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Abstract 
NVIDIA’s Linux For Tegra development team provides support for many tools which exist on 

the Jetson-TX2 embedded AI computing device. While tools to clone the user partitions of the 

Jetson-TX2 exist, no tool exists to fully backup and restore all of the partitions and configurations of these 

boards. The goal of this project was to develop a tool that allows a user to create a complete clone of the 

Jetson-TX2 board’s partitions and their contents. We developed a series of bash scripts that fully backup 

the partitions and configurations of one Jetson-TX2 board and restore them onto another board of the 

same type.  

1 



Table of Contents 
 

Abstract 1 

Table of Contents 2 

1 Introduction 3 

2 Background 5 
2.1 Preliminary Research 5 

2.1.1 UEFI Booting and Flashing 5 
2.1.2 Tegra Linux Driver Package 8 
2.1.3 Network File System 8 
2.1.4 Jetson TX2 Bootloader 10 

2.2 Linux Terminology, RCM boot and Initial ramdisk 12 
2.2.1 Linux Terminology 12 
2.2.2 USB Recovery Mode (RCM) Boot 13 
2.2.3 Initial Ramdisk 14 

2.3 Associated Technologies 15 
2.3.1 Linux tools 15 
2.3.2 Serial Console 16 

3 Methodology 17 

4 Product 20 
4.1 Backup Script 20 
4.2 Restore Script 22 
4.3 Initial ramdisk (initrd) 24 
4.4 Script Development Guidelines 26 

4.4.1 Use Case 26 
4.4.2 Integrity 26 
4.4.3 Performance 27 

5 Future Work 29 

6 Conclusions 30 

7 Bibliography 31 
 
  

2 



1 Introduction 
The Jetson-TX2 is a low power, high performance embedded artificial intelligence 

supercomputer utilized in many modern technologies. Because of its compact size, many 

manufacturers have utilized the Jetson-TX2 in products such as drones, cameras, robots, and 

gaming devices. The Jetson board comes prepackaged with Linux for Tegra along with other 

tools users may need to start developing their technologies [16].  

There is a need for a cloning tool for the Jetson-TX2 that would allow users to easily and 

effectively backup board configurations, partitions, and bootloaders from one target board and 

restore them onto another target board. Although it is possible to manually set board 

configurations, the process is time consuming. This tool would allow developers and consumers 

to duplicate board configurations efficiently along with user partitions and bootloaders. This 

would allow developers to clone many boards with the same specifications for rapid testing and 

development.  

This project assisted NVIDIA to create a backup and restore tool that allows users to 

fully clone Jetson-TX2 boards. We first conducted background research to familiarize ourselves 

with the Jetson platform and to learn more about the tools necessary to complete this project. We 

then collaborated with NVIDIA to design and implement a solution through the duration of the 

MQP. After implementing our basic design, we added additional features to allow for more user 

customization while running the scripts. Then, we executed a series of tests to ensure that the 

backup and restore scripts functioned properly and created the exact copy we desired. The final 

product which we presented to NVIDIA was two scripts, one for backup and one for restore, and 

a more powerful initial ramdisk (initrd) that allows for the cloning process to be completed. The 

initrd mode allowed the boards to maintain integrity during the backup and restore process by 

preventing files from being modified while executing the scripts.  

This report first delves into the background research the team completed to gain a better 

understanding of the Jetson-TX2 in Chapter 2. In Chapter 3, we described the process our team 

took to design and implement the cloning tool. Chapter 4 elaborates further upon the backup and 

restore scripts and the modifications made to the initial ramdisk, as well as documenting use 
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cases of the tool. Chapter 5 discusses the ways in which NVIDIA can further improve upon the 

tool. Chapter 6 provides a conclusion to the work we have done at NVIDIA.   
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2 Background 
In order to effectively complete the project, we researched the Jetson-TX2 board, Linux 

technologies, and supporting tools.  

2.1 Preliminary Research 
We researched several technologies and concepts to gain insight into how we would 

complete our task. The main topics that we focused on were flashing, booting, and file systems; 

all of which are important components to completing the project. This section delves into the 

details of each of the topics.  

 

2.1.1 UEFI Booting and Flashing 

The Unified Extensible Firmware Interface (UEFI) is a specification that defines a 

software interface between an operating system and proprietary or open source platform 

firmware. UEFI is developed to replace the Basic Input/Output System (BIOS) firmware 

interface, which is used on all IBM PC-compatible computers [2]. 

