/F .\ ' J7
PI0E—d NN _JI1TTT
Fid il IIJlIJIIJIIIIIII'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #6

Input Manager

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.



4.9. Input Management 128

4.9 Input Management

In order to get input from the player, a game could poll an input device directly. For
example, for a platformer game on a PC, the code could check if the space bar was pressed
and, if so, perform a “jump” action. The advantage of such a polling method is simplicity —
the game code checks the input device right when it needs it and knows exactly what device
to check. However, there are also significant disadvantages. First off, code to poll hardware
devices is typically device dependent. If the device was swapped out, such as changing the
keyboard for a joystick, the game would not work (at least, not without changing the game
code and recompiling). Even with the same device, if the key was remapped, such as making
the ‘j’ key execute a “jump” operation instead, then, again, the game code would need to
be changed. Also, if there were supposed to be duplicate mappings for a single event, such
as the left mouse button also being a “jump”, then the code to do the polling (and maybe
the jump action) would need to be duplicated.

The primary role of the game engine is to avoid such drawbacks by generalizing input
from a variety of hardware-specific devices and code into general game code. The input
flow generally goes as follows:

1. The player provides input via a specific device (e.g., a button press).

2. The game engine detects that input has occurred. The engine determines whether to
process the input or ignore it (e.g., player input may be ignored during a cut-scene).

3. If input is to be processed, the data is decoded from the device. This may mean dealing
with device-specific details (e.g., the degrees of rotation on an analog joystick).

4. The device-specific input is encoded into a more abstract, device-independent form
suitable for the game.

After the above steps, all game objects that are interested in the input are notified —
in Dragonfly, this means passing an input event to an Object using Manager onEvent ().
The information in the input event depends upon the type. For example, a keyboard input
needs the value of the key pressed while a mouse input needs the button type (left, right or
middle) and the mouse (x,y) location.

4.9.1 Simple and Fast Multimedia Library — Input

While there are several options for getting user input, for Dragonfly, since the Simple and
Fast Multimedia Library (SFML) is already used for graphical output (see Section 4.8.1 on
page 111), it is also used for input. Specifically, SEML supports the ability to get keyboard
input without waiting/blocking. In traditional keyboard input (e.g., cin or scanf()),
a program waiting for input is blocked /suspended until the user presses the “enter” key.
With SEFML, the program can either be notified of a keypress event and /or the program can
check if a particular key is being held down. SFML also supports mouse actions, tracking
the current position of the mouse cursor and notifying when mouse buttons are pressed and
released.

s

* ol

8.}

5%

Ye



4.9. Input Management 129

In order to use SFML input suitable for games, there are only two initial actions that
need to be taken. SFML input events are provided for an SFML window, so such a window
needs to be created (in Dragonfly, the window needed is created by the DisplayManager
upon startup (see Listing 4.69 on page 111)). Also, by default, when a user holds down a key,
after a small delay, the built-in “repeat” functionality of the keyboard will generate a log
of keypress events. Since many games allow the user to hold down a key as an action (e.g.,
hold down arrow keys to move an avatar), it is useful to disable the repeat functionality,
and can be done in SFML as shown in Listing 4.89.

Listing 4.89: SFML disable keyboard repeat

ol // Disable keyboard repeat.
1| p_.window -> setKeyRepeatEnabled (false)

When disabled, a program only gets a single event when the key is pressed. To re-enable
key repeat, true is passed into to setKeyRepeatEnabled (), enabling repeated KeyPressed
events while keeping a key pressed.

Once initialized, SEFML for game-type input proceeds first by using window input events,
as shown in Listing 4.90. SFML provides event attributes through the sf::Event object,
which is populated with the pollEvent () call. Each call to pollEvent () provides exactly
one event, so to check all such events, it is placed inside a while () loop, as on line 1. The
type of each event is checked through the type field. While SFML provides many win-
dow events, only some of them are useful for input — specifically, sf: :Event: :KeyPressed,

sf::Event: :KeyReleased, sf: :Event: :MouseMoved, and sf: :Event: :MouseClicked. When

there is a MouseClicked event, the button can be checked for which mouse button is clicked,
shown for the right mouse button on line 45. For the keyboard, the key that is pressed/re-
leased is in the SFML event code, and for the mouse, the button that pressed/released is
in the SFML event button.

