/F .\ ' J7
PI0E—d NN _JI1TTT
Fid il IIJlIJIIJIIIIIII'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #8

Sprite & Resource Manager

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.



4.12. Resource Management 154

4.12 Resource Management

Games have a wide variety and often large number of resources, also known as assets or
media. Examples include meshes, models, textures, animations, audio clips, level layouts,
dialog snippets and more. Offline, most game studios use tools to help create, store and
archive assets during game development. When the game is running, however, the game
engine needs to manage the assets itself in an efficient manner, loading, unloading and
manipulating the assets as needed.

Since many assets are large, for efficiency, a game engine uses the flyweight design
pattern, sharing as much data as possible with similar objects. For the game engine, this
means keeping only one copy of each asset in memory and having all game objects that
need the asset to refer to this one copy. This helps manage memory resources, which can be
scarce for high-end games, or on resource constrained devices, such as mobile hand-helds.
Similarly, a game engine often manages the lifetime of the asset, bringing it in from memory
on demand (“streaming”), and removing it from memory when it is no longer needed. Some
game engines, particularly 3d game engines, handle composite resources, such as keeping a
mesh, skeleton and animations all grouped with a 3d model. Assets that have been loaded
into memory sometimes need additional processing before rendering. Ideally, support for
all of the above is provided in a single, unified interface for both the game programmer and
for other components in the engine.

In Dragonfly, one of the assets managed are sprites, stored as text files. A game studio
using Dragonfly could have offline tools that help create, edit and store sprites as part of the
development environment. Such tools could help artists correctly animate and color text-
based sprites, and provide revision control and archival functions for sharing and developing
the sprites.

However, the Dragonfly engine itself needs to only be able to understand the format of
a sprite file so that it can load it into the game when requested. To do this, data structures
(classes) are required for Frames (see Section 4.12.1 on page 154) that provide the dimensions
of the sprite and hold the data, Sprites (Section 4.12.2 on page 156) that provide identifiers
for the asset and hold the frames, and Animations (Section 4.12.5 page 175) for providing
support for per-Object sprite animation. The ResourceManager (Section 4.12.3 on page 161)
provides methods for the game programmer to use the sprite assets.

4.12.1 The Frame Class

Frames in Dragonfly are simply text rectangles of any dimension that know how to draw
themselves on the screen. The frames themselves do not have any color, nor do individual
characters — color is an attribute associated with a Sprite. Some frame examples are shown
in Listing 4.115. Frames are not animated. In order to achieve animation, sequences of
frames are shown in rapid succession so it looks like animation (see Figure 3.2 on page 14).

Listing 4.115: Frame examples

—— \ A
/__o_\ o= \._\/ __ S ) N\ ___/
/ S A A Sy A A S B B S S A |
Jo /N /N C/NCC/NC

‘vﬁ’{.,



10

4.12. Resource Management 155

u J

The individual cells in a frame are characters. These could be stored in a two dimensional
array. However, in order to use the speed and efficiency of the C++ string library class,
Dragonfly stores the entire frame as a single string.

The definition for the Frame class is provided in Listing 4.116. While the attribute
m_frame_str holds the frame data in a one dimensional list of characters, the attributes m_-
width and m_height determine the shape of the frame rectangle. There are two constructors:
the default constructor creates an empty frame (m_height and m_width both zero with an
empty m_frame str)), while the method on line 14 allows construction of a frame with
an initial string of characters and a given width and height. Frames know how to draw
themselves at a given position with a given color, via draw (). Most of the rest of the Frame
methods allow getting and setting the attributes.

Listing 4.116: Frame.h

#include <string>

class Frame {

private:
int m_width; // Width of frame.
int m_height; // Height of frame.

std::string m_frame_str; // All frame characters stored as string.

public:
// Create empty frame.
Frame () ;

// Create frame of indicated width and height with string.
Frame (int new_width , int new_height, std::string frame_str) ;

// Set width of frame.
void setWidth (int new_width);

// Get width of frame.
int getWidth () const;

// Set height of frame.
void setHeight (int new_height);

// Get height of frame.
int getHeight () const;

// Set frame characters (stored as string).
void setString(std::string new_frame_str);

// Get frame characters (stored as string).
std::string getString () const;

// Draw self, centered at position (x,y) with color.
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int draw(Vector position, Color color) const;




N

4.12. Resource Management 156

:aat}; J

Most of the Frame methods are straightforward getters/setters, except for draw(),
shown as pseudo code in Listing 4.117.

Listing 4.117: Frame draw()

// Draw self, centered at position (x,y) with color.
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int Frame::draw(Vector position, Color color) const;

// Error check empty string.

if frame is empty then
return error

end if

// Determine offset since centered at position .
x_offset = frame.getWidth() / 2
y_offset = frame.getHeight () / 2

// Draw character by character.
for y = 0 to m_height -1
for x = 0 to m_width-1
Vector temp_pos(position.getX() + x - x_offset,
position.getY() + y - y_offset);
DM.drawCh(temp_pos, m_frame_str [y*m_width + x], color)
end for // z
end for // y

The first block of code starting on line 5 checks if the Frame is empty to avoid subsequent
parsing errors. This can be checked with the empty () method call on the Frame string (m_-
frame_str) and, if true, an error (-1) is returned.