The interface defined by the EFI specification includes data tables that contain platform 

information, as well as boot and runtime services that are available to the operating system and 

its loader. Figure 1 shows the position of the EFI in the software stack of a computer. UEFI 

firmware provides some advantages over the traditional BIOS scheme [3]. These include being 

able to support large disks up to two terabytes in size with a GUID partition table (GPT) format. 

Additionally, the firmware is CPU independent and provides a flexible pre-operating system 

environment that includes network capability. Its modular design and backward and forward 

compatibility make it especially useful. 
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Figure 1: EFI in computer [1] 

 

A device which supports UEFI boot usually has a storage partition formatted according to 

the UEFI, which is typically a File Allocation Table (FAT) file system. UEFI can run the UEFI 

binaries which resides on the EFI partition. UEFI binaries include bootloaders, drivers and 

applications. For example, GNU GRUB is an operating system loader which resides on the EFI 

partition, whose features include a way to choose the loading operating systems and change the 

boot loading image. Figure 2 provides an example of how EFI binaries can be run during the 

bootloading process. 
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Figure 2: UEFI interactions with drivers [1] 

 

The NVIDIA Jetson-TX2 boots using the UEFI booting process. Broadly, the TX2 loads 

the Boot Configuration Table (BCT) from NVRAM, the on-board eMMC, and runs the 

bootloader, whose location is specified in the BCT. The Tegra bootloader supports two boot 

modes: cold boot mode and USB recovery mode (RCM). The Jetson-TX2 can be booted into 

RCM mode using a sequence of button inputs. In this mode, the board can be booted from 

binaries loaded from another computer or from the network and can be flashed with a new OS. 

NVIDIA provides a bash script, flash.sh, with the Tegra BSP to interact with the RCM 

mode. The script can read and restore partitions on the TX2, flash a new Linux Kernel onto the 

board, or set up the board for a network boot. These functions are internally provided by a 

compiled program. 

The boot process and flashing are especially important to our project because we needed 

to determine the best way to safely backup files so that files were not being backed up while also 

being modified. The flash.sh script was especially helpful to take inspiration from while 

determining that RCM boot was the best boot type to use. 
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2.1.2 Tegra Linux Driver Package 

The Tegra Linux Driver Package is a tarball distributed by NVIDIA containing a set of 

file systems, software binaries and scripts to configure and manage the bootloader, the boot 

configuration, and the Linux system on the Jetson devices. In this package, the parts which are 

relevant to our project include the flash.sh utility and the initrd binary. 

Flash.sh is the main script in the driver packages, which comprises of many 

functionalities. Two of the functionalities are crucial to our project: enabling RCM boot mode 

and building the initial ramdisk (initrd). In the driver package, there is a precompiled initrd 

binary. This binary does not provide enough functionalities to the backup and restore processes, 

so we have to inject more binaries into the initrd. RCM Boot and initrd are explained in further 

detail in section 2.2. 

 

2.1.3 Network File System 

A network file system is a file system abstraction over a network that allows a client to 

remotely access files over a network. It works similarly to the local file system, but does not 

require the client and server to be on the same physical machine, and allows for multiple users to 

access the same file system. NFS is generally only used when both the client and server are 

running Linux. 

  Figure 4 shows the general architecture of NFS. NFS follows the client-server model of 

computing. The server is where the file system is implemented and shared, and the clients then 

attach to the server. The clients themselves implement the user interface that displays the shared 

file system, which is mounted within the client’s local file space. 
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Figure 4: NFS Client-Server Architecture [5] 

 Some of the newer versions of NFS (versions 4 and 4.1) have introduced key elements to 

NFS that make it simpler and more powerful. NFSv4 simplified the process for mounting and 

other aspects of file management by removing support for UDP as a transport protocol so that 

TCP is the main form of transport. Additionally, version 4 provided more support for various 

other operating systems. NFSv4.1 introduced the concept of parallel NFS (pNFS) that increases 

the scalability of NFS and allows for better performance. Figure 5 shows the architecture among 

pNFS, and its differences from typical NFS. 

 

Figure 5: pNFS Architecture [5] 
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When a client requests file access, the server responds with a layout that describes the 

mapping of the file to the storage devices. Once the client has access to the mapping, it can 

directly access the storage without requiring further contact with the server. This allows for 

increased scaling and performance. 

