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4.10 Kinematics

Kinematics is the physics that describes the motion of objects without taking into account
forces or masses. In relation to our engine, up until now, moving an object has to be done
in game code with the game programmer writing code to move an game object each step
event. For example, if a Saucer needs to move, say 1 space to the left every 4 steps (0.25
spaces per step), when the Saucer receives the step event in the eventHandler (), it moves,
as in Listing 4.98.

Listing 4.98: Saucer movement without velocity support

// Move 0.25 spaces per step.
int Saucer::eventHandler (const df::Event *p_e) override {
if (p_e->getType() == df::STEP_EVENT) {
df ::Vector pos = getPosition();
pos.setX(pos.getX() - 0.25);
setPosition (pos) ;
return 1; // Event handled.
}
return 0; // Event not handled.
}

While this can work, all of it can be tedious for a game programmer and prone to errors.
Fortunately, a significant service provided by most game engines, including Dragonfly, is
moving game objects automatically, in the right direction at the right speed. This allows a
game programmer to provide a game object with a velocity and have the object move an
appropriate amount in an appropriate direction each game step.

To support this, Object is extended with additional attributes for velocity, shown in
Listing 4.99 — namely m_direction as a vector and m_speed as a float, initialized to (0,0)
and 0, respectively, in the Object constructor. They can be set by normal getters and
setters.

Listing 4.99: Object extensions to support kinematics

private:

Vector m_direction; // Direction vector.

float m_speed; // Object speed in direction.
public:

// Set speed of Object.
void setSpeed(float speed);

// Get speed of Object.
float getSpeed () const;

// Set direction of Object.

void setDirection (Vector new_direction);

// Get direction of Object.

Vector getDirection () const;

// Set direction and speed of Object.
void setVelocity (Vector new_velocity);
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20 // Get wvelocity of Object based on direction and speed.
21 Vector getVelocity () const;

23 // Predict Object position based on speed and direction .
24 // Return predicted position .
25 Vector predictPosition ()

In addition, getting and setting the Object velocity is done via getVelocity() and
setVelocity (), respectively, which use Vector operations scale() and normalize() (see
Listing 4.28 on page 77 and Listing 4.29 on page 78), as appropriate. Specifically: a) speed
is just the magnitude of the velocity, a float, b) direction is the normalized velocity, a vector,
and c) velocity is the direction scaled by the speed. So, with the developed Vector methods:

of // Set speed and direction based on wvelocity.
speed = velocity.getMagnitude ()
direction = velocity.normalize ()

// Set welocity based on speed and direction.
5 velocity = direction
6 velocity.scale(speed)

The real magic happens in an Object support method — one that computes where an
Object will be after a game loop’s worth of velocity is added, but without actually moving it.
This method, called predictPosition(), is shown in Listing 4.100. Basically, it indicates
where an Object will be after it moves given the speed and direction attributes (i.e., the
velocity)*.

Listing 4.100: Object predictPosition()

// Predict Object position based on speed and direction .
// Return predicted position .
Vector Object::predictPosition ()

AW N =

// Add velocity to position .
5 Vector new_pos = m_position + getVelocity ()

71 // Return new position .
8| return new_pos

Once support for velocities is in the Object class, the WorldManager needs to be updated
to use it. This is done by adding functionality to the update () method (see Section 4.5.6.2
on page 104). Listing 4.101 shows the necessary pseudo code.

Listing 4.101: WorldManager extensions to update() to support kinematics

// Update Object positions based on their wvelocities.

// Iterate through all Objects.
for i = 0 to m_updates count

=W N =

* Did you know (#7)7 Much like humans, dragonflies use predictive models to intercept prey. — David
Shultz. “Watch: A Dragonfly Predicts the Movements of Its Prey”, Science Magazine, December 10, 2014.
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// Add wvelocity to position .
Vector new_pos = m_updates[i] -> predictPosition ()

// If Object should change position , then move.

if new_pos != getPosition () then
moveObject () to new_pos
end if

end for // End iterate.

Basically, update () iterates through all Objects. For each, it calls predictPosition()
to check if the Object should move or not. If so, it moves the object by calling moveObject ().
The functionality inside moveObject () is discussed in the next section, Section 4.10.1.