Subsequently, the method computes the x and y offsets since the frame is always drawn
centered at the position.

The bulk of the method iterates through the frame characters one by one, drawing them
on the screen by calling DisplayManager drawCh() with the appropriate (x,y) position,
character and color.

4.12.2 The Sprite Class

Sprites are sequences of frames, typically rendered such that if a sequence is drawn fast
enough, it looks animated to the eye. The Sprite class in Dragonfly is primarily a repository
for the Frame data, and that knows how to draw one frame. Sprites do not know what the
display rate should be for the frames for animation nor do they keep track of the last frame
that was drawn — that functionality is tracked by the Animation class. Sprites record the
dimension of the Sprite (typically, the same dimension of the Frames), provide the ability to
add and retrieve individual Frames, and give a method to draw a Frame. A Sprite sequence
may look like the example in Listing 4.118.

Listing 4.118: Sprite sequence example

s

Ye

5
s



16

19

4.12. Resource Management 157

/____\ /___o\ /__o_\ /_o__\ /o___\

The Sprite class header file is shown in Listing 4.119. The class needs Frame.h as well as
<string>. The attributes m_width and m_height typically mirror the sizes of the frames
composing the sprite. The frames themselves are stored in an array, m_frame[], which is
dynamically allocated when the Sprite object is created. In fact, the default constructor,
Sprite(), is private since it cannot be called — instead, Sprites must be instantiated
with the maximum number of frames they can hold as an argument (e.g., Sprite(5)). This
maximum is stored in m_max_frame_count, while the actual number of frames is stored in
m_frame_count. The color, which is the color of all frames in the sprite, is stored in m_color.
Each sprite can be identified by a text label, m_label — for example, “ship” for the Hero’s
sprite in Saucer Shoot (Section 3.3).

In the normal course of animation, drawing proceeds sequentially through all the frames
in a sprite until the end, then loops. By default, a sprite frame is advanced sequentially
each game loop (so, 30 frames per second). However, for many animations, this will be too
fast. In order to slow down the animation, the attribute m_slowdown provides a slowdown
rate. For example, a slowdown of 5 would mean the animation is only advanced by 1 frame
for every 5 steps of the game loop. A slowdown of 1 means no slowdown, and a slowdown
of 0 has a special meaning, to stop the animation altogether.

Most of the methods are to get and set the attributes, with addFrame () putting a new
frame at the end of the Sprite’s m_frame array.

Listing 4.119: Sprite.h

// System includes.
#include <string>

// Engine includes.
#include "Frame.h”

class Sprite {

private:

int m_width; // Sprite width .

int m_height; // Sprite height.

int m_max_frame_count; // Maz number frames sprite can have.

int m_frame_count; // Actual number frames sprite has.

Color m_color; // Optional color for entire sprite.

int m_slowdown; // Animation slowdown (1=no slowdown , O=stop).
Frame *m_frame; // Array of frames.

std::string m_label; // Text label to identify sprite.

Sprite(); // Sprite always has one arg, the frame count.
public:

// Destroy sprite, deleting any allocated frames.

~“Sprite();

// Create sprite with indicated mazimum number of frames.
Sprite(int max_frames) ;

// Set width of sprite.



4.12. Resource Management 158

g

void setWidth (int new_width);

// Get width of sprite.
int getWidth () const;

// Set height of sprite.
void setHeight (int new_height);

// Get height of sprite.
int getHeight () const;

// Set sprite color.
void setColor (Color mnew_color) ;

// Get sprite color.
Color getColor () const;

// Get total count of frames in sprite.
int getFrameCount () const;

// Add frame to sprite.
// Return —1 if frame array full, else 0.
int addFrame (Frame new_frame) ;

// Get next sprite frame indicated by number.
// Return empty frame if out of range [0, m_frame_count —1].
Frame getFrame (int frame_number) const;

// Set label associated with sprite.
void setlLabel(std::string new_label);

// Get label associated with sprite.
std::string getLabel() const;

// Set animation slowdown value.
// Value in multiples of GameManager frame time.
void setSlowdown (int new_sprite_slowdown) ;

// Get animation slowdown value.
// Value in multiples of GameManager frame time.
int getSlowdown () const;

// Draw indicated frame centered at position (z,y).
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int draw(int frame_number, Vector position) const;

The Sprite constructor is shown in Listing 4.120. The width, height and frame count

are initialized to zero. The m_frame array is allocated by new to the indicated size. Like all
memory allocation, this should be checked for success — if the needed memory cannot be
allocated (not shown), an error message is written to the logfile and the maximum frame
count is set to 0. The Sprite should initially have the default color, COLOR_DEFAULT, as
defined in Color.h (Listing 4.74 on page 115).




