NTEC,
2O #:4,,
T LPPPINC

& 2
«n w
Y 3
3 ~
2 4

A Fault
nvibiA. Injection WP
Simulator
for ARM

»:

A Major Qualifying Project
submitted to the Faculty of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfilment of the requirements for the
degree of Bachelor of Science

Team Members:
Jonathan Metzger
Maryann O’Connell
Himanjal Sharma

Date:
2 March 2018

Sponsors:
Vincent Chen
Andrew Tran

Advisor:
Mark Claypool

School:
Worcester Polytechnic Institute

This report represents work of WPl undergraduate students submitted to the faculty as evidence of
a degree requirement. WPI routinely publishes these reports on its website without editorial or peer
review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Table of Contents

Table of Contents
Abstract
1. Introduction

2. Background

2.1 Fault Injection
2.1.2 Hardware Fault Injection
2.1.3 Software Fault Injection
2.1.4 Consequences
2.1.5 Fault Injection and ARM
2.1.6 Fault Injection Summary

2.2 Hardware Study Components
2.2.1 Tegra and Tegrashell
2.2.2 ChipWhisperer and CW Capture
2.2.3 DSTREAM and DS-5
2.2.4 Other Components

2.3 Simulator Application Components
2.3.1 GDB
2.3.2 Qemu
2.3.3 Synopsys VDK

3. Methodology

4. Hardware Study

4.1 Hardware Study Experimental Settings and Methodology
4.1.1 Experimental Setup
4.1.2 Voltage Fault Injection Parameters Selection
4.1.3 Test Codes
4.1.4 Data Collection and Log Analysis
4.1.5 Assessments

4.2 Hardware Study Results
4.2.1 Instruction Vulnerability
4.2.2 Positive versus Negative Values
4.2.3 Bit Patterns

5. Fault Injection Simulator
5.1 Application Design

5.1.1 Application Goals

5.1.2 Virtual Environment

5.1.3 Testing Source Code
5.1.3.1 Trigger Single Fault
5.1.3.1 Trigger Multiple Faults

5.1.4 Feedback and Logging

5.1.5 Application Graphical User Interface
5.1.5.1 Importing Source Code
5.1.5.2 XML Table
5.1.5.3 Register Table
5.1.5.4 GNU Debugger

5.1.6 Assessment

5.2 Application Implementation

5.2.1 Software and Development Tools
5.2.1.1 Linux and Python
5.2.1.2 GDB and ARM

5.2.2 Frontend Process
5.2.2.1 Listboxes
5.2.2.2 Treeview
5.2.2.3 Feedback Colors

5.2.3 Backend Process
5.2.3.1 Source Code

Figure 20. Source to Machine Code

5.2.3.2 Registers
5.2.3.3 Mask

5.2.4 Trigger a Fault

Figure 22. Process of Triggering a Fault

5.2.4.1 Connect to Qemu
5.2.4.2 Reach the trigger point
5.2.4.2 Change Registers
5.2.4.3 Trigger Next Instruction
5.2.4.4 Get Feedback
5.2.4.4 Executing XML

6. Conclusions and Future Work

31
31

32
32
33
34
35
35
38
39
40
42
43
45
47
47
47
48
49
49
49
50
50
51

51

52
53
53
54
54
54
55
55
55
56

57

References

Appendix A. Hardware Study Test Codes and Results

60
63

Abstract

Fault injection attacks pose a vulnerability to software integrity. A successful
attack can result in skipped instructions, introduction of new instructions, and other
undesirable behavior. Testing for fault injection vulnerabilities is a common practice
when creating systems with a hardware component. Injecting faults enables
developers to analyze the effectiveness of preventative measures, ultimately
leading to improved hardware tolerance and overall application dependency.
Testing can be achieved using hardware fault injections or software fault
simulations. Hardware fault injection is expensive and difficult to scale compared to
software solutions. Using a software simulation approach adds flexibility, protects
hardware and simplifies testing procedures. Software simulation utilizes a virtual
development kit (VDK) to simulate hardware components and injects faults into it.

Our goal is to study the behavior of voltage fault injection in hardware and
design an application to enable developers to inject fault-inducing instructions at
user-selected trigger points within the source code. In order to prevent hardware
destruction and verify system dependability, we simulated fault behavior in a virtual
environment with ARM7 architecture. Faults are simulated through a GDB server to
assess the effectiveness of preventive measures implemented at the software level.
We successfully built a fault injection simulator prototype based on fault behavior
we observed. Our goal is to provide a data driven simulation combining the results
from hardware testing and software fault injection testing to increase flexibility and

improve accuracy of software testing.

1. Introduction

Hardware fault injection was first introduced in the 1970s as a technique to
improve the dependability of systems (Carreira et al., 1999). One fault injection
technique is to use pin-level probes to apply a voltage to a system at the boundary
of safe operation (Hsueh et al. 1997). This technique can result in damaged
hardware, which results in increased testing expenses. Currently, the software
security team at Nvidia uses voltage hardware fault injection to test products prior
to release. They are working towards an alternate approach to test system on chips
(SoCs) against fault injection by simulating faults in Virtual Development Kits. Our
project aimed to understand how fault injection impacts hardware and create a
graphical user interface (GUI) application with a command line interface (CLI) that
simulates hardware fault injections via a GDB server to emulate faults in Nvidia
systems on a chip (SoCs).

The two components of our project included a hardware study and fault
injection simulator. We studied how registers respond to voltage fault injection in
hardware and built an application that modifies register values using GDB, the GNU
Project debugger (GNU, 2017). To provide a better user experience, we built a GDB
Client application and interface. The interface supports fault injection simulation
and enables users to select a trigger point within the target source code. A high

level overview of our project architecture is illustrated in Figure 1.

Hardware Study ' Fault Injection Simulator ;

Python Application

Copy of

Bhiiton Tt GDB Client

Host Host

| QEMU | g

PM342 CW Capture ; ;
GDB Server

‘ DS-5 | Tegrashell

Tegra T210 ChipWhisperer

XML Trace

DSTREAM Debug Module

XML Trace

Figure 1. Project Architecture Overview.

The hardware study involved writing a set of scripts and running a variety of
software to trigger voltage fault injection in a Tegra T210 target. The fault injection
simulator was a Python application built to connect to Qemu through a gdb server.
The hardware data was loaded in an XML document and imported into the

simulator to replicate glitch behaviour on source code.

The results from hardware study suggest that load instructions are most
susceptible to voltage fault injection whereas branching instructions are least
susceptible to voltage fault injection. The results also suggest move instructions are
vulnerable to voltage fault injection, and that negative values may increase the
chance of unexpected software behavior resulting from fault injection.

The fault injector simulator prototype was finished and tested on simple C
program by injecting faults into the program and exiting it abnormally. The
simulator emulates faults by changing register values and editing program
behaviour. The simulator is capable of triggering a fault at a user defined point in
the program and can also execute a list of faults from a XML file.

Chapter 2 briefly explains fault injection and its consequences. It also
describes the components and technologies used in our hardware study and
during software development.

Chapter 3 describes the methods we used to study the effects of voltage
spikes on hardware and to develop the fault injection simulator. It also shows how
these objectives intersect.

Chapter 4 explains hardware study setup and steps taken to glitch the
hardware and monitor the effects. It also shows data collected and results of study.

Chapter 5 describes the design process of the application. It also describes
each component of the interface and explains the implementation process.

Chapter 6 concludes our project and describes the future steps that could be

taken by future developers.

2. Background

This chapter summarizes relevant fault injection research. It provides an
explanation of hardware and software fault injection, as well as consequences
associated with fault injection attacks. This chapter includes information
fundamental to our hardware study and simulator development, including the

devices and applications used to construct our tool.

2.1 Fault Injection

Fault injection testing evaluates the dependability of computer systems,
hardware and software, through various methods in order to test fault-tolerant
systems or components via fault detection, isolation, reconfiguration and recovery
capabilities (Hsueh et al., 1997). Testing for fault injections, requires an
understanding of the system’s architecture, structure and behavior, tolerance for
faults and failures, built-in detection, and recovery mechanisms. A solid
understanding of these components is especially critical for assessing larger
systems. Once the system is understood, specific instruments and tools to inject
faults are leveraged to create measurable faults. The ideal fault injection technique
is highly dependent on specific product needs.

Hardware and software fault injections are differentiated by the type of fault
being created. For example, "stuck-at faults"—faults that force a permanent value
into a point in a circuit—require a hardware injector in order to control the location

of the fault (Kooli and Natale, 2014). Corrupting data requires a software injector.

Bit-flips, on the other hand, are attainable through both hardware and software

fault injections.

2.1.2 Hardware Fault Injection

Hardware fault injection requires close proximity to the target device, but can
be achieved with or without contact. To inject a fault, without contact, physical
phenomena such as heavy radiation or electromagnetic interference are used
(Hsueh et al., 1997). Voltage fault injection is an example of a method requiring
direct contact. Probes are attached to pins and voltage to the target is cut off or
increased. The exact voltage is fine tuned to find the boundary of safe operating.
Too little power results in the device turning off and too much power can
permanently damage the device therefore determining this range is a critical
component. The risk of damaging the target is higher with hardware fault injection
and therefore generally costs more than software fault injection. A fault that results

in unexpected software behavior is commonly referred to as a glitch.

2.1.3 Software Fault Injection

Software fault injection provides an inexpensive, scalable way to test for fault
injection. Faults can be injected into software at either compile-time or runtime
(Hsueh et al. 1997). In order to inject a fault at compile-time, the program
instruction must be modified before the program is executed. This will inject errors

into source or machine code to emulate faults. The code modifies the target

program causing injection. Runtime injections are triggered using time-outs,

exception handling code, or code insertion (Hsueh et al. 1997).

2.1.4 Consequences

Embedded systems without logical exploitable code may still be exploited
through fault injections. Instruction corruption and instruction skipping are
possible when a variable number of bits are flipped due to fault injection (Timmers
et al., 2016). Instruction corruption describes the behavior occurring when the
original instructions are modified to architecture supported instructions.
Instruction skipping entails skipping instructions that do not impact the state or
result in the introduction of new instructions.

An article from 2011 describes a group of attacks that claimed to have
beaten the Xbox 360 security ("Hackers Claim to Have Beaten Xbox 360 Security",
2011). A released a video showed how hackers succeeded in bypassing the security
system during runtime, targeting the CPU on Microsoft's Xbox 360 (YouTube, 2011).
The video showed how slowing the CPU speed during the boot sequence enabled
reset of a circuit at a specific time point. This caused the Xbox to fail to properly
check the bootloader signature, allowing hackers to run their own bootloader. This
bootloader can include malware that can affect performance or steal sensitive

information.