Listing 4.90: SFML input for games

// Loop, handling all events in window.
while (const std::optional<sf::Event> p_event = p_window -> pollEvent()) do

// Get event.

sf::Event e = p_event.value()

// Window closed?

if p_event -> is<sf::Event::Closed>() then
// Do close stuff. e.g., set game over

end if

// Key was pressed?
if p_event -> is<sf::Event::KeyPressed>() then

// Setup as KeyPressed event.
sf::Event::KeyPressed *p_kb_event =
reinterpret_cast <sf::Event::KeyPressed *> (&e)

// Get SFML keyboard code.
sf::Keyboard::Key key
key = p_kb_event -> code

s

Ye

5
s}




4.9. Input Management 130

// Do other keypress stuff.
end if

// Key was released?
(similar to key pressed)

// Mouse moved?

if p_event -> is<sf::Event::MouseMoved>() then
// Setup as MouseMoved event.
sf::Event::MouseMoved *p_mse_event =

reinterpret_cast <sf::Event::MouseMoved *> (&e)

// Get pizel location .
sf::Vector2i pixel_pos = p_mse_event -> position

// Do other mouse moved stuff.
fi
// Mouse clicked?
(similar to mouse moved, but also check buttons ...)

if p_mse_event -> button == sf::Mouse::Button::Right then
// Do mouse button stuff

end while

4.9.1.1 SFML — Polled Input (optional)

While the code in Listing 4.90 provides all window based events, trying to move an avatar
by pressing and holding a key using sf: :Event: :KeyPressed will not work since only one
such event is provided — when the key is first pressed. Instead, SFML provides methods to
directly check if a key or mouse button is currently pressed by polling it. This is illustrated
in Listing 4.91. Note, this code is outside of the while () loop in Listing 4.90. Here, a specific
key can be polled (e.g., sf: :Keyboard: :Key: :Left) to see if it is currently being held down.
Similarly, a specific mouse button can be polled (e.g., sf::Mouse: :Button:Left) to see if
it is currently being held down

Listing 4.91: SFML input — polling key/mouse pressed

// Key is pressed.
if sf::Keyboard::isKeyPressed (keycode) then
// Do key is pressed stuff.

end if

// Mouse button is pressed.

if sf::Mouse::isButtonPressed (button) then
// Do mouse is pressed stuff.

end if




4.9. Input Management 131

4.9.2 The InputManager

The InputManager is a singleton derived from the Manager class, with private constructors
and a getInstance() method to return the one and only instance (see Section 4.2.1 on
page 55). The header file, including class definition, is provided in Listing 4.92.

The InputManager constructor should set the type of the Manager to “InputManager”
(i.e., setType ("InputManager") and initialize all attributes.

The startUp() method gets the display ready for input using SFML, as per Sec-
tion 4.9.1. Similarly, the shutDown () method reverts to normal use. Finally, the method
getInput () uses SFML to obtain keyboard and mouse input and is called by the Game-
Manager once per game loop.

Listing 4.92: InputManager.h

#include " Manager.h"

class InputManager : public Manager {
private:
InputManager () ; // Private (a singleton).
InputManager (InputManager const&); // Don’t allow copy.
void operator=(InputManager const&); // Don’t allow assignment
public:

// Get the ome and only instance of the InputManager .
static InputManager &getInstance ();

// Get window ready to capture input.
// Return 0 if ok, else return —1.
int startUpQ);

// Revert back to mormal window mode.
void shutDown () ;

// Get input from the keyboard and mouse.
// Pass event along to all Objects.
void getInput () const;

23| 3

For starting up, an SFML window needs to be created first. However, the InputManager
does not do this — rather, the InputManager assumes this was done already by the Display-
Manager. Thus, there is now a starting order dependency for the Dragonfly managers in
that the DisplayManager must be started before the InputManager. The InputManager
checks that the DisplayManager has successfully been started via a check to isStarted()
— if it has not, then the InputManager does not start up successfully, either.