4.12. Resource Management 159

Listing 4.120: Sprite Sprite()

// Create sprite with indicated maximum number of frames.
Sprite::Sprite(int max_frames)

set m_frame_count to O

set m_width to O

set m_height to O

m_frame = new Frame [max_frames]

set max_frame_count to max_frames

set m_color to COLOR_DEFAULT

The Sprite destructor is shown in Listing 4.121. The only logic the destructor has is
to check if frames are actually allocated (frame is not NULL) and, if so, delete the frame
array.

Listing 4.121: Sprite ~Sprite()

// Destroy sprite, deleting any allocated frames.
Sprite::~Sprite()
if m_frame is not NULL then
delete [] m_frame
end if

Once a Sprite is created, frames are typically added to it one at a time until the entire
animation sequence has all been added. Pseudo code for Sprite addFrame (), which adds
one Frame, is shown in Listing 4.122. The method first checks if the frame array (m_frame)
is filled — if so, an error is returned. Otherwise, the new frame is added and the frame count
is incremented. Remember, as in all C4++ arrays, the index of the first item is 0, not 1.

Listing 4.122: Sprite addFrame()
// Add a frame to the sprite.

// Return —1 if frame array full, else 0.
int Sprite::addFrame (Frame new_frame)
if m_frame_count is m_max_frame_count then // Is Sprite full?
return error
else
m_frame[m_frame_count] = new_frame
increment m_frame_count
end if

Sprite getFrame () is shown in Listing 4.123. The first block of code checks if the frame
number is outside of the range [0, m_frame_count-1] — if so, am empty frame is returned.
Otherwise, the frame at the index indicated by frame number is returned.

Listing 4.123: Sprite getFrame()

// Get next sprite frame indicated by number.
// Return empty frame if out of range [0, m_frame_count —1].
Frame Sprite::getFrame (int frame_number) const

if ((frame_number < 0) or (frame_number >= frame_count)) then
Frame empty // Make empty frame.
return empty // Return it.

end if




4.12. Resource Management 160

f)L return frame[frame_number] J

The Sprite draw() method makes a straightforward call to Frame draw() for the indi-
cated frame and position, using the Sprite m_color. For error checking, make sure frame_-
number is within the Sprite bounds before accessing the frame.

4.12.2.1 Transparency (optional)

In some cases, the characters making up a sprite do not occupy the full extent of their box.
For example, a stick figure will have a bounding box around the whole figure, but there will
be empty regions around the head, under the arms, etc. By default, Dragonfly will draw
such blank spaces, occluding whatever characters may have been drawn below it (e.g., the
background), when it may look better to not draw the blanks. For images, providing this
functionality is typically done by declaring one color to be “transparent” where that color,
wherever found in the image, is not rendered on the window, allowing any underlying image
to be seen instead. For Dragonfly, transparency is done in a similar fashion, with the option
of a character being specified as the transparency character — whenever this character is
part of the sprite frames it is not rendered, thus not occluding any underlying characters.
In order to support drawing with transparency, the Frame draw() method must be refac-
tored as shown in Listing 4.124 (refer to Listing 4.117 on page 156 for the original method).
The refactored draw() method takes an additional parameter indicating the transparent
character, with a default value of 0 (not the character ‘0’) meaning no transparency. Inside
the loops iterating over the frame, before a character is drawn (via drawCh()), it is verified
that either the transparency is not 0 or the character is not the transparent character.

Listing 4.124: Frame extension to support transparency

// Draw self centered at position (z,y) with color.
// Don’t draw transparent characters (0 means none).
// Return 0 if ok, else —1.

// Note: top—left coordinate is (0,0).

int Frame::draw(Vector position, Color color, char transparent) const;

// Draw character by character.
for y = 0 to m_height -1
for x = 0 to m_width-1
if (transparent not defined) or
(str[y*frame.getWidth () + x] != transparent) then

// drawCh normally

end if

The transparency character itself is an attribute of an Sprite. Extensions needed to
the Sprite class are shown in Listing 4.125. Transparency is stored in a char attribute,
m_transparency (set to 0 in the constructor), with methods to get and set it.

Listing 4.125: Sprite class extensions to support transparency

s

Ye

5
s



4.12. Resource Management 161

private:
char m_transparency; // Sprite transparent character (0 if none).

public:
// Set Sprite transparency character (0 means none).
void setTransparency (char new_transparency);

// Get Sprite transparency character (0 means none).
char getTransparency () const;

Lastly, the Sprite draw() method needs to be modified pass in the transparency char-
acter to Frame draw().

The actual transparency character is typically defined in the sprite file (e.g., trans-
parency #). See the ResourceManager code (Section 4.12.3) for parsing sprite files, adding
in the ability to handle an optional transparency character.

4.12.3 The ResourceManager

With data structures for frames and sprites in place, a manager to handle resources is needed
— the ResourceManager. The ResourceManager is a singleton derived from Manager, with
private constructors and a getInstance() method to return the one and only instance
(see Section 4.2.1 on page 55). The header file, including class definition, is provided in
Listing 4.126.