For the Jetson-TX2, NFS is one utility that is used to flash a version of Linux onto the 

board. Due to the limitations of our project, we were unable to create a way to support NFS 

flashing with the backup and restore scripts. However, it is possible to do this type of flashing, 

and this is further elaborated on in the Future Work chapter. 

 

2.1.4 Jetson TX2 Bootloader 

The Jetson TX2 bootloader is divided into several components specifically targeted for 

the Jetson [4]. Bootflow of the bootloader starts from the BootROM which is passed onto 

Microboot and then onto the Tegraboot. Each of these bootloaders completes necessary tasks 

before initializing the next step in the Bootflow process. Figure 6 shows the shows the flow of 

control within the boot software. 

 

Figure 6: Flow of Control in Boot Software [4] 

 

Bootflow is initialized with the BootROM. BootROM is a hard-wired component on the 

Tegra board. It is used to initialize Boot Media which contains many copies of the BootROM 
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Boot Configuration Table (BR-BCT). The BR-BCT stores the configuration parameters that the 

BootROM uses to initialize hardware. Additionally, BootROM also initializes Microboot1, and 

then pass control over to Microboot1. 

 

Figure 7: BootROM flow [4] 

  

Microboot1 (MB1) is an extension of the BootROM and provides flexibility to alter the 

boot sequence. Since it is a component of BootROM, MB1 is encrypted by an NVIDIA-owned 

key. MB1 is responsible for many tasks such as firmware initialization and loading the next stage 

of the Bootflow, TegraBoot. 

TegraBoot is split into two portions, TegraBoot-BPMP (MB2) and TegraBoot-CPU. 

Furthermore, TegraBoot-BPMP is split into two variants, one of which is used for cold boot and 

another that is used for recovery boot. It is responsible for loading and initializing firmware 

components and completing CPU initialization. Once the CPU initialization is complete, the 

bootloader passes control over to the BPMP-FW. The TegraBoot also supports flashing in 

addition to RCM which is the MB2 recovery boot. 

Another component of Bootflow is CBoot. CBoot is the primary CPU bootloader utilized 

on mobile platforms in a cold boot. CBoot is what boots the kernel. It supports display, boot 

logo, and verified boot. CBoot is based on the Little Kernel (LK) open source bootloader [4]. 

CBoot also utilizes the interrupt and scheduling frameworks of LK. Once the CBoot completes 

the loading process, it will pass control over to the U-Boot which is the default bootloader for the 

Tegra Linux Driver Package. 
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The deficiency in the default Jetson-TX2 bootloader is that because it is a custom 

bootloader, it does not support the use of Initial ramdisk. Because of this, our project required us 

to identify alternative boot processes that would allow the use of Initial ramdisk. 

2.2 Linux Terminology, RCM boot and Initial ramdisk 
A key part of understanding how to best accomplish our project is being able to 

comprehend some of the major components of Linux and its boot modes. This section will cover 

several terms that are important to Linux and our project, as well as detailing the importance of 

initial ramdisk and the RCM boot mode. 

2.2.1 Linux Terminology 

File system: In computing, a file system is used to control how data is stored and 

retrieved. The Linux operating system create a virtual file system, which makes all the files on 

all the devices appear to exist in a single hierarchy. The file system starts at root directory, and 

every file is under the root. [10]. 

Mount : Linux operating system assign a device name to each device. The action to 

specify the location on the file system to gain access to files on another device is called mounting 

[9]. 

Devtmpfs : Devtmpfs is a special file system which is populated with device nodes by 

the Linux kernel. Device nodes are interfaced to the device drivers that appear in a file system as 

if it were an ordinary file [11].  

Procfs : According to the Linux kernel documentation,  Procfs is a special file system in 

Linux operating systems that presents information about processes and other system information 

in a hierarchical file-like structure [11]. 

Sysfs : According to the Linux kernel documentation,  Sysfs is a special file system 

provided by the Linux kernel that exports information about various kernel subsystems, 

hardware devices, and associated device drivers from the kernel's device model to user space 

through virtual files [11]. 
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Configfs : According to the Linux kernel documentation, Configfs is a special file system 

that provides the converse of sysfs functionality.  Where sysfs is a file system-based view of 

kernel objects, configfs is a file system-based manager of kernel objects, or config_items [11]. 

Systemd : Systemd is a suite of basic building blocks of the Linux system. It provides a 

system and service manager that run as the first process and start the rest of system [12]. 