Using velocity support in Dragonfly for the game programmer is easy. Instead of a
game object having to move itself by handling every step event in the eventHandler () and
determining when and where to move, the game programmer can just set the speed and
direction for game objects (derived from the Object class, of course). For example, for a
Saucer traveling right to left across the screen, the programmer sets the speed and direction
(or setting the velocity) of the Object, as in Listing 4.102. There is no longer a need for a
game object to handle the step event for moving.

Listing 4.102: Saucer movement with velocity support

// Set movement left 1 space left every 4 frames.
setSpeed (0.25) ;
setDirection (df ::Vector (-1.0, 0));

// Note: the above two lines are equivalent to:
setVelocity (df::Vector (-0.25, 0));

Newtonian Mechanics Physics (optional) Velocity support is complete, but could
be enhanced. Possible options could extend the velocity support to include a acceleration
component (another Vector) for each game object. With acceleration, a game object’s
velocity would change slightly (it would accelerate or decelerate according to the direction)
each step. This could be especially useful for providing, say, gravity pulling an avatar down
(a fixed acceleration in the vertical direction) for a platformer game.

While the kinematics in Dragonfly provides support for a lot of games, additional clas-
sical Newtonian physics mechanics include forces and masses. In fact, while acceleration
can simply be added to objects as mentioned in the previous paragraph, in the real world
it is achieved through application of a force on an object through the equation:

F=m-a

where F' is the applied force, m is the object mass and « is the acceleration. Adding a mass
attribute to game objects would be a first step to using forces as a precursor so acceleration
and velocity.

And that is really just the tip of the iceberg. More advanced physics techniques that
could be incorporated into Dragonfly include elastic and non-elastic collisions, rigid body,
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soft body and ragdoll simulation, joints as constraints, and more. The aspiring programmer
is encouraged to check out one of the many books on physics for game engines, such as the
Game Physics Engine Development by Ian Millington [6].

4.10.1 Collisions

A closely related service to moving a game object is detecting when two or more game
objects collide and, when they do, triggering object responses as appropriate. However,
determining when objects collide is not as easy as it may seem:

e Geometries of objects can be complex — square or circular objects are efficient in
terms of computing area (or volume, if 3d) and locations in the game world, but more
complex objects, for example humanoids and trees, take many more computations to
compute exact locations in the game world.

e Objects can be moving fast — objects that move great distances mean there is a larger
area (or volume, if 3d) from the old position to the new position that may result in
potential collisions.

e There can be many objects — the more objects there are, the more opportunities there
are for collisions and the more computations the game engine needs to do each step to
determine if objects collide. A naive solution could take O(n?), meaning every object
(all n of them) is checked for a collision with every other object, so n x n comparisons
are made each step.

There are many possibilities when it comes how to implement to collision detection.
Dragonfly uses what is perhaps the most commonly used technique for games — overlap
testing. Overlap testing is relatively easy, both conceptually (for the game programmer as
well as the game engine programmer) and in terms of implementation. However, it may
exhibit more errors than some other forms of collision. Basically, with overlap testing, when
an game object moves, the engine checks whether or not its area (or volume, if 3d) overlaps
that of any other object. If so, there has been a collision. If not, then the object can move
unimpeded. When a collision has occurred, both game objects get notified of the event.

Despite the advantages (simplicity and speed of execution), overlap testing can fail when
game objects move too fast relative to their size. Consider the game example below where
an arrow is fired at a window. The arrow has a velocity of 15, meaning it moves 15 spaces
horizontally each step.

>——= >——= | >——=

t1 t2 | t3

At time t1, the arrow (>---), moving left to right, approaches the window (|). One
step later, at time #2, the arrow’s velocity moves it 15 spaces to the right and a collision
seems imminent. However, there is not yet an overlap between the arrow and the glass, so
no collision is detected. At time t3, the arrow’s velocity carries it another 15 spaces to the
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right, past the window and as there is still no overlap, no collision is detected. Effectively,
the arrow appears to have gone right through the glass window with breaking it (or even
hitting it)!

There are several possible solutions to this problem. A game programmer, knowing that
the engine is using overlap testing, can put a constraint on game object sizes and speeds
such that the fastest object moves slow enough (per step) to overlap with the thinnest
object. For the example above, the window would need to be 13 spaces thick, the arrow
would need to be 13 spaces long, or the arrow would need to only move 3 spaces per step,
or some combination of the above. While this would ensure the arrow would always hit the
window, it might not be practical for all games (e.g., the arrow speed might be too slow for
other uses and/or the window too thick for the environment).

