claypool. 2021. Game Input with Delay - A Model of the
Time Distribution for Selecting a Moving Target with a Mouse. In Proceedings

of the 27th International Conference on MultiMedia Modeling (MMM). Virtual
Conference.

[25] Shengmei Liu and Mark Claypool. 2022. The Impact of Latency on Navigation in
a First-Person Perspective Game. In Proceedings of the ACM CHI Conference on
Human Factors in Computing Systems. New Orleans, LA, USA, 11 pages.

[26] Shengmei Liu, Mark Claypool, Andy Cockburn, Ragnhild Eg, Carl Gutwin, and
Kjetil Raaen. 2021. Datasets: Moving Target Selection with Delay. In Proceedings
of the 12th ACM Multimedia Systems Conference. 320–326.

[27] Shengmei Liu, Mark Claypool, Bhuvana Devigere, Atsuo Kuwahara, and Jamie
Sherman. 2020. ’Git Gud!’ - Evaluation of Self-Rated Player Skill Compared
to Actual Player Performance. In Proceedings of the ACM CHI PLAY. Virtual
Conference.

[28] Shengmei Liu, Atsuo Kuwahara, James Scovell, Jamie Sherman, and Mark Clay-
pool. 2021. Comparing the Effects of Network Latency versus Local Latency
on Competitive First Person Shooter Game Players. In Proceedings of the ACM
Esports and High Performance HCI Workshop (EHPHCI). Virtual Conference.

[29] Shengmei Liu, Atsuo Kuwahara, James Scovell, Jamie Sherman, and Mark Clay-
pool. 2021. Lower is Better? The Effects of Local Latencies on Competitive
First-Person Shooter Game Players. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI). Yokohama, Japan, 12 pages.

[30] Shengmei Liu, Atsuo Kuwahara, James Scovell, Jamie Sherman, and Mark Clay-
pool. 2021. The Effects of Network Latency on Competitive First-Person Shooter
Game Players. In Proceedings of Quality of Multimedia Experience (QoMEX). Vir-
tual Conference.

[31] Shengmei Liu, Xiaokun Xu, and Mark Claypool. 2022. A Survey and Taxonomy
of Latency Compensation Techniques for Network Computer Games. Comput.
Surveys 54, 11s (Feb. 2022). https://doi.org/10.1145/3519023

[32] Michael Long and Carl Gutwin. 2018. Characterizing and Modeling the Effects
of Local Latency on Game Performance and Experience. In Proceedings ACM CHI
Play. New York, NY, USA, 285–297.

[33] Michael Long and Carl Gutwin. 2019. Effects of Local Latency on Game Pointing
Devices and Game Pointing Tasks. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI). Glasgow Scotland, UK, 1–12.

[34] I. Scott MacKenzie and Colin Ware. 1993. Lag as a Determinant of Human
Performance in Interactive Systems. In Proceedings the Conference on Human
Factors in Computing Systems (Amsterdam, The Netherlands). IOS Press.

[35] Andy CockburnMark Claypool and Carl Gutwin. 2020. The Impact of Motion and
Delay on Selecting Game Targets with a Mouse. ACM Transactions on Multimedia,
Computing, Communication and Applications (TOMM) 16, 2 (May 2020).

[36] Emmie Martin. 2018. Super Bowl Champs Will Win Thousands - but
They’d Earn 130 Percent More If They Played Baseball. CNBC - Money On-
line: https://www.cnbc.com/2018/02/02/how-much-super-bowl-winners-get-
paid-compared-to-world-series.html. (Accessed January 5, 2021).

[37] optimum.com. 2020. What Is Latency? Online: https://www.optimum.com/
internet/what-latency. (Accessed Nov 15, 2021).

[38] Andriy Pavlovych and Carl Gutwin. 2012. Assessing Target Acquisition and
Tracking Performance for Complex Moving Targets in the Presence of Latency
and Jitter. In Proceedings of Graphics Interface 2012 (Toronto, Ontario, Canada)
(GI ’12). Canadian Information Processing Society, CAN, 109–116.