GUID Partition Table (GPT): A partition table is a binary format table describing the 

partition layout of a disk. The GPT is a standard for the layout of the partition table as parts of 

the UEFI standard [14]. On a disk using GPT, two copies of the partition table exist, one at the 

beginning of the disk and one at the end of the disk. Figure 8 outlines the general format of the 

GPT. 

 

Figure 8: GUID Partition Table Scheme [15] 

2.2.2 USB Recovery Mode (RCM) Boot 

RCM boot is one of the boot modes on the Jetson-TX2 device. In the boot mode, the 

target Jetson board receives a binary through its device-mode USB port and loads it into its 

SDRAM. This binary is then executed on the devices. Figure 9 demonstrates how the Linux For 
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Tegra package generates the RCM boot signal. 

 

Figure 9: Generating RCM messages for Jetson TX2 

 

Because RCM boot is the fastest and only way to safely boot into initrd on the Jetson-TX2, it is 

the boot type that is used by our backup and restore scripts. 

2.2.3 Initial Ramdisk 

Initial ramdisk (initrd) is a scheme for loading a temporary Linux file system into 

memory, and is commonly used in the Linux startup process. Initrd is usually a cpio archive of a 

small Linux file system, compressed using popular compression algorithms such as gzip. This 

archive is combined with the Linux kernel and sent to the device using RCM boot mode. The 

kernel running on the SDRAM of the device will mount the archive to ‘/’ (root directory).  

In the normal Linux boot up scheme, the ‘/init’ in initial ramdisk runs and mounts sysfs, 

procfs, and devtmpfs. When these special file systems are successfully mounted, the Linux 

system mounts the user file systems, which contain all the user’s software and data, to the root 

(‘/’) directory. On Ubuntu Linux, systemd is initiated and continues to construct the user’s Linux 

environment. Figure 10 shows the standard bootflow of the initial ramdisk on a normal Linux 

system. 
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Figure 10: Initial Ramdisk Bootflow on a normal Linux system 
 

The backup and restore environment for our project requires an initial ramdisk that is properly 

set up to facilitate the execution of these scripts.  

2.3 Associated Technologies  

In order to complete our project, we researched various technologies that may help us 

create an efficient tool to backup and restore Jetson boards. The following sections documents 

our findings. 

2.3.1 Linux tools 

Linux provides a wide variety of open source commands that can be used during the 

backup and restore processes. Several examples include: 

fdisk - read the GPT of a block device 

dd - read and copy a block device using logical block addresses. 

mkfs - format a block device into an ext4 file system 

tar - generate a copy of an entire file system 
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All of these tools are used in our backup and restore processes. fdisk is used to assist with the 

backing up of the GPT. dd and tar are both used for copying partition images. mkfs is used for 

formatting a device into a file system, so tar can then restore the file system image onto that 

device. 

2.3.2 Serial Console 

A console is the text entry and display device for system administration messages. A 

Linux shell is a user interface that provides access to an operating system’s services. A serial 

port is a serial communication interface through which information transfers in or out one bit at a 

time. For our project, we created a console running a Linux shell controlled through the serial 

port so that the users can interact with the backup and cloning environment.  

The Jetson-TX2 kernel provides drivers for two types of serial ports which can be used to 

enable a serial console (a console runs on a serial port) . The two types of serial ports are:  

● Universal asynchronous receiver-transmitter (UART) serial ports 

● Universal Serial Bus (USB) device ports 

UART serial ports on the Jetson-TX2 support a serial console comprised of the 

UART-designated GPIOs and J10 debug header (used internally in NVIDIA). The Jetson-TX2 

also has a USB device mode port that accepts commands from connected devices.  

The Linux kernel created by NVIDIA supports a serial console on the UART GPIOs in 

the default setting. However, for the USB device port, the driver has to be configured to support 

Communication Device Class (CDC) Abstract Control Model (ACM) USB [13] , a 

vendor-independent publicly documented protocol that can be used for emulating serial ports 

over USB. 

The initial ramdisk, created from the NVIDIA-customized kernel, does not support 

creating a console on the USB device port. Thus it is necessary to use getty, a Linux utility to 

create additional consoles for the Linux kernel environment, to set up a console on the USB 

device port. After running getty, a console is set up so that the users can interact with the backup 

and restore program.   
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3 Methodology 
Prior to our arrival at NVIDIA, we conducted background research pertinent to the 

project. NVIDIA’s internal documentation and open-source files for the Jetson-TX2 were helpful 

in determining the best approach to our project. Additional relevant information to our project is 

fully detailed in Chapter 2. Once on site, we started working alongside Jimmy Zhang, our 

mentor, to develop a design which we implemented during our time at NVIDIA. Through this 

process we identified necessary elements of the backup and restore process that needed to be 

addressed in order to deliver a viable end product. Figure 11 provides the layout of our process 

for the MQP. 