In general, the startup order for the Managers defined thus far should be:

1. LogManager
2. DisplayManager

3. InputManager

s

Ye

5
s}




4.9. Input Management 132

Remember, as described in Section 4.4.4, the game programmer instantiates (via get-
Instance()) and starts up (via startUp()) the GameManager, and the GameManager in
its startUp() instantiates and starts up the other managers in the proper order. Only if
they all start up successfully should the game manager report a successful startup.

In more detail, the InputManager startUp() method does the steps shown in List-
ing 4.93. First, the DisplayManager is checked to see if it has been started. If so, the SFML
window (of type sf::RenderWindow is obtained from it. The window is used to disable
key repeat. If everything succeeds, Manager: :startUp() is called to indicate successful
startup.

Listing 4.93: InputManager startUp()

// Get window ready to capture input.
// Return 0 if ok, else return —1.
int InputManager ::startUp ()

if DisplayManager is not started then
return error
end if
sf::RenderWindow window = DisplayManager getWindow ()

disable key repeat in window

call Manager::startUp ()

The InputManager shutDown() method re-enables key repeat and invokes Manager
shutDown () to indicate the InputManager is no longer started.

Steps in the InputManager’s getInput () method are provided in Listing 4.94 and are
similar to those in Listing 4.90 (on page 129).

In the while loop, SFML window events are checked. If there are respective keyboard
and /or mouse actions, a corresponding Dragonfly keyboard or mouse event is generated. To
“send” the event to Objects, the onEvent () method is used. See Listing 4.67 on page 110
for a refresher on what it does. The keyboard and mouse events themselves are described
in upcoming Section 4.9.2.1 and Section 4.9.2.2, respectively.

Listing 4.94: InputManager getInput()

// Get input from the keyboard and mouse.
// Pass event along to all Objects.
void InputManager ::getInput () const

// Check past window events.
while event do

if key press then

create EventKeyboard (key and action)
send EventKeyboard to all Objects

else if key release then

create EventKeyboard (key and action)

s

Ye

5
s}




W =

4.9. Input Management 133

send EventKeyboard to all Objects
else if mouse moved then

create EventMouse (x, y and action)
send EventMouse to all Objects

else if mouse clicked then

create EventMouse (x, y and action)
send EventMouse to all Objects

end if

end while // Window events.

To use the InputManager, the GameManager adds a call to getInput() in the game
loop (inside GameManager run()):

// (Inside GameManager run())
// Get input.
InputManager getInput ()

4.9.2.1 Keyboard Event

Listing 4.95 provides the header file for the EventKeyboard class.

The top part of the header file defines two enum types.

The first, enum EventKeyboardAction, specifies the types of keyboard actions Dragon-
fly recognizes, namely: KEY_PRESSED, and KEY_RELEASED. The UNDEFINED KEYBOARD _ACTION
action is used for the default.

The second, Keyboard: :Key, specifies the keys Dragonfly recognizes. It is placed inside
its own namespace, Keyboard, for clarity. All major keys are recognized, with UNDEFINED -
KEY used for the default. Note, the key types here are all Dragonfly attributes and not
SFML (i.e., not sf::Keyboard: :Key) in order to encapsulate the SFML code inside the
engine. This way, game code that examines what keys are pressed is not dependent (nor
even aware) of the underlying SFML. This would allow, say, a change in the input layer,
say by replacing SFML with something else, without changing the game code.!®

For the class body, as for all Dragonfly events, EventKeyboard is derived from the
Event base class. It stores the keystroke in key_val and the keyboard action in keyboard -
action. Each attribute has a pair of methods to get and set it. For example, the method
setKey () takes on the value of the key based on what is pressed (typically only done by
the InputManager), and the method getKey () is used by game code for retrieving the key
value. The constructor sets event_type to KEYBOARD_EVENT, defined in the top of the header
file.