10

2.1.5 Fault Injection and ARM

Recent research publications explore the correlation between faults and
specific ARM instructions (Timmers et al., 2016). ARM load (LDR/LDMIA) and store
(STR/STMIA) instructions are vulnerable to attack as they are not fault injection
secured . The chance of success is improved because LDR and STR operations are
executed multiple times during the startup process and operations are performed
on attacker controlled data. An attacker can load a value into the program counter
(PC) through a single or double bit corruption. "Setting the PC as the destination for
the LDR or LDMIA" is often the initial step to later achieve arbitrary code execution
(Timmers et al., 2016). A secure boot attack can be conducted by identifying the
destination address of the copy instruction, overwriting flash storage with a
malicious payload, then injecting a fault after the shellcode is copied into internal
memory.

On the contrary, branching instructions are reportedly not vulnerable to
errors caused by voltage glitching (Barenghi et al.,, 2009). CPU registers are
designed with a "low capacitance" and an "instruction buffer" separates the CPU
and memory, "which cuts down the capacitive load of the path to the instruction
cache and the program memory" (Riviere et al., 2015). These findings are

fundamental to assessing the validity of our results.

11

2.1.6 Fault Injection Summary

Our project is concerned with threats posed by fault injection attacks and
focuses on providing a data driven approach for identifying fault vulnerabilities to
reduce the risk of consequences, such as those described in section 2.1.4. Fault
behavior is studied using hardware fault injection, specifically, voltage fault
injection. The observed behavior is then imitated using simulated faults. The targets
in our project use an ARM7 architecture and the simulator tool built supports

ARM?7.

2.2 Hardware Study Components

Our hardware study leveraged both Nvidia and third-party hardware and
software tools. This section provides background for the hardware devices used
during the study, including Tegra T210, ChipWhisperer, and DSTREAM (see Fig. 2). It
also introduces the software used in this study, including Tegrashell, CWCapture,

and DS-5.

12

Figure 2. Hardware study devices.
Tegra T210 (left) and ChipWhisperer-Lite (right).

2.2.1 Tegra and Tegrashell

Nvidia develops hardware including the system on a chip (SoC) series, Tegra.
Our study utilized the Tegra T210, also known as Tegra X1, which is used in the
Nintendo Switch. Tegra T210 uses an ARM7 processor and provides a JTAG interface
which can be used for programming the T210 and debugging.

Tegrashell is a field-programmable gate array (FPGA) debugger tool that
includes the ability to dump register values (see Fig. 3). Used together, the Tegra

T210 and Tegrashell provide a useful set of tools for testing and logging.

13

TegraShell - Internal Build Date: Jan 14 2018 Time: 23:34:53 Endian=Little
***** Type <help wiki> for help *¥***
kkkk*k Type ,:q} to qu-i_-t *hkkk*k
-t210 ip 172.17.173.8 arm7
RDDI Client: Opening socket connection
RDDI Client: Port registered: 15677
RDDI Server (23986): Connecting to client at port 15677
RDDI Server (23906): Client socket connection established
RDDI Server (23906): Enter service loop
RDDI Client: Socket connection opened
Working on RVC file fhome/moconnell/tegrashell/current linux/./aux files/rddifcortex a57.rvc...
Will use this RDDI config file for connection:
RVIConnection::initialize("T210", "172.17.173.8", "ARM7", "0")
Will use this RDDI config file for connection: /tmp/tegrashell rvi_config KROTY3.rvc
Device INFO:
Corefchip ID: Ox4F1FOFOF
Corefchip version: 6
Connection message: ARM79 RV-Msg compatible template
ConnectDevice: stopped ok, cause 1, detail @, page 0x00000000, address 0x40010168
OxFFFFFFF6 R1 OxFFFFFFF5 R2 OxFFFFFFF4 R3 OxFFFFFFF3
OxFFFFFFF2 RS 0x40031958 R6 Ox00000000 RY Ox00000000
0x00000000 R9 0x00000000 R10= 0x00000000 R11l= OxO0000000
= Ox0000000A R13= 0x40009DCO R1l4= 0x40010168 R15= 0x40010168
CPSR=0x600000DF SPSR=0x600000DF

RDDI Client: Closing socket connection

Figure 3. Tegrashell output for a single sample.
2.2.2 ChipWhisperer and CW Capture

ChipWhisperer (CW), made by NewAE Technology Inc., is a tool designed for
embedded hardware security research. We used the ChipWhisperer Lite (CW1173)
board to glitch a Tegra target. The CW1173 provides the option to trigger clock
generated voltage glitches using a built-in electronic switch (MOSFET). The MOSFET
shorts the power to ground during low-power glitches and increases the power
during high-power glitches. CW Capture is a software program used to control a
ChipWhisperer board (see Fig. 4). Glitch parameters, including high-power and

low-power glitching, glitch repeat, and clock frequency, are set using CW Capture.

14

s&E arpm © O ¢

w
Master: DIS Scope: CON Target: DIS

Scope Settings S
Parameter Value B
- =~ GPTO DeErault

PDIC: GPIO Default
Target Power State %
¥ Glitch Module

Clock Source Target 10-IN

Glitch width (as % of period) 10.2

Glitch width (fine adjust) 0

Glitch Offset (as % of period) 10.2

Glitch OFfset (fine adjust) 0

Glitch Trigger Manual

single-Shot Arm After Scope Arm

Ext Trigger Offset 0

Repeat 236)
- .

Output Mode Clock XORd

Scope Settings | Generic Settings | Results Target Settings

Figure 4. GUl-version of CW Capture software highlighting.

2.2.3 DSTREAM and DS-5

DSTREAM is a high-performance debug and trace unit created by ARM which
supports ARM architecture versions v4 through v8 (Arm Holdings, 2018). ARM
Development Studio 5 (DS-5) is a set of software tools which includes an Eclipse IDE,
ARM compilers, and an advanced debugger. Nvidia has a custom configuration
available for connecting Tegra T210 using DS-5. DSTREAM and DS-5 are beneficial

for manual testing and viewing register changes when glitching manually.

15

2.2.4 Other Components

A Nvidia T114 Debug Module was used with PM342 software to automate
physical resets of the Tegra T210 (see Fig. 5). This is a convenient alternative to
manually pushing the reset button. The T114 Debug Module was also used to

connect DSTREAM for debugging and verification purposes.

Figure 5. T114 Debug Module.

2.3 Simulator Application Components

This section describes third party applications critical to the development of
our application, including GDB, the GNU Debugger and Qemu. This section also

covers Synopsys VDK, a technology crucial to future work related to our tool.

16

2.3.1 GDB

We used arm-none-eabi-gdb debugger from Arm Toolchain for Ubuntu.
The toolchain provides the ability to remotely send and receive program data. The
GDB client was executed as a subprocess from Python and all the input and output
was piped to the command line. Once launched, we were able to attach the client

process to the debugging server running on Qemu virtualizer.

2.3.2 Qemu

Qemu is a generic and open source machine simulator and virtualizer
(Qemu, 2018). A developer can use the full-system simulator, user-mode simulator
or a virtualization tool. We used Qemu for its simplicity and its ability to virtualize

an entire operating system to test our glitches.

2.3.3 Synopsys VDK

Virtualizer Development Kits (VDKs) are software development Kkits
containing design-specific virtual prototypes as well as debug and analysis tools
and sample software. Synopsys supplies custom VDK solutions, including VDKs
used to simulate embedded systems. Synopsys' VDKs interface seamlessly with
DS-5, creating an integrated debug flow with extended control and analysis

capabilities (Synopsys, 2017).

17

3. Methodology

Our goal was to assist Nvidia with understanding and testing for fault

injection. Our project consisted of two related objectives:
1. Understand the effect of fault injection on hardware.
2. Build an application to simulate fault injection behavior.

Our project focused specifically on voltage fault injection due to recent
voltage fault injection attacks against Nvidia SoCs. We created a working simulator
to help Nvidia engineers test their source code for fault vulnerabilities. The two
objectives intersect to provide a mechanism for Nvidia to identify vulnerable source
code. Figure 6 illustrates how our objectives converge to provide Nvidia with a
process for mitigating faults at the software level.
@ Observe Fault ggg&rﬁig{ E!‘H

Balor Fault Behavior T :
Mitigate Fault

—I:h Injection at the
Y . Software Level

Build a Fault PasaTraseand | | 7 T
Simulator Simulate Faults

Figure 6. Methodology overview—the first level depicts the tasks to achieve our
first objective, and the second level illustrates the tasks for our second objective.
Arrows indicate the order of task completion, therefore the initial tasks for both
objective were completed simultaneously. Dotted lines denote related tasks outside
the scope of our project.

To work towards both objectives, our team met with our mentor and

manager on a semi-weekly basis. Each meeting we established intermediate goals

18

that we completed. This practice helped us iterate over multiple application
prototypes and refine our hardware study. A detailed explanation of how we
collected data for our hardware study and how we built our simulator is provided in

Chapters 4 and 5.

4. Hardware Study

The hardware fault injection study was designed to observe the impact of
fault injection on Nvidia Tegra systems. This chapter outlines the settings and
methodology used for our hardware study. It concludes with a discussion of our

results.

4.1 Hardware Study Experimental Settings and
Methodology

Our hardware study was designed to systematically collect and analyze
behavior in response to voltage fault injection. The design of our study was
influenced by hardware testing previously completed at Nvidia. Past testing
included the use of third-party hardware components such as a ChipWhisperer and
a DSTREAM device. Prior work influenced voltage fault injection parameter selection

and initial test code development as well.

19

4.1.1 Experimental Setup

—

DSTREAM

Debug
Module

Host

ChipWhisperer

Figure 7. Overview of hardware study components.

Before collecting data, we setup the hardware components required for our
study (see Fig. 7). Throughout our experiment, our target was powered by a
Hewlett-Packard E3632A DC power supply. The Tegra T210 target was connected to
our host machine via a micro USB cable, to a ChipWhisperer-Lite via a SMA cable
attached to the glitch port of both devices, and a Nvidia T114 debug module via a
custom breakout board connector. The ChipWhisperer was attached to and power
by our host via a micro USB cable. The debug module also connected to our host
machine via USB-B and a DSTREAM device via a 20-pin ribbon cable. The DSTREAM
device was hooked up to the Internet and we were able to mount the device by its

IP address using DS-5. We ran a set of Bash and Python scripts on our host to

20

configure the ChipWhisperer through CWCapture. To collect 1000 samples for each
test, we looped through instructions to reset the target using the debug module,

trigger a voltage glitch, and log target register values with Tegrashell.