Another solution is to reduce the step size. The step size dictates how often the game
world is updated. Game programmers want aspects such as the speed of an object to be
relative to real time in terms of how fast the player sees the arrow move across the window,
and not relative to the game step. This means, for example, that a velocity of 1 with a step
frequency of 30 f/s moves 30 spaces per second. If the frequency was doubled, to 60 f/s,
then the game programmer would want to adjust the velocity to be 0.5 so the player still
sees the object move 30 spaces per second. What this will do, however, is make the object
move fewer spaces each step, making it less likely for overlap testing to fail. However, this
comes at a cost — namely, increased computation as the game loop runs more often (in this
example, twice as often), possibly leading to the engine not being able to keep up with the
update rate. *

A more complex solution (incidentally, not supported by Dragonfly) is to have a different
step size for different objects. Thus, fast objects and/or small objects would be updated
more frequently than slow objects. This adds complexity and computation overhead in the
update step, as well, but could be applied selectively.

The overlap test itself is fairly easy to compute with simple volumes, like circles (or
spheres, if 3d). More complex volumes can require more computation. For example, a
humanoid-shaped object and a tree-shaped object may be made up of hundreds or even
thousands of smaller polygons. If every polygon in an object needs to be tested for overlap
with the polygons of every other object to determine if the objects collide, this scales O(n?)
for n polygons per object.

To overcome this, complex geometries are often simplified in order to reduce the num-
ber of comparisons needed. Rather than doing this simplification in the model itself (which
can compromise how it looks), each object can instead be given a bounding volume that
approximates the object. For example, the humanoid-shaped object or a tree can be ap-
proximated by an ellipsoid. For a depiction of this last case, consider the brown, ASCII tree
in Figure 4.3. Computing whether a single character collides with this tree would involve
checking all the nooks and crannies of the branches — effectively examining every character
in the tree for a collision as if each character was a separate object. Instead, the entire tree
can be bound by a simpler shape for computing collisions — in this case, an ellipse, shown
by the dashed oval surrounding the tree. Determining if another object collides with this

* Did you know (#8)7 Adult dragonflies have 6 legs but cannot walk. — “30,000 Facets Give Dragonflies
a Different Perspective: The Big Compound Eye in the Sky”, ScienceBlogs, July 8, 2009.
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Figure 4.3: Object with bounding ellipse

tree is now much simpler, merely computing if it intersects the ellipse. It might be noted
that the oval itself does not fully encompass the tree — some of the branches are poking out.
This would mean that an object could hit those external branches and not collide with the
tree. For many games, this might be just fine and could be preferred over drawing a bigger
ellipse.

Commonly used bounding volumes are circles (or spheres, if 3d) where an overlap test
compares the distances between the centers with the sum of the radii. Another common
bounding volume is a rectangular box, or a bounding boz.'” In Dragonfly, each Object has
a bounding box encompassing the game object, representing the Object with a simplified
geometry.

In Dragonfly, if the edges of any two boxes overlap, there is a collision. A optional
refinement could be to provide an game programmer option for precise collision testing. In
this case, the bounding boxes would be tested for overlap normally. If there was an overlap,
then a more refined test could be done to see if the individual characters in the object sprite
overlapped, indicating a collision. Depicting this, consider the two objects in Figure 4.4 on
the left. The Saucer and the Hero ship are clearly not touching — boxes around each do not
intersect. However, a short time later, the game world state may be as on the right. Here,
the boxes do overlap. Under normal Dragonfly operation, this overlap itself would indicate
a collision. However, looking more closely, the characters themselves do not overlap. So,
an alternative option could be that if the boxes overlap, then more precise consideration of
each character is done to see if there is, in fact, a collision.

Once a collision is detected, action is taken to resolve the collision. What the actions
are, exactly, often depends upon what the game objects are. For example, if two billiard
balls collide, then computation as to where, exactly they hit is done first, followed by
computation of new velocities for both balls, accompanied by playing a “clinking” sound.

"Bounding boxes are also known as hitbozes since they are used to determine if an object is “hit”.
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Figure 4.4: Refined collision detection with boxes

As another example, if a rocket slams into a rock wall, the rocket is destroyed, the wall takes
on a charred texture and an explosion animation object is created. As a third example, a
character walks through an invisible wall, a magic, propagating ripple effect is triggered,
but no velocities or other impacts are recorded.