5n fact, an earlier version of Dragonfly used Curses, a set of library functions that enable controlling
text output in terminal windows.

s

Ye

5
s}




16

4.9. Input Management

Listing 4.95: EventKeyboard.h

134

#include " Event.h”

const std::string KEYBOARD_EVENT

"df:: keyboard”;

// Types of keyboard actions Dragonfly recognizes.

enum EventKeyboardAction {

UNDEFINED_KEYBOARD_ACTION =

KEY_PRESSED,
KEY_RELEASED ,

-1, // Undefined .
// Was down.
// Was released .

g

// Keys Dragonfly recognizes.
namespace Keyboard {
enum Key {

UNDEFINED_KEY = -1,

SPACE, RETURN, ESCAPE, TAB, LEFTARROW, RIGHTARROW, UPARROW, DOWNARROW,
PAUSE, MINUS, PLUS, TILDE, PERIOD, COMMA, SLASH, LEFTCONTROL,
RIGHTCONTROL , LEFTSHIFT, RIGHTSHIFT, F1, F2, F3, F4, F5, F6, F7, F8,
F9, Fi0, F11, Fi12, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,
R, s, T, U, v, w, X, Y, Z, NUM1, NUM2, NUM3, NUM4, NUM5, NUM6, NUM7,
NUM8 , NUM9, NUMO,

i
Y // end of namespace Keyboard

class EventKeyboard public Event {
private:
Keyboard::Key m_key_val;
EventKeyboardAction m_keyboard_action;

// Key value.
// Key action .

public:
EventKeyboard () ;

// Set key in event.
void setKey(Keyboard::Key new_key);

// Get key from event.

Keyboard::Key getKey() const;

// Set keyboard event action.
void setKeyboardAction (EventKeyboardAction new_action);

// Get keyboard event action.
EventKeyboardAction getKeyboardAction () const;
};

4.9.2.2 Mouse Event

Listing 4.96 provides the header file for the EventMouse class, also derived from the Event
base class. Dragonfly only recognizes a fixed set of mouse actions and buttons, defined by
MouseAction defined by MouseButton, respectively. Mouse actions recognized are CLICKED
and MOVED, with UNDEFINED_MOUSE_ACTION being the default. Mouse buttons recognized are

-

® 0%
e
o\"e

*\




4.9. Input Management

135

LEFT, RIGHT, MIDDLE, with UNDEFINED_MOUSE_BUTTON being the default. As for EventKey-
board, the mouse buttons are Dragonfly attributes to encapsulate the SFML code inside

the engine.

The mouse action is stored in the attribute mouse_action, the mouse button in mouse_-

button, and the (x,y) location in mouse_xy.

Methods are provided to get and set each attribute. The “set” methods are typically only
used by the InputManager, while the “get” methods are used in the game code to retrieve
values and act appropriately for the game. The EventMouse constructor sets event_type

to MSE_EVENT.16

Listing 4.96: EventMouse.h

#include " Event.h”
const std::string MSE_EVENT = "df::mouse”;

// Set of mouse actions recognized by Dragonfly.
enum EventMouseAction {

UNDEFINED_MOUSE_ACTION = -1,

CLICKED,

MOVED ,

};

// Set of mouse buttons recognized by Dragonfly.
namespace Mouse {
enum Button {

UNDEFINED_MOUSE_BUTTON = -1,
LEFT,
RIGHT,
MIDDLE,
s
Y // end of mamespace Mouse
class EventMouse : public Event {
private:
EventMouseAction m_mouse_action; // Mouse action.
Mouse::Button m_mouse_button; // Mouse button .
Vector m_mouse_xy; // Mouse (z,y) coordinates .
public:

EventMouse () ;

// Load mouse event’s action .
void setMouseAction (EventMouseAction new_mouse_action) ;

// Get mouse event’s action.
EventMouseAction getMouseAction () const;

// Set mouse event’s button .
void setMouseButton (Mouse::Button new_mouse_button) ;

16MSE_EVENT is used instead of MOUSE_EVENT since the latter can conflict with a macro if developing in

Windows.