4.1.2 Voltage Fault Injection Parameters Selection

Using DS-5 and CWCapture, we determined the ideal voltage supply and
ChipWhisperer parameters to use throughout our experiment. Powering the target
with a low voltage supply makes the target more susceptible to voltage glitches.
However, if the power supply is too low, DS-5 cannot connect to the target. Through
trial and error, we identified 0.851V as the minimum voltage supply necessary to
power a Tegra T210 during our experiment.

For each test, CWCapture was launched using a Python script which enabled
us to set custom parameters. The ideal glitch parameters reliably glitch the target in
as few clock cycles as possible. Based on previous work completed at Nvidia with a
ChipWhisperer, we selected 204 MHz for the desired clock frequency. We used the
default glitch width and default glitch offset from the clock edge, both 10.2% of the
ChipWhisperer clock period. The repeat parameter in the CWCapture glitch module
reflects the number of ChipWhisperer clock cycles to glitch the target. Using
CWCapture, we tried various repeat values and manually glitched the target, then
verified register values with DS-5. We fine tuned this parameter to only skip one

instruction. Ultimately we selected a repeat value of 236 that glitched the target

21

approximately 25% of the time when looping through copy instructions. Both high

power and low power glitches were used for the duration of the experiment.

4.1.3 Test Codes

Eight inline assembly test codes were added to the cold boot firmware for
Tegra T210 and flashed in order to observe the impact of fault injection. All tests
were designed to utilize different types of assembly instructions. Additionally, the
first three pairs of tests were intended to detect the significance of positive and
negative values. A combination of looping and branching the current instruction
were used to compare outcomes associated with these instruction types and
interrupt normal program execution. The last two tests were designed to increase
the chance of detecting when a glitch occurred. Test 1 copied the values ten to

fourteen to registers RO through R4, respectively, within an infinite loop.

asm volatile("loop:"
"mov r0O, #10 \n\t"
"mov rl, #11 \n\t"
"mov r2, #12 \n\t"
"mov r3, #13 \n\t"
"mov r4, #14 \n\t"
"b loop"

)

Listing 1. Test 1: Copy Small Constants Loop Inline Assembly Code

Negative values were substituted into the move instructions used in test 1 to
create test 2. Test 3 loaded 0x55555555 into registers RO through R4, setting odd

bits to one within an infinite loop. Test 4 mirrored test 3, setting even bits to one.

22

Test 5 copied the values ten to fourteen to registers RO through R4, respectively,
then branched at the current instruction. Similar to test 2, negative values were
substituted for positive values in test 5 to form test 6. Test 7 copied zero to
registers RO through R4 and incremented the values in an infinite loop. Test 8
alternated loading zero and OXAAAAAAAA into registers RO through R4 within an

infinite loop. All test codes are included in Appendix A.

4.1.4 Data Collection and Log Analysis

Data collection took place during each test. Python subprocess calls were
appended to the CWCapture Python script to execute additional Bash scripts and
terminal commands. Adding to the CWCapture script helped us improve test
performance by performing the initial CWCapture setup just once per a test code.
Subproccesses were used to call programs to reset the target and dump register
values for each sample. After flashing the modified cold boot firmware to the
target, we ran a Bash script used to launch the CWCapture Python script and parse
program output. The output from Tegrashell register dumps was piped to a log file
for processing. The parsed log file was saved as a CSV file and imported to Google
Sheets for analysis.

Google Sheets was the primary tool used for processing the raw register data
from each test. Using conditional formatting and a Google Apps Script, we
identified glitched samples. Enumerated register value tables were created for tests

with a finite number of expected register values where at least one glitch occurred.

23

Disassembly code for each expected instruction and instructions resulting from a
glitch was obtained using DS-5 and summarized in table format. Frequency glitch

patterns were identified for analysis.

4.1.5 Assessments

During the experimental setup, manual verification was used to confirm that
glitch parameters and tests codes were reasonable, and that all hardware was
working as expected. Study assessments took place subsequently after each test
was completed and results were analyzed. The process of repeat evaluations
helped us refine our study and write tests to cover greater depth and breadth.
Substantial troubleshooting was required during early configurations because we
were inexperienced in the technologies used and determining appropriate
experimental parameters required considerable attention. After the setup was
finished, we originally completed the study for three test codes (tests 1, 4, and 5).
Discussion with the Nvidia team prompted us to design two additional tests (test 7
and 8) to increase the visibility of glitches by narrowing the expected register values
to one address. Table 1 illustrates how alternating register values in Test 8 enabled

us to spot skipped instructions that we may have missed in Test 1.

24

Table 1
(@) Example of undetectable skipped instructions in Test 1.

RO R1 R2 R3 R4 PC

#0xA #0xB #0xC #0xD #0OXE 0x40010168

skipped | #0xA #0xB HOXE #0xD #OxE | 6x4001016€
l

#0OxXA #0xB #0xC #0xD #0OXE 0x40010170

(b) Example of increased visibility of skipped instructions in Test 8.

RO R1 R2 R3 R4 PC
#OxA #0x0 #0x0 #0x0 #0x0 0x40010180
skipped | #6xA HOA #OXO #OXO #OxO
l 0x400610184
#0xA #0x0 #0xA #0x0 #0x0 0x40010188

The final study modification led us to add tests to examine the relationship
between positive and negative values on fault injection vulnerability. We created

tests to complement test 1, 4, and 5.

4.2 Hardware Study Results

After collecting and summarizing our study data into tables, we looked for
patterns and observable behavior. Patterns were detected by first enumerating the
glitched register values then spot checking these values. We primarily focused on
three metrics:

1. Number of glitched samples per test.

2. Unexpected values assumed by registers RO-R4.

25

3. Unexpected values assumed by the program counter.
These metrics were intended to help characterize the vulnerability of test
codes to voltage fault injection. This section reports significant findings, including
the effect of positive versus negative values and the impact of specific instructions

on likelihood of glitching. Additional result tables can be found in Appendix A.

4.2.1 Instruction Vulnerability

Table 2
Test code reference.
Test # Test Description Other
1 Copy small constants and loop Positive values
2 Negative values
3 Load large constants and loop Positive values
4 Negative values
5 Copy small values and branch current Positive values
instruction)

6 Negative values
7 Copy zero sequence and increment by 1 loop | Increased glitch visibility
8 Load alternating small constants and loop Increased glitch visibility

Table 2 is included above to provide a quick reference to the types of test
codes used and their corresponding number. Tests 1, 2, 7, and 8 revealed move,
move negative, and add instructions are subject to glitching roughly one-quarter of

the time with the parameters used (see Table 3).

26

Table 3

Results Overview for Tests 1, 2, 7 and 8.

Test 1 Test 2 Test7 Test 8
Normal Execution 74.4% 62.6% 59.5% 74.2%
Glitch Detected 24.7% 34.9% 28.2% 24.4%
Unknown 0.9% 2.5% 12.3% 1.4%

Unknown samples indicate no register values were obtained for that sample.
Test 7 also had a high number of unknown samples, which may have been the
result of glitching too hard. Of these tests, test 7 and test 8 had the highest glitch
visibility because values for registers RO through R4 were expected to vary each
instruction. Therefore, the rate of glitching may have been higher for test 1 and 2
because there was no way of knowing if the program skipped ahead to an expected
instruction without affecting the value of registers RO through R4.

Table 4 shows the summarized results for tests 3 through 6, inclusive. The
results from tests 3 and 4 suggest that load instructions are most susceptible to
voltage fault injection. The results from tests 5 and 6 suggested that branching the
current instruction is least susceptible to voltage fault injection. Both these findings
are consistent with previous research which showed load and store instructions are
vulnerable and branching the current instruction is less susceptible (see

Background section 2.1.5).

27

Table 4

Results Overview for Tests 3 through 6.

Test 3 Test4 Test5 Test 6
Normal Execution 35.5% 2.2% 98.6% 95.3%
Glitch Detected 61.9% 96.6% 0% 3.6%
Unknown 2.6% 1.2% 1.4% 1.1%

4.2.2 Positive versus Negative Values

Three sets of tests were conducted with both positive and negative values.

The disassembly code shows tests 1 and 5 utilized move instructions, tests 2 and 6

used move negative instructions, and tests 3 and 4 made use of load instructions

(see Table 5).

Table 5

Disassembly of Expected Instructions for Tests 1 through 3.

Disassembly

PC Test 1 Test 2 Test 3
0x40010168 MOV r0,#0xa MVN r0,#0x9 LDR rO,[pc,#1572]
0x4001016C MOV r1,#0xb MVN r1,#0xa LDR r1,[pc,#1568]
0x40010170 MOV r2,#0xc MVN r2,#0xb LDR r2,[pc,#1564]
0x40010174 MOV r3,#0xd MVN r3,#0xc LDR r3,[pc,#1560]
0x40010178 MOV r4,#0xe MVN r4,#0xd LDR r4,[pc,#1556]
0x4001017C B {pc}-0x14 B {pc}-0x14 B {pc}-0x14

Figure 8 graphically depicts the number of normal samples versus glitched

samples for the first three sets of tests. The results of these tests suggests negative

28

values may be more susceptible to voltage fault injection. More research is required

to determine if this finding is significant.

Normal vs. Glitched Samples for Tests 1 through 6

B Normal
\ ‘ ‘ BB Glitched
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
(Positive (Negative (Positive (Negative (Positive (Negative
Values) Values) values) values) values) values)

Figure 8. Normal versus Glitched Samples for Tests 1 through 6.

4.2.3 Bit Patterns

We looked for patterns in the glitched values of registers RO through R4. The
majority of glitched values appeared to be some constant set by error handling
code. However, a few other distinct patterns emerged. These include adding one,
adding another small constant, and flipping the signed bit from zero to one. We
observed non-signed bits flipping from both zero to one and one to zero. Table 6

demonstrates some of these patterns.

29

Table 6

Examples of Distinct Bit Patterns for Glitched Samples. Glitched bits are bolded.

Test # | Register Expected Value Actual Value
1 R1 0x0000000B 0x0080000B
0000 0000 0000 0000 0000 0000 1000 0000
0000 0000 0000 1011 0000 0000 0000 1011
1 R4 0x0000000E 0x0000000F
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 1110 0000 0000 0000 1111
2 R1 OXFFFFFFF5 OxFFFFFFF4
111111111111 1111 111111111111 1111
111111111111 0101 111111111111 0100
3 RO 0x55555555 0xD5555555
0101 0101 0101 0101 1101 0101 0101 0101
0101 0101 0101 0101 0101 0101 0101 0101

Out of the five registers we modified, R4 was least likely to be impacted by a
glitch. The underlying cause for this behavior is unknown, however, it is worth
recalling that register RO through R3 are typically "caller-save registers", meaning

they may be changed then later restored by a subroutine (Burch, 2012).