 

 

Figure 11: Project Process 

 

The important requirements for our project were to make sure the files are safe from 

modification during the backup and restore processes and that all partitions and configurations 

are copied properly from one board to another. By backing up configurations and bootloaders 

from the user space, it leaves the possibility for the backup board to be altered as the backup is 

occuring. In order to account for this, we looked into utilizing initrd mode on the Jetson-TX2. As 

described in the previous chapter, initrd is a scheme for loading a temporary Linux file system 

into memory. Initrd would allow the scripts to backup and restore Jetson-TX2 boards while 

ensuring integrity on both target boards. However, because initrd is used to load the full Linux 

kernel in the bootup process, it contains minimal development tools. To account for this, we 

devised a method to inject Linux tools into the initrd mode to perform the commands needed to 
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backup and restore. Some of the essential binaries we packaged into the existing initrd are fdisk, 

dd, mkfs, and tar.  

As we created a more powerful and robust initrd mode, we also started writing a set of 

bash scripts to handle the backup and restore process. On the backup end, the script first needed 

to retrieve GPT information from the target Jetson-TX2 board. To complete this, the script 

utilized fdisk to parse the GPT table and stored it as a local variable. Necessary data such as 

partition name, start sector, and sector length were retrieved to properly create backups of each 

partition. The script would then utilize dd to create backups of each partition with the exception 

of ext4 filesystem partitions as dd is not as efficient in backing up such a large file. Instead, the 

script would utilize tar to backup ext4 extensions. In addition to cloning each partition, the 

backup script also creates an index file which stores information such as board specifications and 

partition information. The index file would also contain checksums for each partition which is 

used to ensure the integrity of the two target boards. 

After designing how the backup script would function, we determined that the easiest 

way to structure the restore script would be to effectively reverse the functionality of the backup 

script. We decided that using a USB through initrd mode would be the safest way to run the 

script. Because tools like dd and tar have already been injected into the custom initrd for the 

backup script. It was most logical to focus on utilizing these utilities on the restore side of the 

cloning process, as well. To ensure that each partition is restored properly, we parse through the 

index file by first handling the board specification, then the GPT, followed by all of the 

individual partitions. 

After we had developed working versions of each script and adjusted the initrd to allow 

these scripts to function properly, we then added extra options and utility within the scripts to 

allow for more customization. Once these options were implemented, we tested the full product 

we had developed. Additionally, Jimmy Zhang did some testing of his own to ensure that our 

scripts functioned properly. His extensive knowledge of bash script functionality and the 

Jetson-TX2 allowed for better and alternative methods of testing the scripts that we as a group 

may not have thought of.  
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Together with the help of our background research and the collaborating done at 

NVIDIA, we successfully created two scripts and a modified initrd as our final product. Sections 

4.1, 4.2, and 4.3 further detail how the backup script, restore script, and initrd changes work, 

respectively.  
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4 Product 
The following section details the components of the project that our team completed to 

create a final operable product. In order to complete our goal on this project, we developed the 

following three components: 

1. Backup Script 

2. Restore Script 

3. Initrd 

Together these components function as a unit and are a safe and efficient method of backing up 

and restoring the full configurations of one Jetson-TX2 board onto another board so that they are 

identical to one another. The backup and restore scripts both require the modified initrd to 

function properly. 

4.1 Backup Script 
We developed a method to fully backup a target Jetson-TX2. The Jetson-TX2 board 

contains three storage devices: Bootloader device 1, Bootloader device 2, and the main storage 

(eMMC). Six types of backup images are needed to help with backing up the three devices. 

These six types of backup images are Bootloader 1, Bootloader 2, the GPT, backup GPT, the 

main Linux file system (APP) and other configurations and bootloader partitions (Partition 1). 

Figure 12 is pseudocode used to represent the general structure of the backup script. 

 

Figure 12: Pseudocode for backup script 
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Bootloader 1 and Bootloader 2 are two storage devices that contain the necessary binaries 

to configure and boot up the Jetson-TX2. They are typically very small, so dd is used to back 

them up directly, generating Bootloader 1 backup images and Bootloader 2 backup images. 