10
11
42
13
14
45

16

48

4.9. Input Management 136

g

// Get mouse event’s button .
Mouse::Button getMouseButton () const;

// Set mouse event’s position .
void setMousePosition (Vector new_mouse_xy);

// Get mouse event’s position .
Vector getMousePosition () const;

At this point, a view of complete version of the game loop is warranted, shown in

Listing 4.97. Unlike in early versions of the game loop shown, code can be constructed for
each game loop element based, as indicated in the comments.

Listing 4.97: The complete game loop

Clock clock // Section 4.4.3 on page 69.

while (game not over) do // Line 11 of Listing 4.25 on page 73.
clock.delta() // Line 14 of Listing 4.20 on page 69.
GameManager onEvent (EventStep) // Listing 4.67 on page 110.
InputManager getInput () // Listing 4.94 on page 132.
WorldManager update () // Listing 4.64 on page 104.
WorldManager draw () // Listing 4.81 on page 121.
DisplayManager swapBuffers () // Listing 4.79 on page 120.
loop_time = clock.split() // Line 19 of Listing 4.20 on page 69.

sleep (TARGET_TIME - loop_time) // Listings 4.21 and 4.22 on page T0+.

end while

4.9.3 Development Checkpoint #6!

Continue with Dragonfly development by adding functionality for managing input from
Section 4.9. Steps:

1. Create an InputManager derived class, inheriting from the Manager class. Imple-

ment InputManager as a singleton, described in Section 4.2.1 on page 55. Add
InputManager.cpp to the project and include stubs for all methods in Listing 4.92.
Make sure the class, with stubs, compiles.

. Write startUp() and shutDown() methods for the InputManager, referring to List-

ing 4.93 as needed. Write a small test program (with only an InputManager and
DisplayManager) that verifies the InputManager can only start successfully when the
DisplayManager is started first.

. Create EventKeyboard and EventMouse classes, referring to Sections 4.9.2.1 and

4.9.2.2, as needed. Add EventKeyboard.cpp and EventMouse.cpp to the project
and stub out each method so it compiles. Verify both classes can get and set all
values in a stand alone program (running outside of the other engine components).

. Implement InputManager getInput (), referring to Listing 4.94 for the structure and

Listing 4.90 for the SFML code, as appropriate. First, get getInput () implemented

-
» 0%
N,
.

"\
\




4.9. Input Management 137

and tested with one key (e.g., the letter ‘A’) and then one mouse button. Once that
is working properly, continue implementation for all keys and all mouse buttons.

5. Test the InputManager getInput() outside of a running game loop creating a pro-
gram that starts the DisplayManager and the InputManager, then repeatedly calls
getInput (), writing the return values to the logfile. This can be tested extensively
with different mouse and keyboard inputs.

6. Integrate the InputManager with the GameManager by having the GameManager
start up the InputManager in the proper order. Write a game object that takes input
from the keyboard, responds to input by changing position and have that change in
position be visible on the screen.

Tip 17! Reticle for testing mouse input. The Reticle from the Saucer Shoot
tutorial (Chapter 3) is a good game object to use as a start for testing mouse input.
You can copy the Reticle.cpp and Reticle.h code from that project and test your
newly-implemented Input Manager once integrated with the engine. (Note, you’ll
need to remove the registerInterest() call from the Reticle constructor unless
and until you implement filtering of events, Section 4.15 on page 204.) The “game”
can just be anew Reticle and the player should be see a + character moving around
the screen with the mouse. Add handling of mouse button presses in the Reticle
eventHandler (), writing a message to the LogManager or changing the Reticle
color.

At this point, the engine should now be able to get input from a player and have game
objects respond to the input! This means, coupled with the DisplayManager, the engine
supports game objects a player can move (e.g., via the arrow keys or the mouse) around
the screen. This closes the interaction loop, taking user input, updating the game world,
and displaying the resulting output — basic interaction!

‘v*:’{._