30

5. Fault Injection Simulator

Hardware fault injection testing can provide useful insights, however, it is an
expensive form of testing because it can permanently damage hardware, can be
time consuming, and difficult to scale. It also requires physical access to the device,
which may not be available during all stages of product development. To solve
these issues, we created a tool to test software for fault injection by simulating fault
behavior.

Fault injection simulator is an application used to simulate voltage glitches in
a virtual environment. In this chapter we discuss the goals set for the application
and the design decisions that were made to create the application. Finally, we
discuss the implementation process to achieve the goals set for the fault injection

simulator.

5.1 Application Design

This section begins by defining the goals of our application to provide
context for our design decisions. We describe the environment we worked with and
the functionality we sought to provide. We conclude by highlighting the user

interface design.

31

5.1.1 Application Goals

We established application goals through semi-weekly team meetings with
our mentor and manager to meet the needs of the Tegra software security team at
Nvidia. The application was designed with the following goals in mind:

1. Build a generic application to facilitate testing a variety of software for
fault injection vulnerabilities.

2. Provide the ability to simulate fault behavior from hardware traces.

3. Support manually triggering the program and executing batch fault
simulations.

These goals formed the foundation for the design decisions described in

forthcoming sections.

5.1.2 Virtual Environment

We used Qemu, a generic and open source machine simulator and
virtualizer, in order to simulate the system. Qemu can run a variety of operating
systems and programs and supports C to ARM cross compilation (Qemu-arm). Once
the user imports the source code, ARM gcc compiles it. Qemu allowed our fault
injection simulator to connect to a GDB server through a serial port, send

commands, and receive data about the program in real time.

32

5.1.3 Testing Source Code

Users can test source code against voltage glitching using the fault simulator.

The fault simulator connects to the source program running in a virtualizer and

injects faults while monitoring the program for errors and execution order. Users

can inject glitches by manually entering commands and changing program registers

from the simulator. A user can also use one of the automated glitching features

inbuilt into the simulator. Various ways to interact with the simulator can be seen in

Figure 9.

Select Select .
Registers Trigger Point Trigger Fault
SeIeCt ..
Feedback Manual
g Execute Breakpoints
XML File
1. Import Files

Get

Feedback

2. Triggering Faults 3. Output

Figure 9. Fault Injection Simulator Flowchart.

33

5.1.3.1 Trigger Single Fault

In order to trigger a fault at a specific address in the program the users
follow the following steps:

1. Import Source Code: Import the program file to be tested using the select
file dialog box.

2. Select Feedback: Update the program feedback address by selecting the
program line in the text box and clicking “Update Feedback” Button.

3. Select Registers: Select registers to manipulate during fault simulation from
the register drop down menu.

4. Select Trigger Point: Update the glitch trigger address by selecting the
program line in either source code or machine code.

5. Trigger Fault: Click “Trigger Fault” to start the test.

Once a test is started the simulator launches the program and halts the
execution at the trigger point to change register values. The simulator then updates
the value of register using a predefined pattern and continues the program
execution. If the program reaches the feedback line, the simulator provides
successful feedback to the user. If the program exits abnormally or gives an error
before reaching the feedback line, the simulator provides failure feedback to the

user.

34

5.1.3.1 Trigger Multiple Faults

In order to execute multiple faults at once the users must store all the fault
data into an XML File. The data includes the trigger address, registers to be
manipulated and the pattern to be applied to them. Once all the data is imported
into the simulator the user can execute them all by clicking “Execute XML" button.
The simulator reads the data from XML and executes each fault on the program
running inside the virtualizer. As the test proceeds the simulator provides feedback

to the user by displaying green (success) or red (failure) color for each fault.

5.1.4 Feedback and Logging

Prior to starting a test users are prompted to select a feedback line. This step
is required to tell the simulator when to stop the running tests. Feedback line is
usually the part of code that is always executed towards the end of the program.
Once the fault is injected the simulator monitors the program to check if it reaches
the feedback line or gives an error before reaching it.

Feedback line can be updated by selecting a line from the source code text
box and clicking the "Update Feedback” button. The simulator informs the user

about the updated feedback line through text interface as seen in Figure 10.

35

5 dintsum=a+h | — [s Fo—

> [Feedback selected at line 5]

Figure 10. Feedback line update and associated output.

The simulator logs all activity completed within the application and stores the
data on a local drive as text files. This allows the users to analyse the test results in
detail and keep a record for each test carried out. Additionally, the logs are
designed to assist users with tracing the fail point for each fault. An example of a

log with a mitigated fault and a failure can be seen in Figure 11.

36

\

\%

VVVVVVVVVVYVYVYVYVVYV

VVVVVVVVVVYVYVVVYVYVYV

* Kk Kk kK LOGFILE * Kk Kk kK
###4# Import and Connect #####

Connected < source file.c > Successfully ...]
Connected to GDB Server]
Connected < xml file.xml > Successfully ...]

Select Feedback

Feedback selected at line 25]
Registers Refreshed]
Executing Breakpoints]

Successful Fault

Executing Fault 1 from XML at 0x00010614]

B *0x00010614]

Breakpoint 1 at 0x10614: file /source file.c, line 13.]> [continue]
Continuing.]

Breakpoint 1, main () at /source_file.c:13]

13 if(a < 0) decrease = false;]

Delete all breakpoints? (y or n) [answered Y; input not from terminal]
B 25]

Breakpoint 2 at 0x106b4: file /source file.c, line 25.]

set $r0=5]

set $r4=-61520690

set $r3=-5]

Continuing.]

Breakpoint 2, main () at /source file.c:25]
25 printf ("Feedback Line\n");]

SUCCESS Reached Feedback Line]
Failed Fault

Executing Fault 2 from XML at 0x0001064c]

B *0x0001064c]

Breakpoint 1 at 0x1064c: file /source file.c, line 16.]
Continuing.

Breakpoint 1, 0x0001064c in main () at /source file.c:16]

16 { a=a-1;]

Delete all breakpoints? (y or n) [answered Y; input not from terminal]
B 25]

Breakpoint 2 at 0x106b4: file /source file.c, line 25.]
set $r2=102]

set $r10=618448]

set $rl1l=-61520646]

Continuing.]

Program received signal SIGSEGV, Segmentation fault.]
0x00010650 in main () at /sourceifile.c:16]

16 {a=a-1;]

FAILED to reach FeedBack]

FAKkx* END OF LOGFILE ****xx*

]

]

Figure 11. Logging Successful and Failed Faults

37

5.1.5 Application Graphical User Interface

The graphical user interface for the simulator was created using the Python

Tkinter library. We utilized frames, titles and dialog boxes to build this application.

We used the grayscale system theme for our application and utilized minimal color

to provide feedback to the user and show application status. In this subsection we

discuss different components of GUI and its uses. Figure 12 displays the GUI of our

final product.

Import Files Exit

Machine Code

Fault Injection Simulator

Refresh

Select Registers | Trigger Fault | | XML Table : {xml file.xml} Execute Breakpoints | Register Table
0x000105b4 <+0>pushe{r113+e; (str riL, [sp, #-411) # | address Register | Operation value = [Name | Address] Value
0x000105b8 <+4>:2adderll, sp, #0 1 0x00010614 x0 [
0x000105bc <+8>:2sub=sp, sp, #20 -- r0 (gnst 5 rl 0xf6ffflel -150998559
0x000105¢0 <-+12>:9stror0, (11, #-16] - " Tipat: Nl Z oxq d
0x000105c4 <+16>strorl, [r11, #-20]¢; Oxffffffec - = 'y & £ 9x0 9
0x000105c8 <+20>:ldrer2, [r11, #-16] - e Sul “5‘ g"g g
0x000105cc <+24>:ldrar3, [r11, #-20]¢; Oxffffffec - - ad n [6 o:o o
0x000105d0 <+28>:vadd+r3, 12, r3 = 10 add 100 7 0x0 °
0x000105d4 <+32>:4stror3, [r11, #-8] = s i 0 s ox0 0
. 0x000105d8 <+36>:0ls 1. #:8] - ri1 flipAlt Null 9 0x0 0
0x000105dc <+40>movs 3 10 Ox96f6c 618348
0x000105€0 <+44>:wsubvsp, r1l, #0 s r2 add 1 rll X
0x000105ed <+48>:epop+{r11}ee; (Idr r11, [sp], #4) o 9 add 100 r2 0x0 0
0x000105e8 <+52>:2bxIr -- rd const 457 sp 0xf6fff030 0xf6fff030
- rl flipAlt Null Ir 0x0 o
4 pc 0x1044c 0x1044c
- - pc const 0x00010654 |~ | |cpsr 0x10 16
5 =i
O R | «
5 [_‘3 const 9"34(673% .| Select a Register:
Source Code : {source file.c LineNo. |5 Update Feedback | GNU Debugger @ Clear GDB | Connect to GDB Server
1 #include<stdio.h> =] > set $pc=0x00010654] B
2 #include<stdbool.h> > [Continuing.]
3 > [Breakpoint 2, add (a=101, b=101) at /home/himanjals/MQP/fisimulator/documents/source _file.c:5]
4 int add(int a, int b){ > [5esintsum =a+b; |
5 sintsum =a + b; > [SUCCESS Reached Feedback Line |
6 sreturn sum; > [Executing Fault 5 from XML at 0x0001063c |
7 > [B *0x0001063c]
8 int main(){ > [Breakpoint 1 at 0x1063c: file /home/himanjals/MQP/fisimulator/documents/source file.c, line 15.]
9 sinta =0; > [continue |
10 sintb i > [Continuing.]
11 vbool decrease = false; > [Breakpoint 1, main () at /home/himanjals/MQP/fisimulator/documents/source file.c:15]
12 swhile(a < b){ > [1542eif (decrease) |
13 2sif(a < 0) decrease = false; > [del]
14 2eif(a > 100) decrease = true; > [Delete all breakpoints? (y or n) [answered Y; input not from terminal]]
15 29if (decrease) >[B5]
16 > [Breakpoint 2 at 0x105c8: file /home/himanjals/MQP/fisimulator/documents/seurce file.c, line 5.]
17 > [set $r3=0x34c67a9d |
18 > [set $r1=-150998984]
19 sef{ra=a+1l; > [set $pc=0x000106b0]
20 seob=b +1;} > [set $r5=69249 |
21 > [Continuing.]

22 esint sum = add(ab);
23 esif (sum%2 != 1) return 0;

25 esprintf("Feedback Line\n");
26 seprintf("Num Values: A= %d\tB= %d\n".a,b)

> [[Inferior 1 (Remote target) exited with code 0235] |
> [FAILED to reach FeedBack |
> [Breakpoints Added Successfully |

(gdb) Enter

Figure 12. Fault Injection Simulator Application

38

5.1.5.1 Importing Source Code

A user can import source files by clicking “Import Source File” button on the
top left menu button. All the text within the source file is displayed line by line in
the source code listbox. A user can then select any line in the source code and a
disassembled machine code for its scope will be available in the machine code
listbox (see Fig. 13). Once the machine code is displayed, the user can select one or

multiple instructions as trigger points.