In Dragonfly, the engine detects collisions through overlap testing of bounding boxes,
then provides a collision event to both Objects involved in the collision. Resolution involves
sending the collision event to both Objects. The Objects themselves receive the event in
their eventHandler () methods and can react appropriately.

4.10.1.1 Collidable Entities

However, not all Objects are collidable entities. Consider display elements on the screen,
such as player score or indication of time left. In most cases, these objects do not collide
with, say, the player avatar. Similarly, background objects that provide scenery, such as the
Stars in Saucer Shoot (Section 3.3), do not collide with other game elements. To support
this, Dragonfly has a notion of “solidness”, with three states defined via an enum, as in
Listing 4.103. This enum is defined in Object.h.

Listing 4.103: Solidness states

enum Solidness {

HARD , // Object causes collisions and impedes.

SOFT, // Object causes collisions , but doesn’t impede.
SPECTRAL, // Object doesn’t cause collisions.

};

Collisions only happen between solid Objects — Objects that are SPECTRAL cannot collide.
So, for example, Saucer Shoot’s Stars are SPECTRAL and not solid. Solid Objects are either
HARD or SOFT. A HARD object cannot occupy the same space as another other HARD Object,
but any number of SOFT Objects can occupy a space, with our without at most one HARD
Object.

In addition to notifying colliding solid (HARD or SOFT) Objects of the event, resolution
then disallows two HARD objects to occupy the same space. Basically, if a first solid Object
moves onto (collides with) a second HARD Object, the first object is moved back to its original
location — the collision still happens, but the movement does not take place.

The Object class extensions needed to support solidness are shown in Listing 4.104.
The attribute solidness determines if the Object is treated as solid (HARD or SOFT) or non-
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solid (SPECTRAL). By default, Objects should be HARD (set in the Object constructor). The
method isS0lid () provides a convenient boolean test for whether or not the Object is solid.
Methods to get and set the solidness are provided in getSolidness() and setSolidness(),
respectively. For setSolidness(), if the new value passed in is one of HARD, SOFT or
SPECTRAL then 0 is returned and the solidness is changed, otherwise -1 is returned and the
solidness is unchanged.

Listing 4.104: Object class extensions to support solidness

private:
Solidness m_solidness; // Solidness of object.
public:
bool isSolid () comnst; // True if HARD or SOFT, else false.

// Set object solidness, with checks for consistency .
// Return 0 if ok, else —1.
int setSolidness (Solidness new_solid);

// Return object solidness.
Solidness getSolidness () const;

4.10.1.2 Collision Event

When Dragonfly detects a collision, it sends a collision event to each Object involved.
Listing 4.105 provides the header file for the EventCollision class, derived from the Event
class (Listing 4.51 on page 96). Like other event classes, the EventCollision is a “container”
and does not have any significant functionality itself. The attributes store information
about the collision: m_pos stores the position where the collision occurred; m_p_obj1l is a
pointer to the Object moving, the one causing collision; and m_p_obj2 is a pointer to the
Object being collided with. Methods are provided to get and set each of the attributes.

Listing 4.105: EventCollision.h

#include " Event.h”
#include " Object.h”

const std::string COLLISION_EVENT = "df::collision”;
class EventCollision : public Event {

private:

Vector m_pos; // Where collision occurred.

Object *m_p_objl; // Object moving, causing collision .
Object *m_p_obj2; // Object being collided with.

public:
// Create collision event at (0,0) with ol and 02 NULL.
EventCollision () ;

// Create collision event between ol and 02 at position p.
// Object ol ‘caused’ collision by moving into object 02.
EventCollision (Object *p_ol, Object *p_o2, Vector p);
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200 // Set object that caused collision.
21 void setObjectl (Object *p_new_ol);

231 // Return object that caused collision .
24 Object *getObjectl () const;

26| // Set object that was collided with.
27 void setObject2(0Object *p_new_o02);

// Return object that was collided with.
Object *getObject2() const;

= O

// Set position of collision.
void setPosition (Vector new_pos);

W N

=
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// Return position of collision .
Vector getPosition () const;
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4.10.1.3 Collisions in the WorldMananger

Dragonfly handles collisions inside the WorldManager. In order to do this, the WorldMan-
ager needs to be extended with several methods.

The first method is getCollisions () which tests whether or not an Object moving to
a given location has a collision there. If so, all Objects at that location are returned in an
ObjectList (there can be more than one Object at a location since multiple SOFT Objects
can occupy the same location, with up to one HARD Object).