The ResourceManager constructor should set the type of the Manager to “Resource-
Manager” (i.e., setType ("ResourceManager") and initialize all attributes.

Listing 4.126: ResourceManager.h

// System includes.
#include <string>

// Engine includes.
#include " Manager.h"
#include " Sprite.h”

// Mazimum number of unique assets in game.
const int MAX_SPRITES = 500;

class ResourceManager : public Manager {
private:
ResourceManager () ; // Private (a singleton).
ResourceManager (ResourceManager const&); // Don’t allow copy.
void operator=(ResourceManager const&); // Don’t allow assignment.
Sprite *m_p_sprite [MAX_SPRITES]; // Array of sprites.
int m_sprite_count; // Count of number of loaded sprites.
public:

// Get the ome and only instance of the ResourceManager.
static ResourceManager &getInstance ();

// Get ResourceManager ready to manager for resources.




4.12. Resource Management 162

g

int startUpQ);

// Shut down ResourceManager , freeing up any allocated Sprites.
void shutDown () ;

// Load Sprite from file.

// Assign indicated label to sprite.

// Return 0 if ok, else —1.

int loadSprite(std::string filename, string label);

// Unload Sprite with indicated label.
// Return 0 if ok, else —1.
int unloadSprite (std::string label);

// Find Sprite with indicated label.
// Return pointer to it if found, else NULL.
Sprite *getSprite(std::string label) const;

The ResourceManager uses strings for labels so needs #include <string>. In addi-

tion, it inherits from Manager.h and has methods and attributes to handle Sprites, so also
#includes Sprite.h.

The ResourceManager stores Sprites in an array of pointers (the attribute m_p_sprite[]),

bounded by MAX_SPRITES.

Media files, such as sprite files but also jpeg, wmv and mp3 files, typically have three

parts: 1) a header that contains key parameters for the media file, such as number of frames
and playback rate, 2) a body that had the media data, often with delimiter tags, and 3) a
footer with any final wrap-up information.

Listing 4.127: Saucer sprite file

5)
6
2
4
green
/oo \
/___o\
/o \
/_o__\
Jo___\

Listing 4.127 shows an example of a sprite file for the Saucer in the Dragonfly tutorial.

The first four lines (with numbers) and the line right after the numbers (saying “green”)
are the header, containing information needed to animate the sprite. The meaning of the
header lines are as follows:

1. Frames - the number of frames in the sprite.



4.12. Resource Management 163

2. Width - the width of the sprite frames.
3. Height - the height of the sprite frames.
4. Slowdown - the number of frames to “pause” between frame animations.

5. Color - the Dragonfly color (a string).

The lines following the header are the body with contents for the sprite frames. The
width of each of the body lines is the same as the number on line 2 in the header (the
width parameter, 6 in Listing 4.127). The number of lines for each frame is specified by the
number on line 3 in the header (the height parameter, 2 in Listing 4.127). The lines are
combined to makeup the frame, with the total frames specified by the number on line 1 in
the header (the frames parameter, 5 in Listing 4.127).

Note, sprite files using this format are provided for most of the sprites in the Dragonfly
Saucer Shoot tutorial. They are available for download with versions of the game (e.g.,
https://dragonfly.wpi.edu/tutorials/saucer-shoot/game-final.zip) and from the
book web page (https://dragonfly.wpi.edu/book/sprites.zip), available under the
sprites-simple/ directory.

Tip 18! File input in C++4-. There are many ways to read from a file in C++.
One example of reading from a text file (such as a Sprite file) is in Listing 4.128.
The sample code treats the file as an ifstream, using getline() to read the file
a line at a time. Note, the function getline() automatically removes the newline
(“\n’) delimiter. After each line is read, it is added to a vector (data) via the method
push back() - this is not strictly needed for just reading from a file, but is useful
when the file data is later parsed (e.g., as is a sprite file). The method good() is
true if the file still has data (and there are no other file errors) — when the end of
the file is reached, good () returns false.

Listing 4.128: Example of file input

// Exzample of reading text file.
// Read ome line at a time, writing each line to stdout.
#include <iostream>

3| #include <fstream>

#include <string>

using std::cout;
using std::endl;

int main () {
std::string line;
std::ifstream myfile (" example.txt");
std::vector<std::string> data;

// Open file.

‘«:’{.,




15
16

19

10

4.12. Resource Management 164

if (myfile.is_open()) {

// Repeat until end of file.
while (myfile.good()) {

getline(myfile, line); // Read line from file.
data.push_back (line); // Add line to wvector.
cout << line << endl; // Display line to screen.

}

// Close file when done.
myfile.close () ;

} else

// If here, wunable to open file.
cout << "unable to open file” << endl;

4.12.3.1 Loading Sprites

The method startUp() gets the ResourceManager ready for use — basically, just setting
m_sprite_count to 0 and calling Manager: :startUp().