Source Code : {source file.c} LineNo. |5 Update Feedback

1 #include<stdio.h> = - | z
2 #include<stdbool.h> Machine Code Select Registers Trigger Fault
3 int add(int a, int b){ 0x000105b4 <+0>:2push2{rll}=; (strrll, [sp, #-4]!)

5 sintsum =a + b; 0x000105b8 <+4>:2addsrll, sp, #0

6 sreturn sum; 0x000105bc <+8>:sub<sp, sp, #20

7 } 0x000105¢0 <+12>:3strer0, [r11, #-16]

i Aty 0x000105¢4 <+16>strrl, [r11, #20]s; Oxffffffec

10 sintb=1; 0x000105¢8 <+20>:2ldrer2, [r11, #-16]

11 <bool decrease = false; 0x000105cc <+24>:2ldrer3, [rll, #-20]s; 0xffffffec

12 swhilela < b){ 0x000105d0 <+28>:waddar3, r2, r3

e e 0x000105d4 <+32>wstrar3, [r11, #-8]

15 oif (decrease) ! 0x000105d8 <+36>:=idrsr3, [r11, #-8]

16 =a-1 0x000105dc <+40>:=mov=r0, r3

17 -1; 0x000105e0 <+44>:2s5ub2sp, r1l, #0

18 se 0x000105e4 <+48>:2pops{r11}<e; (Idr r11, [sp], #4)

by T 0x000105e8 <+52>:2bxslr

21

22 2sint sum = add(a,b); N

22if (Sum%2 '= 1) return 0;

2printf(*Feedback Line\n");
==2printf("Num Values: A= %d\tB= %d\n",a,b);

Figure 13. Source and Machine Code.

A user can also select any line in the source code and click the “Update
Feedback” button to set that line as feedback line for the simulation. Users are
prompted to select the registers to edit during fault simulation from the drop down
menu on top of the machine code listbox. The users can select from a list

containing thirteen core registers and program registers as shown in Figure 14.

39

Select Registers |
T
RS
R
R
« RO
ffec +m
w B2
fec vR3
R11
R8
RO
PC
LR
R12
1, #¢ gy
CPSR
SP

] #":

Figure 14. Register drop down.

5.1.5.2 XML Table

We used XML documents to store the glitch traces for execution within the
application. We used XML as opposed to other file types due to its simplicity in
reading and storing data with multi-relational properties. These XML files are
generated by taking the results of a hardware fault injection trace and then used by
our tool to replicate the glitch in software. The trace records breakpoint addresses
and the respective registers to be edited at each breakpoint. It also keeps track of
the operation and value to apply to each register. An example of a single trigger is

shown in the Figure 15 below.

40

<xml>
<fault>
<addr breakpointAddress="@xe0eeeeee"/>
<trigger>
<mask> <rg register="r@"/> <mk op="const" val="@xEB8O746F"/> </mask>
<mask> <rg register="rl"/> <mk op="const" val="0xB080880B"/> </mask>
<mask> <rg register="r2"/> <mk op="add" val="1"/> </mask>
<mask> <rg register="r3"/> <mk op="add" val="2"/> </mask>
</trigger>
</fault>
</xml>

Figure 15. XML Document containing breakpoint address, its registers,
operators and values.

Each breakpoint address has a trigger which contains the list of all the masks
to apply at that breakpoint. A mask contains a register, the operation to apply to
the register and the value to be used for the operation, if required. All the XML data

is parsed and displayed with proper formatting (see Fig. 16).

XML Table : {xml file.xml} Execute Breakpoints |
| Address | Register | Operation Value 5
1 0Ox00010614
e R r0 const 5
N T—— rd flipAlt Null
iy e drd RULE rl add 4
.......... r3 sub 6
2 0x0001064c
GaY e r2 add 1
T, Sednsieseas rio add 100
A rs const 0
.......... ril flipAlt Null
3 0x000105c8
SR DA r2 add 1L
L SR 9 add 100
SEh SSEEEEILEL rd const 457
e e rl flipAlt Null
4 0x00010648
se memeeeaaaa pc const 0x00010654 |~
3 0x0001063c [
SEr Leehiaaie r3 const 0x34c67a9d |
= A A 4}

Figure 16. XML Table containing information from a sample XML document.

41

We used a treeview for XML data due to its easy integration with grid view.
We use the same interface to provide feedback for all breakpoints by changing their

color from white to red or green depending on failure or success.

5.1.5.3 Register Table

Registers are underlying memory spaces where all the variables of program
are stored. Every program uses seventeen core registers namely r0 - rl2,
Stack Pointer, Link Register, Point Counter and Current Program
Status Register. We display them using a TreeView, similar to XML Table, to
divide registers in their respective address and value columns. We used these
values that can be edited to simulate a fault in source code. The user can keep track
of changing registers as the program runs to see changes in real time. They can
also change values of registers from the textbox below the register pane. Figure 17

shows the register table as it appears to the user.

Register Table Refresh
Name | Address | Value [=

ro 0ox0 0

rl oxf6ffflel -150998559

r2 0x0 0

r3 0x0 0

rd4 0x0 0

rs 0x0 0

ré 0x0 0

r7 0x0 0

rg 0x0 0

ro 0x0 0

rio 0x96f6C 618348

ril 0x0 0

ri2 0x0 0

sp 0xf6fff030 0xf6fff030

Ir 0x0 0

pc 0x1044c 0x1044c

cpsr 0x10 16 B

Select a Register: | |

Figure 17. Register Table

42

5.1.5.4 GNU Debugger

While simulating faults the fault simulator sends and receives important
data. Data is transferred when importing files, executing breakpoints, updating
registers, stepping into instructions, disassembling code and more. We used a
listbox to display all the commands sent and data received from the debugger. All

debug messages and warnings are also displayed on the GNU debugger listbox (see

Fig. 18).
GNU Debugger O Clear GDB | Connect to GDB Server
> [set spc=0x00010654] =

> [Continuing.]

> [Breakpoint 2, add (a=101, b=101) at /home/himanjals/MQP/fisimulator/documents/source_file.c:5]
> [52eintsum=a+ b;]

> [SUCCESS Reached Feedback Line]

= [Executing Fault 5 from XML at 0x0001063c |

= [B *0x0001063c]

> [Breakpoint 1 at 0x1063c: file fhome/himanjals/MQP/fisimulator/documents/source file.c, line 15.]
= [continue]

= [Continuing.]

> [Breakpoint 1, main () at /heme/himanjals/MQP/fisimulator/documents/source_file.c:15]

= [15992if (decrease) |

>[del]

> [Delete all breakpoints? (y or n) [answered Y; input not from terminal]]

=[B5]

= [Breakpoint 2 at 0x105¢8: file /home/himanjals/MQP/fisimulater/documents/source file.c, line 5.]
> [set sr3=0x34c67a%d]

> [set $r1=-150998984]

> [set spc=0x000106b0]

> [set 5r5=69249]

> [Continuing.]

> [[Inferior 1 (Remote target) exited with code 0235]]

> [FAILED to reach FeedBack]

> [Breakpoints Added Successfully]

(gdb) Enter

Figure 18. GNU Debugger

We also allow users to manually send commands to the GDB using the
command line interface (CLI) provided below the debugger listbox. All these

commands and their output are sent to the debugger console. We provide the user

43

with a light indicator displaying the state of the program. All states of the indicator
are displayed in Figure 19. Additional functionality available through the CLI

includes clearing the displayed output and reconnecting to the GDB server.

Black: No tests Running

(! | Yellow: Test in progress. Busy.
|/\ Green: Test Succeeded. Feedback Line reached

Red: Test Failed. Program exited before reaching Feedback Line.

Figure 19. Initial, running, success, and failure state indicators.

44

5.1.6 Assessment

We developed a prototype of the application and tested it against basic C
programs. We wrote a C program to swap two variables indefinitely and exit the
program if the variable values are not as expected. During testing our application
injected faults and deceived the program into skipping instructions and exiting the
execution abnormally. We managed to do so by manipulating the program counter
through the trigger fault feature of the application and skipping the swap
instruction. This led to failure of variable swap and the program ended
unexpectedly.

In order to test the application for multiple faults at the same time we
created an XML file and added data for various faults to be injected into the C
program. We loaded the swap program and the XML file into the simulator and
triggered all faults using the execute XML feature of the application.

While testing the application we came across few bugs and fixed them:

1. Monitor execution at each step
While triggering faults on multiple instructions the simulator edits
registers at each instruction and steps to the next instruction. In a few
cases the source program exits before the simulator can finish
triggering all the instructions causing the simulator to crash. This bug
was later fixed by monitoring the program execution after editing

registers at each step.

45

2. Validate fault trigger point
Each trigger point must exist within the scope of a program otherwise
the simulator will never inject a fault and will forever wait for the
execution to reach the trigger point. This bug was later fixed by
validating the trigger point to be within the program memory address

scope. If the point is out of scope then the fault is not simulated.

46

5.2 Application Implementation

After completing our initial design, we began implementing our application.
We automated the simulator to allow users to test their source code for fault
vulnerabilities by triggering faults. Faults were successfully simulated by changing
register values and observing how the code reacts to glitches in real time. Our
application can also be used to parse multiple fault traces and automatically
recreate fault behavior while the source code executes. This section describes how
we utilized the software and development tools we selected and the front-end and

back-end development processes.

5.2.1 Software and Development Tools

To create the functionality of our application, we used various software and
development tools. These include the Ubuntu Linux operating system and Python.

We utilized GDB for ARM to communicate with the program file and to inject faults.

5.2.1.1 Linux and Python

We used Ubuntu throughout the development process. The simulator was
developed in Python due to its simplicity in executing linux shell subprocesses. We
used Python version 2.7 with Tkinter library for the GUI. We used Python 2.7 over

version 3.4 due to increased documentation about Qemu and GDB support.

47

5.2.1.2 GDB and ARM

Source code is first compiled using arm-linux-gnueabi-gcc, ARM gcc for linux.

The simulator then runs with the compiled arm executable in order to use the

debugger. We used arm-none-eabi-gdb debugger from the ARM toolchain for linux

to connect to Qemu which provides a remote GDB server. The ARM debugger uses

a command line to interact with the server which sends and receives information

for the application. A user can clear the display and reconnect to the server at any

time. Table 7 shows some of the available commands.

Table 7

Sample GDB Commands.