The second method is moveObject () that moves an Object to another location, as long
as there is not a collision between two HARD Objects at this location.

Listing 4.106: WorldManager extensions for collision support

0| public:

1 // Return list of Objects collided with at position ‘where .
ol // Collisions only with solid Objects.

3| // Does mot consider if p_o is solid or mnot.

4 ObjectList getCollisions (const Object #*p_o, Vector where);

6 // Move Object.

7 // If collision with solid, send collision events.

8 // If no collision with solid, move ok else don’t move Object.
9 // If Object is Spectral, move ok.

10 // Return 0 if move ok, else —1 if collision with solid.

11 int moveObject (Object *p_o, Vector where);

An additional utility function (in utility.h and utility.cpp) called positions-
Intersect () is helpful for the WorldManager getCollisions () method, as shown in List-
ing 4.107. Basically, if two Positions are the same (their x coordinates are within 1 space of
each other and their y coordinates are within 1 space of each other) then the method returns
true, otherwise it returns false. This method may seem somewhat trivial, but it serves as
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a placeholder for a method introduced in Section 4.153 on page 183, boxIntersectsBox (),
that will test whether or not two bounding boxes overlap.

Listing 4.107: Utility positionsIntersect|()

// Return true if two positions intersect , else false.
bool positionsIntersect (Vector pl, Vector p2)
if abs(pl.getX() - p2.getX()) <= 1 and
abs (pl.getY() - p2.getY()) <= 1 then
return true
else
return false
end if

The WorldManager getCollisions() method is provided in Listing 4.108. Since the
method returns a list of all Objects that are collided with, line 6 creates an empty list
(collision list) to start. The next block of code iterates through all the Objects in the
game. Each Object is first checked if it is the same Object passed into getCollisions() —
if it is, it is ignored since an Object cannot collide with itself. If it is not, then the Object is
checked to see if it is at the same location, and that it is solid. If both of these are true, the
Object is added to the collision 1list. When the loop is finished, the list of all Objects
collided with are returned in collision_list. Note, if no Objects have been collided with,
collision_list is an empty list.

Listing 4.108: WorldManager getCollisions|()
// Return list of Objects collided with at position ‘where .
// Collisions only with solid Objects.

// Does not consider if p-o is solid or not
ObjectList getCollisions (const Object *p_o, Vector where)

// Make empty list.
ObjectList collision_list

// Iterate through all Objects.
for i = 0 to m_updates count
Object *p_temp_o = m_updates[i]
if p_temp_o is not p_o then // Do not consider self.
// Same location and both solid?
if positionsIntersect (p_temp_o->getPosition (), where)
and p_temp_o -> isSolid () then
add p_temp_o to collision_list
end if // No solid collision.
end if // Not self.
end for // End iterate.

return collision_1list
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The getCollisions() method is used in the moveObject () method, shown in List-
ing 4.109. The moveObject () method first checks if the calling Object (the one that wants
to be moved) is solid (calling isSolid()) — if not, there are no further checks needed and
the Object can move. If the Object is solid, getCollisions() is called to produce a list
of solid Objects collided with. That collision list is iterated through,'® and each Object is
sent a collision event starting at line 23. If both Objects are HARD (line 31), then the move
will not be allowed by setting do_move to false in line 32. If a move is allowed (no HARD
collisions), then the actual move happens at the end of the method, on line 47.

Listing 4.109: WorldManager moveObject|()

// Move Object.

// If collision with solid, send collision events.

// If no collision with solid, move ok.

// If all collided objects soft, move ok.

// If Object is spectral , move ok.

// If move ok, move.

// Return 0 if moved, else —1 if collision with solid.
int WorldManager ::moveObject (Object *p_o, Vector where)

if p_o -> isSolid() then // Need to be solid for collisions.

// Get collisions.
ObjectList list = getCollisions (p_o, where)

if not list.isEmpty() then
boolean do_move = true // Assume can move.

// Iterate over list.
for i = 0 to list count

Object *p_temp_o = list[i]

// Create collision event.
EventCollision c(p_o, p_temp_o, where)

// Send to both objects.
p_o -> eventHandler (&c)
p_temp_o -> eventHandler (&c)

// If both HARD, then cannot move.
if p_o is HARD and p_temp_o is HARD then
do_move = false // Can’t move.

end if
end for // End iterate.
if do_move is false then

return -1 // Move not allowed.
end if

¥Note, if the collision list is empty, the iteration loop immediately ends since there is nothing to collide
with.
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12 end if // No collision.
44| end if // Object not solid.