The eMMC is typically 32 GB and is divided into many partitions based on the 

functionalities and requirements. Thus, a backup image is created for each partition in the 

eMMC. First, fdisk and awk are used to parse the partition layout. From the partition layout, the 

script identifies the types of backup images and fetch the necessary parameters for the dd and tar 

command to generate the backup images. From the eMMC, the script generates the remaining 

four types of backup images. The backup images for the GPT and the backup GPT are 

constructed from the GPT partition table of the eMMC. The GPT backup images are vital for the 

restore process, so they are generated first. The script then backs up the Partition 1 and APP 

images. By default, partitions that make up Partition 1 are backed up individually. The APP 

partition is copied using tar due to its size and thus is separated from Partition 1, which is backed 

up using the dd command. Because of this, the APP is marked with a tz flag to signify tar being 

used. 

In order to keep track of the backup partitions, the script creates a comma-separated value 

index file that keeps track of partition information. The default version of this file is called 

nvpartitionmap.txt. Each entry in the index file contains a file name, partition name, 

start sector, number of sectors, flags, and sha256. Figure 13 shows how an individual line in the 

index file is formatted and provides an example of one of these line with sample values.  

 

Schema :<file name, partition name, start sector, number of sectors, flags, sha256> 

Input: <mmcblk0p1.tar.gz,mmcblk0p1,0,58720256,tz,d95126d4d....2539ea> 

Figure 13: Index file schema and sample input 

 

The index file is stored alongside the backup and is then utilized on the restore script to properly 

transfer partitions to the target board. Furthermore, the index file also stores the target board 

specifications as the first line of the file. The script only works for Jetson boards that are 

identical in board specifications. In order to ensure that data transfer is completed properly, 
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sha256 checksum values are included in the index file which is checked against to ensure the two 

target boards are identical when restoring. This is further elaborated upon in the Restore Script 

section. Another important factor to ensure the integrity of the two target boards is the sector 

data. Since the restore boards need to place the backed up partitions in the same memory sectors 

as the backup board, it is necessary to store the start location and the size of each partition. In 

order to retrieve sector locations, the backup script uses fdisk to extract the GPT into a local 

variable which is then parsed through as needed.  

By default the restore script operates without any special flags. However it was designed 

to accept optional flags which allow the user to customize the script behavior. The options are as 

follows: 

-h | --help : display usage 

-s : squash mode 

-z : do not use tar to backup ext4 partitions 

-f : force mode 

-d | --device <device_name> : specify block device to store backup 

Squash mode, denoted by a -s, allows for the user to squash all partitions before and after the file 

system partition into two files. As mentioned prior, the partitions that make up Partition 1 are 

backed up individually. However, with squash mode, the partitions are backed up onto two 

images, partition1.img and partition2.img. The -z option allows the user to solely 

utilize dd to backup all partitions including APP. Force mode is an option implemented to allow 

users to run the script without prompts. 

4.2 Restore Script 
The restore script effectively reverses the procedure that the backup script follows. This 

process requires that each partition that is written to the index file be flashed fully onto the target 

Jetson-TX2 board. The first field the restore script looks for is the board specification, identified 

as board_spec. Once this information is identified, the script confirms that the board_spec of the 

backup board is the same as that of the target board. After the board types are confirmed, the 

script searches for the GPT information in the index file. While the GPT information is generally 
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on the second line of the index file, right after the board specification, it is possible that a user 

modifying the index file could move it. The GPT is required to be the first partition flashed 

because the partx command must be run after it is installed. This command updates the kernel 

knowledge of all of the partitions and relies on the GPT to run. Figure 14 is pseudocode used to 

represent the general structure of the backup script. 

 

Figure 14: Pseudocode for restore script 
After the GPT is flashed, the restore script continues iterating through the index file and 

flashes the corresponding partitions for each line in the file. Most partitions use the dd command 

to copy the files from the mount device to the board. However, the APP partition requires the use 

of the tar command to be properly flashed, as the size of this partition causes the dd commands 

execution to be much slower. The APP partition is marked with the tz flag in the fifth column of 

the index file so the script knows that the tar command should be used. 

There are also several customizations the user can specify when running the script. While 

the default name of the index file is nvpartitionmap.txt, the user can specify an alternate 

file to use. Any file name is allowed and can be specified at any argument position in the 

command, as long as the file extension is .txt. Runtime options include: 
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● -h | --help: display usage 

● -a | --automation: suppress calls for user input 

● -d=: specify mount device 

The user can specify the device for mounting. While the default device is sda1, a different device 

can be specified. If the specified device and sda1 are both not found, the script instead uses sda. 