The method loadSprite() reads in a sprite from a file indicated by filename, stores
it in a Sprite and associates a label string with it. The method unloadSprite() unloads a
Sprite with a given label from memory, freeing it up. The method getSprite () returns a
pointer to a Sprite with the given label.

The ResourceManager loadSprite () is shown in Listing 4.129. The name of the sprite
file is passed in as a string (filename), along with a string with the label name to associate
with the sprite once it is successfully loaded (label).

Listing 4.129: ResourceManager loadSprite()

// Load Sprite from file.
// Assign indicated label to sprite.
// Return 0 if ok, else —1.

int ResourceManager ::loadSprite(std::string filename, std::string label)

// Check if room in array.

if m_sprite_count is MAX_SPRITES then // Sprite array full?
return error

end if

open file

// Read sprite Header.
Get first line from file

frames = atoi() on 1line
get second line from file
width = atoi() on 1line

get third line from file
height = atoi() on line




=

W N

SIS

W oW W W W W W W N

AR R R R R R A A A W oW
© 00 N O kR W N O © w9

4.12. Resource Management 165

get fourth line from file

slowdown = atoi() on line

get fifth line from file

if line is " black” then
color = BLACK

else if line is "red” then
color = RED

end if

// Make new Sprite.

new Sprite (with frame count)
set sprite height

set sprite width

set sprite slowdown
set sprite color

// Read and add frames to Sprite.
for £f = 1 to frame count
create empty string
for h = 1 to height
get line from file
append line to string
end for
set frame string to string
set frame height
set frame width
add frame to Sprite
end for

close file

// If no errors in any of above, add to resource manager.
add label to Sprite

m_p_sprite[m_sprite_count] = p_sprite

increment m_sprite_count

return ok

The method starts by opening the file indicated by filename. After that, all the lines
in the header are read in and parsed one by one, lines 13 to 27. Once the number of frames
is known from the header, on line 30 a new Sprite is created (e.g., if the sprite has 5 frames,
then new Sprite(5)). Then, the method loops for each frame (starting on line 37), reading
each line and adding it to the frame string (lines 39 to 42). When a complete frame is
read in, the frame attributes are set (lines 43 to 45) and the frame is added to the Sprite
(line 46). When the specified (in the header) number of frames are read in, the file is closed.
Assuming everything above went well, the final steps from line 52 are to: 1) associate label
with the Sprite, 2) add the Sprite to the m_p_sprite array, and 3) increase m_sprite_count.

Note, error checking should be done throughout, checking header information, (e.g.,
header lines corresponding to expected parameters), length of lines (e.g., body lines ex-
actly as long as the frame width), number of lines (e.g., exactly enough for the specified
number of frames, each the specified height), and general file read errors. If any errors are

-

‘Oﬁﬁ,‘
.
* 0\




N =

4.12. Resource Management 166

encountered, the line number in the file where the error occurred should be reported along
with a descriptive error in the logfile. Listing 4.130 shows an example of a possible error
message. In this example, line 12 of the file has “/o___\ 7 which is 7 characters (there is
an extra ‘ ’ at the end, a common error), while the header had indicated the width was only
6. Making the error message as descriptive as possible is helpful to game programmers to
help “debug” their sprite files. Upon encountering an error, all resources should be cleaned
up (i.e., delete the Sprite and close the file), as appropriate.

Listing 4.130: Example error reported when parsing Sprite file

Loading 'explosion’' from file 'sprites/explosion—spr.txt’.
Error line 12. Line width 7, expected 6.

Line is: "/o___\ "

Sprite 'explosion’ not loaded.

Dragonfly can run on Windows, Linux or Mac computers. Unfortunately, text files are
treated slightly differently on Windows versus Linux and Mac. In Windows text files, the
end of each line has a newline (‘\n’) character and a carriage return (‘\r’) character, while
in Unix and Magc, the end of each line only has a newline character. In order to allow
Dragonfly to work with text files created on any of the three operating systems, pseudo
code for an optional utility, discardCR(), is shown in Listing 4.131. A string, typically
just read in from a file, is passed in via reference (&str). The function examines the last
character of this string and, if it is a carriage return, it removes it via str.erase().

Listing 4.131: discardCR() (optional)

ol // Remove the carriage return (‘\r’) from line

1
2

3
4
5

N

oA W

// (if there — typical of Windows).
void discardCR(std::string &str)
if str.size() > 0 and str[str.size()-1] is '\r' then
str.erase(str.size() - 1)
end if

Once in place, discardCR() can be called each time after reading a line from a file.

The complement of loadSprite() is unloadSprite(), which is much simpler. un-
LoadSprite() is shown in Listing 4.132. The method loops through the Sprites in the
ResourceManager. If the label being looked for (label) matches the label of one of the
Sprites (getLabel()) then that is the Sprite to be unloaded. The Sprite’s memory is
deleted via delete. Then, in a loop starting on line 11, the rest of the Sprites in the array
are moved down one. Since one Sprite was unloaded, the sprite count is decremented on
line 11. If the loop terminates without a label match, the sprite to be unloaded is not in
the ResourceManager and an error is returned.