[39] Andriy Pavlovych and Wolfgang Stuerzlinger. 2011. Target Following Perfor-
mance in the Presence of Latency, Jitter, and Signal Dropouts. In Proceedings of
Graphics Interface 2011 (St. John’s, Newfoundland, Canada) (GI ’11). Canadian
Human-Computer Communications Society, Waterloo, CAN, 33–40.

[40] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer, and
Natalie Degrande. 2004. Objective and Subjective Evaluation of the Influence
of Small Amounts of Delay and Jitter on a Recent First Person Shooter Game.
In Proceedings of 3rd ACM Workshop on Network and Systems Support for Games
(NetGames). Portland, OR, USA, 152–156.

[41] Kjetil Raaen and Ragnhild Eg. 2015. InstantaneousHuman-Computer Interactions:
Button Causes and Screen Effects. In Proceedings of the 17th HCI International
Conference. Springer International Publishing, Los Angeles, CA, USA, 492–502.

[42] Saeed Shafiee Sabet, Steven Schmidt, Saman Zadtootaghaj, Carsten Griwodz, and
Sebastian Moller. 2018. Towards Applying Game Adaptation to Decrease the
Impact of Delay on Quality of Experience. In IEEE International Symposium on
Multimedia (ISM). IEEE press, Taichung, Taiwan, 114–121.

[43] Cheryl Savery and T. C. Graham. 2013. Timelines: Simplifying the Programming
of Lag Compensation for the Next Generation of Networked Games. Multimedia
Systems 19, 3 (June 2013), 271–287. https://doi.org/10.1007/s00530-012-0271-3

[44] Robert J. Teather, Andriy Pavlovych, Wolfgang Stuerzlinger, and I. Scott MacKen-
zie. 2009. Effects of Tracking Technology, Latency, and Spatial Jitter on Object
Movement. In Proceedings of the IEEE 3D User Interfaces. Lafayette, LA, USA.

[45] wepc.com. 2021. Video Game Industry Statistics, Trends and Data In 2021. Online:
https://www.wepc.com/news/video-game-statistics/. (Accessed August 12, 2021).

[46] Xiaokun Xu, Michael Bosik, Adam Desveaux, Alejandra Garza, Alex Hunt,
Cameron Person, James Plante, Joseph Swetz, Nina Taurich, Brian Clark, Doris
Hung, Philip Lamoureux, and Mark Claypool. 2022. Compensating for Latency in
Cloud-based Game Streaming using Attribute Scaling. In Proceedings of Quality
of Multimedia Experience (QoMEX). Lippstadt, Germany.

https://doi.org/10.1145/3187288
https://www.esportsearnings.com/
https://www.esportsearnings.com/
https://tinyurl.com/y3tffxzo
https://doi.org/10.1145/3132272.3134138
https://quanticfoundry.com/2017/01/19/female-gamers-by-genre/
https://quanticfoundry.com/2017/01/19/female-gamers-by-genre/
https://doi.org/10.1145/3519023
https://www.cnbc.com/2018/02/02/how-much-super-bowl-winners-get-paid-compared-to-world-series.html
https://www.cnbc.com/2018/02/02/how-much-super-bowl-winners-get-paid-compared-to-world-series.html
https://www.optimum.com/internet/what-latency
https://www.optimum.com/internet/what-latency
https://doi.org/10.1007/s00530-012-0271-3
https://www.wepc.com/news/video-game-statistics/

	Abstract
	1 Introduction
	2 Related work
	2.1 Target Selection
	2.2 Local Latency and Games
	2.3 Network Latency and Games
	2.4 Latency compensation Techniques

	3 Methodology
	3.1 3D Target Selection Game
	3.2 Testbed Setup
	3.3 User Study Procedure

	4 Analysis
	4.1 Demographics
	4.2 Without Latency Compensation
	4.3 With Latency Compensation
	4.4 Local Latency and Network Latency
	4.5 Target Motion
	4.6 Models

	5 Discussion
	6 Limitations
	7 Conclusion
	References