 If the user specifies -h or --help, no flashing occurs, and the usage message will be 

displayed for the user. The user can also specify -a or --automation to forego viewing the 

message that requires user input that asks if the USB is plugged in and if it contains the backup 

files. 

Special failsafes and extra precautions were implemented to prevent any unwanted 

circumstances from occurring. A special cleanup function ensures all devices were unmounted 

and the boot partitions are reverted back to read-only status. If for some reason the script exits 

before completion, this function is called. In addition to the script exiting if board types do not 

match, there are a few other instances in which the user would see an early exit. If the user inputs 

“no” as a response to the question asking if the USB is plugged in, the script does not execute 

flashing. Also, if a sha256 checksum value in the index file does not match the its value acquired 

from the corresponding partition image file, the script exits. Finally, if the GPT does not exist in 

the index file, no flashing occurs, either. 

4.3 Initial ramdisk (initrd) 

Unlike the traditional Linux boot scheme, the role of the initial ramdisk for our set of 

scripts is to provide a Linux environment for executing the backing up and restoring task of the 

Jetson-TX2. By using the initial ramdisk, the user Linux file system on the Jetson-TX2 is not 

corrupted while generating the backup image; and the restoring task can be executed directly on 

the Jetson devices. Figure 15 provides a general overview of the modifications that were made to 

the initial ramdisk to better facilitate the execution of the backup and restore scripts. 
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Figure 15: Customized Initial ramdisk architecture 

 

The existing initrd is injected with additional binaries in order to create a more powerful 

Linux environment for the backup and restore scripts to run. This is done by using Linux utilities 

gunzip and cpio to unpack the initrd. The additional Linux utilities and corresponding libraries 

from the provided L4T file systems are then copied into the initrd. The initrd is then repackaged 

using cpio and gzip. The ‘/init’ script is also modified in the initrd to change the kernel USB 

gadget driver to enable ACM and start a serial console on the device mode micro USB port using 

getty. This allows the users to be able to control and interact with the backup and restore process 

on TX2.  

The kernel USB gadget driver starts in the normal Linux system booting process which 

does not exist inside initial ramdisk, so the ‘/init’ script is modified to enable the driver. We 

created a bash script which mounts and changes the setting of the drivers in configfs. Configfs is 

a file system-based manager of the driver, so the bash script changes the configuration by writing 

text files to the right locations in the configuration folder. After enabling ACM on the USB 

device mode port, a getty process is run to enable serial console. 
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4.4 Script Development Guidelines 
During the development of our scripts, we followed a few guidelines to improve the 

product for the user. We identified a clear use case for our set of scripts to tailor these scripts to 

better fit what a user would want to do with them. We needed to maintain integrity with the user 

and ensure that their devices and files would be safe from external interaction during the cloning 

process. Additionally, if our colining scripts were to be used, they needed to run significantly 

faster than the alternative cloning approach, which would be booting up and configuring a new 

board. 

4.4.1 Use Case 
The main purpose for our product is to provide an efficient, effective, and safe way to 

clone all of the configurations, data, and partitions from one Jetson-TX2 to another. Ideally, 

users working with a Jetson-TX2 board could quickly configure many Jetson boards with the 

same configuration. Our product should reduce wait times during the development process, and 

allow developers to spend time on more important matters. For example, a customer may need 

create a fleet of artificially intelligent robots, all of which are powered by the Jetson-TX2. 

Users can also utilize the tool to generate backup images that can be stored on a drive 

separate from the Jetson board. While many tools like this already exist, none have been 

specifically developed for the Jetson, so this would be a safe and native method of backing 

Jetson boards.  

4.4.2 Integrity 
One of the key components of creating the final product is ensuring that the scripts 

maintain integrity and prevent outside interference that could harm the Jetson-TX2 or its 

partitions. The use of sha256 checksum calculations allows the script to confirm that only proper 

images will be flashed onto the board. If a user modifies the sha256 value in the index file, the 

corresponding partition image will not be flashed because these checksum values will no longer 

match. Likewise, if a partition image file is modified after backing up, this checksum value will 

no longer match the value stored in the index file. This prevents fake backup images from being 
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flashed onto a target board. Additionally, there are several failsafes to prevent incorrect flashing. 