16 // If here, mo collision between two HARD objects so allow move.
47 p_o -> setPosition (where)

aol /) All is well.
50 return ok // Move was ok.

Disallow Movement onto Soft Objects (optional) The construct of soft Objects
allows many solid objects to reside in one location (if they are SOFT). This allows a solid
Object to move onto a group of soft objects, generating collisions for each one in the process.

However, a game programmer may not want to allow some Objects to move onto the
soft Objects. Dragonfly can be extended to support this functionality, first by adding an
additional attribute to the Object class, shown in Listing 4.110, along with basic functions
to get and set the attribute. If the attribute m_no_soft is true (it should default to false),
the Object is not allowed to move onto soft game objects (but will still generate collisions
— effectively, soft game objects are treated as hard game objects in this case).

Listing 4.110: Object class extensions to support no soft

0| private:
1 bool m_no_soft; // True if won’t move onto soft objects.

3| public:
| // Set ‘mno soft’ setting (true — cannot move onto SOFT Objects).
5 void setNoSoft (bool new_no_soft=true);

7 // Get ‘no soft’ setting (true — cannot move onto SOFT Objects).
8 bool getNoSoft () const;

Then, the WorldManager moveObject () method is refactored. In Listing 32 on page 148,
similar to the block of code around line 32 that indicates the Object should not move if
both Objects are solid, an additional check is made if the Object being moved is soft and
the Objects are soft. This is shown in Listing 4.111.

Listing 4.111: WorldManager extensions to moveObject() to support no soft

// If object does not want to move onto soft objects, don’t move.

if p_o->getNoSoft () and p_temp_o->getSolidness () is SOFT then
do_move = false

end if

N =

Gl W

4.10.1.4 World Boundaries — Out of Bounds Event

Generally, game objects expect to stay inside the game world. This is not to say that all
game objects are on the screen at the same time — for example, think of a side scroller
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where a lot of the level is off the screen — but game objects stay in the known game world.
As such, when a game object moves outside of the game world it is helpful to tell indicate
this via an event. The out of bounds object still has the option to ignore the event and
stay outside the game world, but in many cases, it will want to take action, such as moving
back inside the game world or, in the case of a bullet that would otherwise fly off forever,
destroy itself.

Specifically for Dragonfly, when an Object inside the game world moves outside the
game world, the WorldManager generates an out of bounds event, an EventOut. The move
is still allowed, giving the Object freedom to stay outside of the game world should it so
choose, but providing the information in the form of the event in case the Object wants to
act.

Listing 4.112 provides the header file for the EventOut class. As for all Dragonfly events,
EventOut is derived from the base Event class. Unlike some other events, EventOut only
has information that the event occurred — i.e., that the object moved from inside to outside
the game world. The Object itself already knows where (it has its (x,y) position) so that
does not need to be indicated. The constructor sets event_type to OUT_EVENT. There are
no other attributes and no additional methods — the game programmer merely needs to
consult the Event type (defined in the parent class, Event: :getType () ) to determine what
happened.

Listing 4.112: EventOut.h

#include " Event.h”

const std::string OUT_EVENT = "df::out”;

w N

class EventOut : public Event {

6| public:
EventOut () ;

~

8| };

As suggested above, game world boundaries can be different than window boundaries —
this functionality is supported by Dragonfly in subsequent development (see Section 4.13.4
on page 187). However, at this point in Dragonfly, the game world boundaries are deter-
mined by the window boundaries. In order to determine the boundaries of the world, the
DisplayManager routines getHorizontal() and getVertical() can be used.

The WorldManager moveObject () is extended slightly. After a move is allowed (line 47
in Listing 4.109), the Object’s position is checked against the horizontal and vertical limits
obtained from the DisplayManager. If the Object is out of bounds, an EventOut object is
generated and sent to the Object’s event handler as in Listing 4.113.

Listing 4.113: Generate and send EventOut

0 c.
1 // Generate out of bounds event and send to Object.
2 EventOut ov

p_o -> eventHandler (&ov)
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Note, the WorldManager only sends an EventOut once, when the Object first moves
from inside to outside the game world. If the Object moves outside then stays outside, no
additional events are generated. Presumably, the Object already knows it is outside the
game world upon receiving the first out event, so if it stays outside it does not need to be
reminded.