Listing 4.132: ResourceManager unLoadSprite()
// Unload Sprite with indicated label
// Return 0 if ok, else —1.
int ResourceManager ::unloadSprite (std::string label)

for i = 0 to m_sprite_count-1

if label is m_p_sprite[i] -> getLabel() then

s

Ye

5
s




4.12. Resource Management 167

delete m_p_sprite[il]

// Scoot over remaining sprites.

for j = i to m_sprite_count -2
m_p_spritel[j] = m_p_sprite[j+1]
end for

decrement m_sprite_count
return ok
end if
end for

return error // Sprite not found.

The final method needed by the ResourceManager is getSprite(), with pseudo code
show in Listing 4.133. The method loops through all the Sprites in the ResourceManager.
The first Sprite that matches the label label is returned. If line 10 is reached, the label
was not found and an error (NULL) is returned.

Listing 4.133: ResourceManager getSprite()

// Find Sprite with indicated label.
// Return pointer to it if found, else NULL.
Sprite *ResourceManager ::getSprite(std::string label) const

for i = 0 to m_sprite_count-1
if label is m_p_sprite[i] -> getLabel () then
return m_p_sprite[i]
end if
end for

return NULL // Sprite not found.

Lastly, ResourceManager shutDown(), shown in Listing 4.134 frees up any allocated
Sprites by iterating through the m_p_sprite array and calling delete on each. After that,
it sets the array count to zero and calls Manager: : shutDown ().

Listing 4.134: ResourceManager shutdown()

// Shut down manager, freeing up any allocated assets.
void ResourceManager ::shutDown ()
for i = 0 to m_sprite_count-1
if m_p_sprite[i] not NULL then
delete m_p_sprite[i]
end if
end for

set m_sprite_count to O

call Manager ::shutDown ()




N

s w

4.12. Resource Management 168

4.12.3.2 Sprites with Robust Formatting (optional)

The trouble with the sprite file format as it is currently specified is that it is not very
forgiving of errors for the artists that created the sprites. The header numbers (e.g., width
and height) have to be specified in ezactly the right order (e.g., not height and then width)
or the sprite will not parse properly, but there are no keywords or guides to help the artist
“debug” their sprite files when they create them. In short, the file format is “brittle”.
While this makes the code to parse sprite files easier, and hence is used for the initial
implementation, a more “robust” format for creating sprites can help facilitate the art-
game production pipeline.

See the Dragonfly tutorial for an example of a sprite file with a “robust” format.

For robust Dragonfly sprite files, the delimiters are indicated with all caps (e.g., HEADER)
in order to make creating and parsing sprite files easier. For parsing code, HEADER, BODY,
and FOOTER are used to deliminate the header, body and footer of the sprite, respectively. In
the header, the keywords frames, height, width, slowdown, and color define parameters
for the sprite. The header parameters can be in any order. In the body, end is used to mark
the end of each frame. In the footer, version is used to indicate sprite version information.

To provide support for sprites with robust formatting, add the consts in Listing 4.135
to the ResourceManager header file. These are delimiters used to parse the sprite files — the
ResourceManager “understands” the file format and uses the delimiters as tokens during
parsing.

Listing 4.135: ResourceManager.h extensions to support a robust sprite format

// Delimiters used to parse Sprite files —
// the ResourceManager ‘knows’ file format.

const std::string HEADER_TOKEN = "HEADER";

const std::string BODY_TOKEN = "BODY";

const std::string FOOTER_TOKEN = "FOOTER”;

const std::string FRAMES_TOKEN = "frames”;

const std::string HEIGHT_TOKEN = " height”;

const std::string WIDTH_TOKEN = "width";

const std::string COLOR_TOKEN = "color”;

const std::string SLOWDOWN_TOKEN = "slowdown";
)| const std::string END_FRAME_TOKEN = "end”;

const std::string VERSION_TOKEN = "version”;

Then, a re-factored version of the ResourceManager loadSprite() is shown in List-
ing 4.136.

Listing 4.136: ResourceManager loadSprite()

// Load Sprite from file.

// Assign indicated label to sprite.

// Return 0 if ok, else —1.

int ResourceManager ::loadSprite(std::string filename, std::string label)

open file filename

read all header lines // header has sprite format data
parse header

s

Ye

5
s}




10
11
12
14
15
16

17

19
20
21
22
23
24
25

26

4.12. Resource Management 169

read all body lines // body has frame data
new Sprite (with frame count)
set sprite height
set sprite width
set sprite slowdown
set sprite color
for £f = 1 to frame count
parse frame
add frame to Sprite
end for

read all footer lines // footer has sprite wversion
parse footer

close file

// If no errors in any of above, add to resource manager.
add label to Sprite

m_p_sprite[m_sprite_count] = p_sprite

increment m_sprite_count

The method proceeds by opening the file indicated by filename. After that, all the
lines in the header are first read in and then parsed. Once the number of frames is known
from the header, on line 11 a new Sprite is created (e.g., if the sprite has 5 frames, then
new Sprite(5)). Then, the method reads in all the lines in the body, and parses them as
frames, one frame at a time. Each frame is added to the Sprite as it is parsed. When the
specified (in the header) number of frames are read in, all the lines in the footer are read
in and then parsed. Assuming everything above went well, the final steps from line 27 are
to: 1) associate label with the Sprite, 2) add the Sprite to the m_p_sprite array, and 3)
increase m_sprite_count.