One such failsafe is to ensure that the target backup board and the target restore board both have 

the same specifications since partitions are written into the same memory sectors as the backup 

board. Refer to section 4.2 for greater detail on the board specification. 

4.4.3 Performance 
A major aspect of our project that we monitored throughout the development phase was 

how the scripts performed. Specifically, we wanted to ensure that our backup and restore scripts 

run quickly so it would not disrupt the workflow of users. Initially, both scripts took upwards of 

thirty minutes to complete. A big factor of this was due to misaligned time stamps on the backup 

board and the restore board. As a result, usage of the tar command led to the the console 

outputting numerous timestamp warnings which greatly reduced the performance of the scripts. 

To alleviate this, a flag to remove the warnings was added to the tar commands in both the 

backup and restore scripts. Figure 16 shows the runtime of both the backup and restore scripts on 

a Jetson-TX2 with a 3.3 GB file system. 

 

Figure 16: Script Runtime (in seconds) on TX2 with 3.3 GB File System 
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The backup script requires more time to run due to the checksum generation that occurs. 

Reducing the runtime for both scripts allows a user to have the partitions of a Jetson board 

cloned from the backup board to the target board in just over five minutes. If the backup board 

used for cloning has a different amount of partitions than a newly flashed backup board, these 

times may vary. 
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5 Future Work 
Throughout the development of our set of scripts, we discovered several places that could 

be improved upon in the future. Most of these potential improvements involve ways that will 

make the cloning process more efficient and easier to set up. 

Currently, the only method for properly and safely backing up the Jetson board is to do it 

from initrd mode. However, we think it would be helpful to add functionality to allow the backup 

and restore scripts, as well as flash.sh, to run using NFS boot. The system would have to be 

frozen after establishing a connection so that no files are modified during the backup process. 

Adding a series of hotkeys or keypress combinations to activate a default backup or 

restore from a plugged in USB drive would cut down on any additional time to set up the script 

for execution, and allow for the tool to be more portable. A guide to create a keyboard shortcut 

that would run an NVIDIA-made autorun script could be included in a future release. 

It may be beneficial to make the cloning process as quicker. Currently, there exists some 

redundancy in the scripts that handle slightly different functions. Cutting down on these 

redundancies could potentially reduce runtime. Additionally, a bottleneck analysis should be 

performed by identifying the places in the code where the scripts spend the most time. Once 

these lines have been identified, the code there should be optimized to increase performance. 

Another area of potential improvement to make the series of cloning scripts more robust 

is to add an ‘enable_ums’ option. This option would enable the Mass Storage Gadget of the USB 

device mode drivers. The backup could then be stored on the host computer instead of on a USB 

plugged into the Jetson board. Unfortunately, the USB driver only accepts one file as a parameter 

at a time. As a result, the exposed block devices of the host computer would have to be rotated. 
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6 Conclusions 
The Jetson-TX2 is useful because it is an embedded artificial intelligence supercomputer 

that allows developers to create smart cameras, robots, and gaming devices. The cloning tool we 

created will allow users to quickly duplicate board configurations, user partitions, and 

bootloaders to help in the development and testing process. 

We worked alongside engineers to develop a Jetson-TX2 cloning tool that would be used 

both internally and by consumers. Presented with the task of creating such a tool, we looked into 

the layout of Jetson-TX2 boards to gain a better understanding of the partitions we would need to 

backup and restore. Using this knowledge, we created a product design which would allow us to 

successfully backup user partitions, bootloaders, and configurations of target boards. As we 

developed the scripts, we also created a more powerful initrd mode in parallel which the scripts 

would run on. The use of the initrd mode to backup and restore helps ensure the integrity of the 

backed up and restored images. The backup script individually backs up partitions and stores the 

image information into an index file. The index file is then utilized by the restore script to 

determine the proper memory sectors that each partition is restored into. Through the 

development phase of this project, we strived to create efficient and effective scripts. This is 

reflected in the backup and restore tasks being completed in just over five minutes, these scripts 

have a high level of flexibility that allows the users to enable optional flags to utilize the backup 

and restore process as needed. 

Over the course of this project, we have gained a large amount of knowledge on the inner 

workings of the Jetson-TX2 and how bash scripts should be properly written to ensure that they 

are easy to use and protect the user’s information and partitions. We would like to thank 

NVIDIA for giving us the opportunity to work on this project and provide a useful tool for 

people who use the Jetson-TX2 is their daily work. 
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