4.10.2 Program Flow for Moving Objects

We can step back and summarize from a high level the program flow that goes into moving
game Objects, depicted in Listing 4.114.

Listing 4.114: Program Flow for Moving Objects

GM.run ()

WM update ()
Object predictPosition ()
new_pos += velocity
moveObject ()
getCollisions ()
// Send any needed collision events.
if can_move then
Object setPosition (new_pos)
end
// Send any needed out of bounds events.

Inside the game loop, the game manager calls WorldManager update(). For each
Object, the world manager asks each Object to predict its position by calling Object
predictPosition(), which computes the predicted position by adding the Object’s velocity
to the current position. The world manager then calls moveObject () calls getCollisions ()
to get a list of any collisions that would result if the Object moved to the predicted po-
sition. The world manager then sends a collision event (EVentCollision) to any and all
Objects in that list. If the Object can actually move to the predicted position (i.e., there
are not two HARD Objects in the same location), the world manager actually changes the
Object’s position by calling setPosition(). Lastly, the world manager computes if the
Object was inside the game world and then went out and, if so, sends it an out of bounds
event (EventOut).

4.11 Development Checkpoint #7 — Dragonfly Naiad!

Continue with your Dragonfly development by adding to your code base to create a Drag-
onfly Naiad.* Steps:

1. Extend the Object class to support kinematics, as in Listing 4.99. Add code to
Object to predict the position if it applies a step of velocity, as in Listing 4.100. Add
extensions to update () to do the velocity step for all Objects, as in Listing 4.101.

* Did you know (#9)?7 A naiad is a dragonfly in larval stage.
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. Test the velocity code thoroughly by making Objects with different starting locations

and different velocities. Verify visually and via logfile messages that Objects move an
appropriate amount each step. Test with different velocity values (x and y), positive
and negative and greater than 1 and less than 1.

. Extend the WorldManager to support collisions, as in Listing 4.106. Implement sup-

port function positionsIntersect() in utility.cpp, as per Listing 4.107. Imple-
ment getCollisions() in the WorldManager based on Listing 4.108. Support for
solidness needs to be added to the Object class, based on Listing 4.104 and List-
ing 4.103. Lastly, write moveObject () based on Listing 4.109. EventCollision needs
to be created for this, following Listing 4.105, and can be tested outside of the game
engine before using it in moveObject (). Since the code for all the above is fairly
extensive, add liberal writeLog() statements to provide meaningful output to verify
it is working.

. Write numerous test cases to verify that collisions work properly. Start first with a

solid Object that attempts to move onto another solid Object. Verify the move is not
allowed (visually and in the logfile) and make sure both Objects get an event with
appropriate pointers. Next, test that soft Objects can move on each other, but that
all soft Objects colliding get collision events. Lastly, check with test examples that
spectral Objects do not generate collisions.

. Create an EventOut class based on Listing 4.112. Add EventOut.cpp to the project

and stub out each method so it compiles. Add code to the WorldManager move-
Object () method that sends the out of bounds event to objects that move out of the
game world. Refer to Listing 4.113, as needed.

. Test the out of bounds additions by making a game object that starts inside the game

world, but soon moves out. Output messages should be seen in the logfile, but events
should checked and handled by the Object eventHandler () method. Make different
Objects that move in and out, multiple times and verify only one EventOut message
is generated each time an Object moves from inside to outside.

After completing the above steps (and all the previous Development Checkpoints), you
will have a fully functional game engine!
Features include:

Objects can draw themselves in 2d, as colored text characters.

Objects can appear above (foreground) or behind (background) when drawing.
Objects can get input from the keyboard and mouse.

Objects are moved automatically based on their velocities.

Objects that move out of the game world get an “out of bounds” event.

Objects have solidness — soft, hard, or spectral — affecting movement and collisions.
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e Solid Objects that collide get a collision event, providing information on both Objects
enabling them to react appropriately.

The above functionality to support objects, graphics, input, and interaction with colli-
sions allows creation of a wide variety of games. Consider, for example, making the game
Saucer Shoot from Section 3.3. The core gameplay for Saucer Shoot can be made (aside
from the Points and Nuke ViewObjects), with the main exception that Dragonfly Na-
iad only supports single character game objects without animation, rather than animated,
multi-character sprites.
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