Note, as for the simple format, error checking should be done throughout, looking at
file format, length of line, number of lines, frame count and general file read errors. If
any errors are encountered, the line number in the file should be reported along with a
descriptive error in the logfile.

Coding the loadSprite () method is much easier with a few “helper” functions, shown
in Listing 4.137.

Function getLine () reads a single line from a file and does some error checking.

Function readData() reads a section (e.g., the body, recognized by the delimiter, such
as BODY) from the sprite file and stores each line in a vector for later parsing. And error is
indicated (an empty vector is returned) of the section beginning and end is not found.

Function matchLineInt () matches a specified token from the vector (a sprite file sec-
tion), returning the associated integer value. For example, the line “frames 57 called with
a tag of “frames” would return the integer “5”. Lines that match are removed from the
vector.

Function matchLineStr() does the same thing, but returning associated string found.
For example, the line “color green” called with a tag of “color” would return the string
“green”).

Function matchFrame () reads a frame of a given width and height from a file, returning
the Frame. The used frame lines are removed from the vector.

s

Ye

5
s




4.12. Resource Management 170

All functions should report any parsing errors in the logfile. None of these methods are
part of the ResourceManager, but rather are stand alone utility functions. They are not
general engine utility functions either (i.e., it is unlikely a game programmer would ever use
them), so do not really belong in utility.cpp. Instead, they can be placed directly into
ResourceManager. cpp.

Listing 4.137: ResourceManager helper functions for loading sprites

»

// Get next line from file , with error checking (
std::string getlLine(std::ifstream *p_file);

means error).

// Read in next section of data from file as wvector of strings.

// Return wvector (empty if error).

std::vector<std::string> readData(std::ifstream xp_file,
std::string delimiter);

// Match token in wvector of lines (e.g., ”frames 57).

// Return corresponding wvalue (e.g., 5) (=1 if not found).

// Remove any line that matches from wvector .

int matchLinelInt (std::vector<std::string> *p_data, const char *token);

// Match token in wvector of lines (e.g., 7color green”).
// Return corresponding string (e.g., 7green”) (77 if not found).
// Remove any line that matches from vector.

j| std::string matchLineStr (std::vector<std::string> *p_data, const char x*

token) ;

// Match frame lines until "end”, clearing all from wvector.
// Return Frame.
Frame matchFrame (std::vector<std::string> *p_data, int width, int height);

Function getLine () is shown in Listing 4.138. The function reads one line from the file
into the string line. The code also needs to #include the fstream header file. Note, error
checking (m_p_file -> good() is done to catch any file input errors.

Listing 4.138: getLine()

// Get next line from file , with error checking (
std::string getLine(std::ifstream *p_file)

77 means error).

string line

getline (*p_file, line)

if not (p_file -> good()) then
return error

end if

return line

Function readData() is shown in Listing 4.139. The function takes in a token that is
used to delimit the section of the sprite file (i.e., HEADER, BODY, FOOTER) and the file
to be read from. It then pulls all the lines from the file using the delimiter to mark the
beginning and end, storing the “good” lines as data in an std::vector. That vector is
returned. Errors are checked for missing the delimiter beginning or end and file errors.




4.12. Resource Management 171

Listing 4.139: readData()

ol // Read in next section of data from file as wvector of strings.
1| // Return wvector (empty if error).

2| std::vector<std::string> readData(std::ifstream x*p_file,

3 std::string delimiter)

"

5 beginning = "<
6 ending = "</” + delim +

" "

+ delim +

> // Section beginning
>" // Section ending

8 // Check for beginning.

9 s = getLline ()

10 if s not equal beginning then
11 return error

12 end if

14 // Read in data until ending (or not found).

15 s = getLline ()

16 while (s not equal ending) and (not s.empty()) do
17 push_back(s) onto data

18 s = getLline ()

19 end while

21 // If ending mnot found, then error.
22 if s.empty() then

23 return error
24 end if

25

26 return data

Function matchLineInt () is shown in Listing 4.140. The function examines the data
vector one line at a time, looking for a match of the indicated token. The match on Line 9
can be made using compare(), — e.g.,

({ i -> compare(0, strlen(token), token) ]

If the token is the one expected, the remainder of the string after the token is converted on
Line 10 into an integer using atoi() — e.g.,

({ atoi(line.substr(strlen(token)+1).c_str()) ]

The number extracted with atoi() is returned.

Listing 4.140: matchLinelnt()

ol // Match token in wvector of lines (e.g., "frames 57).

1| // Return corresponding wvalue (e.g., 5) (=1 if not found).
2| // Remove any line thal matches from wvector.