Breakpoints

breakpoint < address >

add a breakpoint at address

info breakpoints

view all breakpoints

continue

continue to next breakpoint

info Register < register >

Refreshes register(s)

Registers
set$ <reg>=<val> Set register toavalue
disassemble < address > |view assembly code at address
Machine - . .
Sl Step into instruction
info locals View all variables in scope
Source :
step Step to next line

48

5.2.2 Frontend Process

We used Tkinter Python libraries to develop the interface for the fault
simulator. The Tkinter features we used include frames, titles, buttons, listboxes,
treeviews, entries and colors. Frames are divided into menu, title, machine code,
source code, XML table, registers and GNU debugger. The menu is used for
importing documents and exiting the application. The title includes the name of our

application.

5.2.2.1 Listboxes

Machine code, source code and the GNU debugger simulator components
were built using listboxes. Listboxes are used to display content line by line,

whether its code or terminal output.

5.2.2.2 Treeview

A treeview differs from listboxes because it sorts parsed information into
respective columns. The XML table and registers table were built using treeviews.
The XML Table displays information from the imported XML Document in tabular
form. It is sorted into breakpoints, registers, operations and values. The register
table displays all the registers with their updated values in columns of register,

address and value. A user has the option to select a register to update its value.

49

5.2.2.3 Feedback Colors

We decided to show the user more information about our tool through color.
We chose black, yellow, green and red, each to indicate initial, busy, success and
failure state, respectively. If a user selects or inputs the feedback line number
correctly, the line and entry box is highlighted in green. This shows that the user
inputs a valid line number. If the user inputs an invalid line number, the entry box
highlights red.

Color is also used in the feedback bulb in the GNU Debugger frame. It is
initially black when a source line is clicked and yellow when processing the fault or
breakpoints. The tool then tells the user if the triggered fault executed successfully
or if it failed. When executing batch faults, the breakpoint address in the XML table

is highlighted green or red to indicate if the fault was mitigated successfully or not.

5.2.3 Backend Process

Once the source file is selected, it is compiled with a gcc ARM compiler
“arm-linux-gnueabi-gcc”. Qemu is launched as a subprocess with debugging options
and single-stepping on a given port number. The GNU debugger from the ARM
toolchain is initialized as a subprocess. All the instructions and data are piped to

and from the command line.

50

5.2.3.1 Source Code

Whenever the user clicks on a source code line in the interface, the
application generates the machine code for the line's scope and displays it in the
machine code listbox. This allows the user to look at the breakdown of source code
into assembly instructions and to select the trigger point with more accuracy. In
order to generate the machine code for the selected line scope, we add a
breakpoint at the source code line to get the program address at the given line. We
use the debugger to generate machine code at the given address and update the

listbox with new data (see Fig. 20).

0x000105b4 <+0>:2pushs {r11}s=; (strrll, [sp, #-4]!)
0x000105b8 <+4>:2add=rll, sp, #0

0x000105bc <+8>:2subssp, sp, #20

0x000105¢c0 <+12>:4strerD, [rl11, #-16]

- - - 0x000105¢4 <+16>:4strerl, [r11, #-20]¢; Oxffffffec
int add(int a, int b){ 0x000105¢8 <+20=:2Idrer2, [r11, #-16]

. _ - 0x000105¢cc <+24>:ldrer3, [r11, #-20}¢: Oxffffffec
sgintsum=a+b; 0x000105d0 <+28=>:2addsr3, 2, r3
A . 0x000105d4 <+32>:wstrer3, [r11, #-8]
sreturn sum; 0x000105d8 <+36>:=ldrar3, [r11, #-8]

0x000105dc <+40>:2mov=r0, r3

0x000105e0 <+44>:2s5ubssp, rll, #0

0x000105ed4 <+48>:wpops{rll}ss; (Idr rll, [sp], #4)
0x000105e8 <+52>:bxalr

Figure 20. Source to Machine Code
We required some process in the source code to check if the code is migating
faults successfully. We allow the user to select a line in the source code to denote it
as the feedback line (see Fig. 21). A feedback line is ideally a part of source code
that will always be executed unless the program is behaving abnormally. We add a

breakpoint at the feedback line and run the program. Once the trigger breakpoint is

51

reached and the fault behavior is introduced, if the program succeeds to reach the
feedback breakpoint without a run time error it is considered to be running

successfully.

22 »2int sum = add(a,b);

Z3 eoif (sum%2 != 1) return 0O;

24

25 wwprintf("Feedback Line\n");

26 seprintf("Num Values: A= %d\tB= %d\n",a,b);
27 2}

28 sprintf("Loop Finished\n");

Figure 21. Select Valid Feedback Line

5.2.3.2 Registers

We added a registers panel to the interface to show the users information
about changing register values. In order to get the values of all the registers we
send a info Register command to the gdb server. To get the value for a specific
register we send info Register <register>.We also allow users to set register
values from the interface. To update a register value we send command set
$<register> = <new value>.

A fault is simulated by changing specific register values. For example, one can
change the value of program counter register and cause the program to skip some
important instructions. We can also edit the values of the core registers to change

the value stored in local variables of the program.

52

5.2.3.3 Mask

We applied a mask to registers in order to edit their values and thereby
simulate a fault. A mask is a pattern which is applied to a register value to generate
a new value. We developed multiple masks, each of which manipulate registers on

an integer, hexadecimal or bit level (see Table 8).

Table 8

Supported mask operations.
add adds an integer value to register value.
sub subtracts and integer value from register value.

sets the value of register to the value of constant

const . .
(integer or hexadecimal).

FlipAlt Flips the alternate bits of the register binary value.

5.2.4 Trigger a Fault

A fault is simulated in our application by changing the values of underlying
registers and introducing errors in the flow of a program. We allow the user to
select a feedback line, trigger point and the registers for fault simulation. Once the
user selects all the options and triggers a fault we start the automated fault trigger

process.

53

A fault is simulated in five steps, as depicted in Figure 22:
1. Connect to Qemu
2. Reach the Trigger Point
3. Change Registers
4. Trigger next instruction

5. Get Feedback

Step into next
Instruction

YES

Get
Feedback

Reach Change
Trigger Point Registers

Trigger Next
Instruction?

Connect to
Qemu

Figure 22. Process of Triggering a Fault
5.2.4.1 Connect to Qemu
The application launches Qemu on a specific port with debugging options

and single stepping. Once launched, the debugger client is attached to a gdb server

running inside Qemu.

5.2.4.2 Reach the trigger point

Before executing the program, breakpoints must be added at trigger points
and the user-selected feedback line in order to pause execution at those addresses.
Once both breakpoints are added, program execution resumes and continues until

the program counter reaches the first trigger point.

54

5.2.4.2 Change Registers

Once the program reaches the first trigger point, program execution is halted
to modify register values. The users selects the registers to edit before triggering
the fault. The value at each selected register is then extracted and a mask is applied
to the value. The selected register are updated with the new value by sending the

command set S<register> = <new value>.

5.2.4.3 Trigger Next Instruction

If the user selected more than one instruction to trigger, the application
stepped through every instruction and changed the registers as required. This step

is repeated until there are no more instructions to trigger.

5.2.4.4 Get Feedback

Once all the selected lines have been reached and all the registers changed,
program execution resumes until the feedback line is reached. If the program
reached the feedback breakpoint successfully, the glitch is considered mitigated
and feedback is provided for a successful test. Otherwise, if the feedback
breakpoint was not reached because the program execution ended early due to an
error, such as a segmentation fault or run-time error, the application reports the

test as a failure.

55

5.2.4.4 Executing XML

A user can execute multiple trigger points on a source file at once. In order to
do this the trigger data is imported from a XML file and executed. Once the test
starts the simulator reads one fault at a time from the data and simulates a glitch at
the trigger point. The registers requiring updates during simulation are read from
the XML file, as opposed to the the drop down menu which is used while triggering
a single fault. The simulator repeats the process for each fault in the XML file,
restarting the virtualizer and the program after every fault. As the faults are
simulated and their feedback is received, the simulator updates the user by

coloring the XML line green (success) or red (failure).

56

6. Conclusions and Future Work

Fault injection attacks pose a vulnerability to software integrity. Testing for
fault injection vulnerabilities is a common practice when creating systems with a
hardware component. Hardware fault injection is expensive and difficult to scale
whereas a software simulation approach adds flexibility, protects hardware and
simplifies testing procedures.

There are consequences and challenges associated with voltage fault
injection attacks and fault injection testing. Significant time is spent determining if
hardware has been damaged when testing using voltage fault injection. Hardware
testing is difficult to scale because it requires substantial resources. Unlike
hardware fault injection testing, simulated fault injection does not require
hardware to be replaced or available.

Our project aimed to understand the impact of voltage fault injection on
hardware and create a data driven fault injection simulator to assist with testing.
We succeeded in making a working fault injection simulator prototype which could
send instructions into a virtualized environment to inject faults into the simulation.
The simulator changes register values in a defined pattern to replicate glitches. The
simulator we built supports addition, subtraction, constant, and bit-flipping
operations to be applied to registers. We presented key findings from our hardware
study and our simulator to the Nvidia team. We created comprehensive

documentation to accompany our simulator and completed a code review prior to

57

committing our final product. We concluded our project by submitting our generic
fault injection simulator.

Our hardware study observed the behavior resulting from voltage fault
injection on a small sample of instructions and values. We observed negative values
may be more vulnerable to voltage fault injection, that load instructions are
sensitive to voltage fault injection, and that branching the current instruction may
be protected.

It would be beneficial to conduct a similar study on a larger scale with many
more test codes. Additionally we recommend that future engineers focus on the
following:

1. Automate glitch detection, pattern detection and trace generation.
2. Automate glitch parameter selection.

We detected glitches using conditional formatting in Google Sheets. Building
an application to complete this task may be worthwhile for future testing. Patterns
less easily detected by the human eye could be identified and monitored over time
by automating this process. The fault injection simulator would be most useful if
traces were automatically generated based on real hardware study results. One of
the most time consuming challenges during the hardware study was determining
the appropriate glitch parameters. This process could be automated with a script to
launch CW Capture with various parameters, with the prerequisite that glitch

detection is automated.

58

Another potential area of future focus is additional masks and operators for
more accurate fault injection simulations. Due to limited time, we used Qemu
exclusively throughout the project. The application must be edited and ported to
Synopsys VDK instead of Qemu virtualizer. This would enable Nvidia engineers to
test larger programs like SOCs (System on Computer) that are incompatible with

Qemu.

59

References

Ltd., Arm. “DSTREAM - Arm Developer.” ARM Developer, Arm Holdings,
Retrieved February 27, 2017. URL:

http://developer.arm.com/products/software-development-tools/debug-prob

es-and-adapters/dstream.