3l int matchLineInt (std::vector<std::string> *p_data,

4 const char *token)

6/ // Loop through all lines.

71 auto i = p_data -> begin() // wector iterator
8 while i not equals p_data -> end()

9 if i equals token then

10 number = atoi() on line.substr ()




4.12. Resource Management 172

11 i = p_data -> erase(i) // clear from wvector
12 else

13 increment i

14 end if

15 end while
16
17 return number

The same logic is used for matchLineStr () with the exception that the final string after
the token is not converted to an integer, but is instead just returned (e.g., line.substr(
strlen(token) + 1 )).

The method matchFrame() is shown in Listing 4.141. The function is provided the
height of the frame via the height parameter. So, using a for loop, the function loops for
a count of the height of the frame, handling a line at a time. Each line represents one row
of the frame. If any line is not the right width (also passed in as a parameter, via width),
an error is returned in the form of an “empty” Frame. If the frame is read in successfully,
an additional line is handled, shown on line 20. Since the frame is over, this line should be
END_FRAME_TOKEN (“end”), otherwise there is an error in the file format.

Errors of any kind should result in an error code (empty Frame) returned by the function.
If line 26 is reached, the frame has been read and parsed successfully, so a Frame object
containing the frame is created and returned. The line number should be used to report
(in the logfile) where any errors occurred in the input file, and should be appropriately
incremented as the parsing progresses.

Listing 4.141: matchFrame()

ol // Match frame lines wuntil "end”, clearing all from wector.
1| // Return Frame (empty if error).
2| Frame matchFrame (std::vector<std::string> *p_data, int width, int height)

string line, frame_str

6 for h = 1 to height

8 line = p_data -> front()

9

10 if line width != width then
11 return error

12 end if

14 p_data -> erase(p_data->begin())
16 frame_str += line

18 end for
19
20 line = p_data -> front()

21 if line is not END_FRAME_TOKEN then
22 return error

23 end if

24 p_data -> erase(p_data->begin())

26 create frame (width, height, frame_str)




28

4.12. Resource Management 173

return frame

With robust sprite formatting in place, it can be convenient for Dragonfly to support
both the original simple sprite file format as well as the robust sprite file format. A technique
that can “auto-detect” whether a sprite file is in the simple format or the robust format is
shown in Listing 4.142. Basically, the first line of the file is read. If this line is the string
“HEADER,”, it is assumed the file has a robust sprite file format and loading proceeds
assuming this format. Otherwise, it is assumed the file has a simple sprite file format. In
this (simple) case, the first line should be an integer (the number of frames), so the line
is converted to a number (using atoi()) and checked. If the number is not a positive, an
error is indicated — the file may not be a sprite file at all.

Listing 4.142: Auto-detecting sprite file format.

get line from file

if line is "<HEADER>" then
loadRobustSprite ()

else if atoi() on line > 0
loadSimpleSprite ()

else
error // unknown format

end if

4.12.4 Development Checkpoint #8!

Continue Dragonfly development. Steps:

1. Make the Frame class, referring to Listing 4.116. Add Frame.cpp to the project and
stub out each method so it compiles. Implement and test the Frame class outside of
any game engine components, making sure it can be loaded with different strings and
frame dimensions.

2. Implement the Frame draw(), referring to Listing 4.117. Test with a variety of Frames
and positions outside of an actual Sprite or game Object.

3. Make the Sprite class, referring to Listing 4.119. Add Sprite.cpp to the project and
stub out each method so it compiles. Code and test the simple attributes first (ints
and label).

4. Implement the constructor Sprite(int max frames) next, allocating the array. Im-
plement addFrame () based on Listing 4.122 and getFrame () based on Listing 4.123.
Test that you can create Sprites of different numbers of frames and add individual
Frames to them. Be sure the upper limit on frame count is protected. Testing should
be done outside of the other engine components, and Frames can be arbitrary strings
at this point.

s

Ye

5
s




4.12. Resource Management 174

5. Implement the Spritedraw() and test with a variety of Sprites (use those from Chap-
ter3 — Saucer Shoot), again still outside of a game Object.

6. Make the ResourceManager, as a singleton (described in Section 4.2.1 on page 55),
referring to Listing 4.126. Add ResourceManager.cpp to the project and stub out
each method so it compiles.

7. Implement loadSprite () referring to Listing 4.129. For testing, sprites with a simple
format can be made from the Sprite files from Saucer Shoot by keeping the line
orders the same, but removing all keywords (e.g., “width”, “height” and “end”). Test
thoroughly. Purposefully introduce errors — to the headers (e.g., count, number),
body (frame data), and footer — and verify that all errors are caught and helpful error
messages reported in the logfile on the right lines.

8. Implement getSprite() based on Listing 4.133 and unloadSprite() based on List-
ing 4.132. Test each method thoroughly. Write test code that uses all the Resource-
Manager methods, loading a Sprite, getting frames, and unloading a Sprite. Repeat
for multiple sprites.

s

Ye

5
s