A. Barenghi, G. Bertoni, E. Parrinello and G. Pelosi, "Low Voltage Fault Attacks on the
RSA Cryptosystem," Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), Lausanne, 2009, pp. 23-31. Retrieved February 15, 2017.
URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412860&isnum

ber=5412840

C. Burch, “ARM Subroutines & Program Stack.” Oct. 2012. Retrieved February 27,

2018. URL: http://www.toves.org/books/armsub/#s1

J. V. Carreira, D. Costa and J. G. Silva, "Fault Injection Spot-Checks Computer System
Dependability," in IEEE Spectrum, vol. 36, no. 8, pp. 50-55, Aug 1999.
Retrieved December 12, 2017. URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=780999&isnume

r=16946
GNU, "What is GDB?" November 1, 2017. Retrieved December 11, 2017.

URL: https://www.gnu.org/software/gdb/

60

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412860&isnumber=5412840
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412860&isnumber=5412840
http://www.toves.org/books/arm/
http://www.toves.org/books/armsub/#s1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=780999&isnumber=16946
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=780999&isnumber=16946
https://www.gnu.org/software/gdb/

“Hackers Claim to Have Beaten Xbox 360 Security.” Hackers Claim to Have Beaten
Xbox 360 Security - The H Security: News and Features, Aug. 30 2011. Retrieved
February 28, 2017. URL:

www.h-online.com/security/news/item/Hackers-claim-to-have-beaten-Xbox-3

60-security-1333597.html

Mei-Chen Hsueh, T. K. Tsai and R. K. lyer, "Fault Injection Techniques and Tools," in
Computer, vol. 30, no. 4, pp. 75-82, Apr 1997. Retrieved December 15, 2017.

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=585157&isnumb

er=12687

M. Kooli and G. Di Natale, "A Survey on Simulation-Based Fault Injection Tools for
Complex Systems," 9th IEEE International Conference on Design &
Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini, 2014, pp.
1-6. Retrieved December 12, 2017. URL:

http://ieeexplore.ieee.org.ezproxy.wpi.edu/stamp/stamp.jsp?tp=&arnumber=

6850649&isnumber=6850634

Qemu, "About Qemu". 2018. Retrieved March 10, 2018. URL:

https://www.gemu.org/

61

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=585157&isnumber=12687
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=585157&isnumber=12687
http://ieeexplore.ieee.org.ezproxy.wpi.edu/stamp/stamp.jsp?tp=&arnumber=6850649&isnumber=6850634
http://ieeexplore.ieee.org.ezproxy.wpi.edu/stamp/stamp.jsp?tp=&arnumber=6850649&isnumber=6850634
https://www.qemu.org/

L. Riviere, Z. Najm, P. Rauzy, J. L. Danger, J. Bringer and L. Sauvage, "High Precision
Fault Injections on the Instruction Cache of ARMv7-M Architectures," IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
Washington, DC, 2015, pp. 62-67. Retrieved February 14, 2018. URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7140238&isnum

ber=7140225

Synopsys Inc. “WDK Family for ARM Processors”. Mar 2017. Retrieved December

17th 2017. URL:

https://www.synopsys.com/verification/virtual-prototyping/vdk/vdk-for-arm.h

tml

N. Timmers, A. Spruyt and M. Witteman, "Controlling PC on ARM Using Fault
Injection," Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
Santa Barbara, CA, 2016, pp. 25-35. Retrieved December 13, 2017.
URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7774479&isnum

ber=7774465

YouTube. "Reset Glitch Hack on Slim By GliGli". Online video clip. YouTube,

24 August 2011. February 14, 2018.

62

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7140238&isnumber=7140225
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7140238&isnumber=7140225
https://www.synopsys.com/verification/virtual-prototyping/vdk/vdk-for-arm.html
https://www.synopsys.com/verification/virtual-prototyping/vdk/vdk-for-arm.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7774479&isnumber=7774465
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7774479&isnumber=7774465

Appendix A. Hardware Study Test Codes and

Results

Test 1 & 2: Copy Small Constants and Loop

asm volatile(asm volatile(
"loop:" "loop:"
"mov r0, #10 \n\t" "mov r0, #-10 \n\t"
"mov rl, #11 \n\t" "mov rl, #-11 \n\t"
"mov r2, #12 \n\t" "mov r2, #-12 \n\t"
"mov r3, #13 \n\t" "mov r3, #-13 \n\t"
"mov r4, #14 \n\t" "mov r4, #-14 \n\t"
"b loop" "b loop"
))
Listing A.1. Test 1: Copy Small Positive Listing A.2. Test 2: Copy Small
Constants Loop Inline Assembly Code Negative Constants Loop Inline
Assembly Code
Table A.1
Test 1 & 2: Overview
Test 1 (Positive Constants) Test 2 (Negative Constants)
Normal 744 74.4% 626 62.6%
Execution
Glitch 247 24.7% 349 34.9%
Detected
Unknown 9 0.9% 25 2.5%
Table A.2
Test 1: Enumerated Register Values in Normal Range
RO R1 R2 R3 R4
0x0000000A [0x0000000B [0x0000000C [0x0000000D [0xO000000E

63

Table A.3

Test 2: Enumerated Register Values in Normal Range

RO R1 R2 R3 R4
OXFFFFFFF6 |OXFFFFFF5 |OxFFFFFFF4 |OxFFFFFFF3 |OXFFFFFFF2
Table A.4
Test 1. Enumerated Register Values Indicating Glitch Occurred

RO R1 R2 R3 R4
OxEB80746F |0x0080000B [0x0000000D 0x0000000F
OxEB81746F |0x0080000F |OxFEEAFFFE
OXEBAO746F OXFEEAFFFF
OXEBA1746F
Table A.5
Test 2: Enumerated Register Values Indicating Glitch Occurred

RO R1 R2 R3 R4
0x0000000A |0x40007A5C |0x00000000 |0x079F698B
0x00200001 |OXFFFEFFF1 0x000000F8 |0x40035B59
Ox1FFFFFF2 |OXFFFEFFF5 [OxO00000FF |OxFFFFFFFO
Ox7000E400 |OxFFFFFFF4 [0x00008000 |OxFFFFFFF2
0x70016400 0x00008400 |OxFFFFFFF4
OxEB81746B 0x40009D84
OxEBA1746B 0x70016000
OxEBC1746B
OXEBE1746B
OxFFFFFFBO
OxFFFFFFFO
OxFFFFFFF4

64

Table A.6
Test 1: Enumerated Program Counter Values and Corresponding Disassembly

NORMAL GLITCHED
PC Disassembly PC Disassembly
0x40010168 |MOV r0,#0xa Ox3E81C1B0O B {pc}; 0x3e81c1b0
0x4001016C MOV r1,#0xb Ox3E81C230 B {pc}; 0x3e81c230
0x40010170 |MOV r2,#0xc 0x4001085C B {pc}; 0x4001085c
0x40010174 |MOV r3,#0xd 0x40210AA8 B {pc}; 0x40210aa8
0x40010178 |MOV r4,#0xe 0x41010AA8 B {pc}; 0x41010aa8
0x4001017C |B {pc}-0x14 0x41022EA8 B {pc}; 0x41022ea8
Table A.7
Test 2: Enumerated Program Counter Values and Corresponding Disassembly
NORMAL GLITCHED
PC Disassembly PC Disassembly
0x40010168 [MVN r0,#0x9 0x00008008 (B {pc}; 0x8000
0x4001016C [MVN r1,#0xa 0x00100080 [SUBS sp,sp,#1
0x40010170 MVN r2,#0xb 0x3EO10AAS8 |B {pc}; 0x3e010aa8
0x40010174 MVN r3,#0xc 0x3F810AAC (B {pc}; 0x3f810aac
0x40010178 |[MVN r4,#0xd O0x3F81C1AC |B {pc}; Ox3f81clac
B {pc}-0x14 ; O0x3F81C1BO (B {pc}; 0x3f81c1b0
0x4001017C |0x40010168 O0x3F81C1B8 (B {pc}; 0x3f81c1b8
Ox3F81C234 (B {pc}; 0x3f81c234
Ox3F81C238 |B {pc}; 0x3f81¢c238
O0x3F82C234 (B {pc}; 0x3f82c234
Ox3FACCA4EC (B {pc}; 0x3faccdec
0x4001085C (B {pc}; 0x4001085c¢
0x40210AA8 (B {pc}; 0x40210aa8
0x41010EA8 |B {pc}; 0x41010ea8
0x41012EA8 (B {pc}; 0x41012ea8
0x41062F28 (B {pc}; 0x41062f28
OXFF93FFFE [DCl Oxeaff; ? Undefined
OXFFB1FFFE [DCI Oxeaff; ? Undefined

Test 3 & 4: Load Large Alternating Bit Constants and

Loop

asm volatile(
"loop:"
"ldr
"ldr
"ldr
"ldr
"ldr
"b loop"

r0,
rl,
r2,
r3,
r4,

)

=0x55555555
=0x55555555
=0x55555555
=0x55555555
=0x55555555

\n\t"
\n\t"
\n\t"
\n\t"
\n\t"

asm volatile(

"loop:"
"ldr
"ldr
"ldr
"ldr
"ldr
"b loop"

r0,
rl,
r2,
r3,

r4d, =

\n\t"
\n\t"
\n\t"
\n\t"
\n\t"

Listing A.3. Test 3: Load Large Positive

Constant (Odd-Bits Set) Loop Inline

Listing A.4. Test 4: Load Large
Negative Constants (Even-Bits Set)

Assembly Code Loop Inline Assembly Code
Table A.8
Test 3 & 4: Overview
Test 3 (Positive, Odd-Bits Test 4 (Negative, Even-Bits
Set) Set)
Normal 355 35.5% 22 2.2%
Execution
Glitch Detected | 619 61.9% 966 96.6%
Unknown 26 2.6% 12 1.2%
Table A.9
Test 3: Enumerated Register Values in Normal Range
RO R1 R2 R3 R4
0x55555555 |0x55555555 [0x55555555 0x55555555 0x55555555

66

Table A.10

Test 4: Enumerated Register Values in Normal Range

RO R1 R2 R3 R4
OXAAAAAAAA |0XAAAAAAAA |0XAAAAAAAA OXAAAAAAAA [OXAAAAAAAA
Table A.11
Test 3: Enumerated Register Values Indicating Glitch Occurred

RO R1 R2 R3 R4
0x00000000 0x00000000 0x00000000 0x079F698B 0x00000000
0x7000E400 0xD5555555 [0xO00000FF 0x5D555555 OXE59F55BC
0xD5555555 |0xD5D55555 |0x00008000 0xDD555555 OXE69E7521
OXEB805CFF OXE59F3618 0xD5555555 |0xDD555575
OXEB8105F6 OxE5D33563 |0xD5D13561 |0xE59F2004
OxEB815CFF OxE5D335E3 [0xD5D55555 |OXE59F301C
OXEB815DFF |OXE5DB35E3 |0xD5D93561 |OxE59F4614

OxE59F2004 OXEAFFFFF9
OXE59F4614 OXEAFFFFFE
OxE5D13563 |OXxEDD331E3
OxE5D33163
OxE5D331E3
OXE5DB31E3
OXEAFFFFFE
Table A.12
Test 4: Enumerated Register Values Indicating Glitch Occurred
RO R1 R2 R3 R4
OxA2CA28AA |0xA6CA29AB R3=0xAAAAAAAB
OXAABAAAAA |OXAABAAAAA
OxE3D00400 [0xE3D00000
OxE3D20400 [OxE3D00004
OxE5D20402 |0xE3D00400
OxE5D21502 |0xE3D00404
OxE5D21506 |0xE5933000
(continued) (continued)

67/

(conglued) R2 (continued)
OXE5D215DE |OxE59F4614
OXE5D2C5DF |0xE5D20002
OXxE5D315E1 |0xE5D20102
OxE5D331E3 |0xE5D21102
OXE5D335E3 |0xE5D21106
OxE6D331A3 |0xE5D2119E
OxE7D331A3 |0OxE5D211DE

OXE5D311E1
OXE5D331E3
OxE5D335E7
OxE7D331A3
OxE7D331E3

Table A.13
Test 3: Enumerated Program Counter Values and Corresponding Disassembly
NORMAL GLITCHED
PC Disassembly PC Disassembly
LDR rO,[pc,#1572];
0x40010168 |[0x40010794] 0x00010010 (B {pc}; 0x10010
LDR r1,[pc,#1568] ;
0x4001016C |[0x40010794] 0x00040010 |B {pc}; 0x40010
LDR r2,[pc,#1564] ;
0x40010170 |[0x40010794] 0x00040014 |B {pc}; 0x40014
LDR r3,[pc,#1560] ;
0x40010174 |[0x40010794] 0x00100080 |SUBS sp,sp,#1
LDREQ rO,[pc,#28];
LDR r4,[pc,#1556] ; [0x1000A8]=
0x40010178 |[0x40010794] 0x00100084 |0x7000E400
0x4001017C B {pc}-0x14; 0x40010168 |0x00100088 [MOVEQ r1,#0x10
0x0010008C |STREQ r1,[r0,#0]
0x00100090 |B {pc}-0x10; Ox100080
0x00140060 |B {pc}; 0x14005c
(continued) [(continued)

68

PC Disassembly
Ox3EO010AAC (B {pc}; 0x3e010aac
Ox3E010ABO |B {pc}; 0x3e010ab0
Ox3FO10EBO (B {pc}; 0x3f010eb0
0x40010860 |B {pc}; 0x40010860
OxFE140060 |B {pc}; Oxfe140060
Table A.14
Test 4: Enumerated Program Counter Values and Corresponding Disassembly
NORMAL GLITCHED
PC Disassembly PC Disassembly
LDR rO,[pc,#1572] ;
0x40010168 |[0x40010794] 0x40010860 |B {pc}; 0x40010860
LDR r1,[pc,#1568] ; DCl Oxeaff ; ?
0x4001016C |[0x40010794] OXAAAAAAAG |Undefined
LDR r2,[pc,#1564] ;
0x40010170 |[0x40010794] OXEO9FF3F8 |B {pc}; 0xe09ff3f8
LDR r3,[pc,#1560] ; DCI Oxeaff ; ?
0x40010174 |[0x40010794] OXEAFFFFFE |Undefined
LDR r4,[pc,#1556] ;
0x40010178 |[0x40010794]
0x4001017C |B {pc}-0x14; 0x40010168

69

Test 5 & 6: Copy Small Constants and Branch
Current Instruction

asm volatile(asm volatile(
"mov r0, #10 \n\t" "mov r0, #-10 \n\t"
"mov rl, #11 \n\t" "mov rl, #-11 \n\t"
"mov r2, #12 \n\t" "mov r2, #-12 \n\t"
"mov r3, #13 \n\t" "mov r3, #-13 \n\t"
"mov r4, #14 \n\t" "mov r4, #-14 \n\t"
"b . \n\t" "b . \n\t"
"b . \n\t" "b . \n\t"
llb R " "b . "
)) s
Listing A.5. Test 5: Copy Small Positive Listing A.6. Test 6: Copy Small
Constants and Branch Current Negative Constants and Branch
Instruction Inline Assembly Code Current Instruction Inline Assembly
Code
Table A.15
Test 5 & 6: Overview
Test 5 (Positive Constants) Test 6 (Negative Constants)
Normal 986 98.6% 953 95.3%
Execution
Glitch 0 0% 36 3.6%
Detected
Unknown 14 1.4% 11 1.1%

See Table A.2 and A.3 for the enumerated register values in normal range for test 5 and
test 6, respectively. Omitted table showing the enumerating register values indicating a
glitch occurred for both tests because all values for RO through R4 were within normal
range.

70

Table A.16

Test 5: Enumerated Program Counter Values and Corresponding Disassembly

NORMAL GLITCHED
PC Disassembly PC Disassembly
0x40010168 |[MOV r0,#0xa
0x4001016C |[MOV r1,#0xb
0x40010170 |MOV r2,#0xc
0x40010174 |MOV r3,#0xd
0x40010178 MOV r4,#0xe
B {pc}-0x14 ;

0x4001017C |0x40010168
Table A.17
Test 6: Enumerated Program Counter Values and Corresponding Disassembly

NORMAL GLITCHED

PC Disassembly PC Disassembly
LDR r5,[pc,#1468]
0x40010168 |MVN r0,#0xa 0x40010180 |;[0x40010744]
0x4001016C MVN r1,#0xb
0x40010170 |[MVN r2,#0xc
0x40010174 |MVN r3,#0xd
0x40010178 |MVN r4,#0xe
B {pc}-0x14 ;

0x4001017C |0x40010168

71

Test 7: Copy Zero Sequence and Increment by One

Loop

asm volatile("mov r0, #0 \n\t"

)

\n\t"
\n\t"
\n\t"
\n\t"
\n\t"

"mov rl, #0 \n\t"
"mov r2, #0 \n\t"
"mov r3, #0 \n\t"
"mov r4, #0 \n\t"
"loop: \n\t"

"add r0, r0, #1
"add rl, rl, #1
"add r2, r2, #1
"add r3, r3, #1
"add r4, r4, #1
"b loop"

Listing A.7. Test 7: Copy Zero Sequence and Add One Loop Inline Assembly Code

Table A.18

Test 7: Overview
Normal Execution 595 59.5%
Glitch Detected 282 28.2%
Unknown 123 12.3%

Omitted tables showing the enumerated register values for test 7 because test resulted in
hundreds of normal and glitched values.

72

Table A.19

Test 7: Enumerated Program Counter Values and Corresponding Disassembly

NORMAL GLITCHED
PC Disassembly PC Disassembly
0x4001017 LDREQ rO,[pc,#28] ; [0OxT000A8] =

C ADD r0,r0,#1 0x00100084 0x7000E400

0x4001018

0 ADD r1,r1,#1 0x00100090 B {pc}-0x10; 0x100080

0x4001018

4 ADD r2,r2,#1 0x3E010188 B {pc},; 0x3e010188

0x4001018

8 ADD r3,r3,#1 Ox3E014198 B {pc},; 0x3e014198

0x4001018

C ADD r4,r4,#1 0x3E01C198 B {pc}; 0x3e01c198

0x4001019 |B {pc}-0x14 ;

0 0x4001017c 0x3E01C598 B {pc}; 0x3e01c598
Ox3E02C5EO B {pc},; 0x3e02c5e0
0Ox3E05418C B {pc},; 0x3e05418c
0Ox3E25418C B {pc}; 0x3e25418c
0x40010870 B {pc}; 0x40010870

73

Test 8: Alternate Loading Small Constants Loop

asm volatile("loop: \n\t"

)

"1ldr
"1ldr
"1ldr
"1ldr
"1ldr
"1ldr
"1ldr
"1ldr
"1ldr
"1ldr

r0,
rl,
r2,
r3,
r4,
r0,
rl,
r2,
r3,
r4,

"b 1oop"

=0x00000000
=0x00000000
=0x00000000
=0x00000000
=0x00000000
=0x0000000A
=0x0000000A
=0x0000000A
=0x0000000A
=0x0000000A

\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"
\n\t"

Listing A.8. Test 8: Alternate Loading Small Constants Loop Inline Assembly Code

Table A.20

Test 5: Overview

Normal Execution 742 74.2%

Glitch Detected 244 24.4%

Unknown 14 1.4%
Table A.21
Test 8: Enumerated Register Values in Normal Range

RO R1 R2 R3 R4

0x00000000 [0x00000000 {0xO0000000 |0x00000000 0x00000000
0x0000000A [0xO000000A [0OxO000000A |0xO000000A |OxO000000A

74

Table A.22

Test 8: Enumerated Register Values Indicating Glitch Occurred

RO R1 R2 R3 R4
0x00000008 [0x00000004 |0x00008400 |0x40035B6D |0x40010172
0x40010172 |0x00800400 0x40009D84
OXEB814E68 [0x40007A5C |OXE59FF3F8
OXEBA14E68 [0x40009DB4 |OXFFFEEAFE
OXEBA16E68 OxFFFFFEEA
Table A.23
Test 6: Enumerated Program Counter Values and Corresponding Disassembly

NORMAL GLITCHED

PC Disassembly PC Disassembly
0x40010168 MOV r0,#0 Ox3E810ABC B {pc} ; 0x3e810abc
0x4001016C [MOV r1,#0 Ox3E81C21C B {pc}; Ox3e81c21c
0x40010170 MOV r2,#0 Ox3E82C21C B {pc}; Ox3e82c21c
0x40010174 [MOV r3,#0 0x3E82C220 (B {pc}; 0x3e82c220
0x40010178 [MOV r4,#0 0x3F810ABC (B {pc}; 0x3f810abc
0x4001017C [MOV r0,#0xa 0x40010870 (B {pc}; 0x40010870
0x40010180 MOV r1,#0xa 0x40210ABC|B {pc}; 0x40210abc
0x40010184 MOV r2,#0xa 0x4022C8F0 (B {pc}; 0x4022c8f0
0x40010188 MOV r3,#0xa
0x4001018C [MOV r4,#0xa

B {pc}-0x28 ;
0x40010190 |0x40010168

75

