
Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #3

Vector & Object

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2025 Mark Claypool and WPI. All rights reserved.

4.5. The Game World 76

4.5 The Game World

The game world itself is full of objects: bad guys running around; walls that enclose build-
ings and spaces; trees, rocks and other obstacles; and the hero, rushing to save the day. The
exact types of objects depend upon the genre of game, of course, but in nearly all games,
the game engine has many objects to manage (game objects are introduced in Section 4.5.1
on page 76).

The game world needs to store and access groups of objects. In addition, the game
programmer needs to access game objects in order to make them react to input or perform
game-specific functions. So, the game world needs to manage them efficiently and present
them in a convenient fashion. The game programmer might want a list of all the solid game
objects, a list of all the game objects within the radius of an explosion, or a list of all the
Saucer objects. It is the job of the world manager to store the game objects and provide
these lists in response to game programmer queries. Section 4.5.2 on page 80 introduces
lists of game objects.

The game world not only stores and provides access to the game objects, it also needs
to update them, move them around, see if they collide, and more. Section 4.5.4 (page 91)
introduces methods to update game objects, with Section 4.5.5 (page 92) providing details
on events, of vital importance for understanding how a game engine connects to game
programmer code.

4.5.1 Game Objects

Game objects are a fundamental game programmer abstraction for items in the game. For
example, consider Saucer Shoot from Section 3.3. As in many games, there are opponents to
defeat (i.e., Saucers), the player character (i.e., the Hero), projectiles that can be launched
(i.e., Bullets), and other game objects (e.g., Explosions, Points, etc.). Other games may
have obstacles or boundaries to bypass (e.g., walls, doors), items that can be picked up
(e.g., gold coins, health packs), and even other characters to interact with (e.g., non-player
characters). The game engine needs to access all these game objects, for example, to get
an object’s position. The game engine also needs to update these objects, for example, to
change the location as the game object moves. Thus, a core attribute for a game object,
and the first one used in Dragonfly, is the object’s position, stored as a 2d vector.

4.5.1.1 The Vector Class

The Vector class represents a 2d vector. When used for a position, the Vector is sufficient
to hold a 2d location in the game world. Some future version of Dragonfly could provide a
third dimension, z, and/or provide coordinates as floating point numbers. The header file
for the Vector class is described in Listing 4.26. Vector mostly holds the attributes x and
y, with methods to get and set them. In addition to the default constructor (which set x
and y to 0), on line 9, Vector has a constructor that sets x and y to initial values.

Listing 4.26: Vector.h
? .

0 class Vector {

1

4.5. The Game World 77

2 private:

3 float m_x; // Hor i z on ta l component .
4 float m_y; // Ve r t i c a l component .
5

6 public:

7

8 // Create Vector w i th (x , y) .
9 Vector(float init_x , float init_y);

10

11 // De f au l t 2d (x , y) i s (0 , 0) .
12 Vector ();

13

14 // Get/ s e t h o r i z o n t a l component .
15 void setX (float new_x);

16 float getX () const;

17

18 // Get/ s e t v e r t i c a l component .
19 void setY (float new_y);

20 float getY () const;

21

22 // Set h o r i z o n t a l & v e r t i c a l components .
23 void setXY(float new_x , float new_y);

24

25 // Return magnitude o f v e c t o r .
26 float getMagnitude () const;

27

28 // Normal ize v e c t o r .
29 void normalize ();

30

31 // Sca l e v e c t o r .
32 void scale(float s);

33

34 // Add two Vectors , re turn new Vector .
35 Vector operator +(const Vector &other) const;

36 };
? '

To make a Vector more generally useful, methods and operators on lines 26 to 35 are
provided.

Vector getMagnitude(), shown in Listing 4.27, returns the magnitude (size) of the
vector.

Listing 4.27: Vector getMagnitude()
? .

0 // Return magnitude o f v e c t o r .
1 float Vector :: getMagnitude ()

2 float mag = sqrt (x*x + y*y)

3 return mag
? '

Vector scale(), shown in Listing 4.27, resizes (changes the magnitude) of the vector by
the scale factor, leaving the direction for the vector unchanged.

Listing 4.28: Vector scale()? .

0 // Sca l e v e c t o r .
1 void Vector :: scale(float s)

2 x = x * s

4.5. The Game World 78

3 y = y * s
? '

Vector normalize(), shown in Listing 4.29, takes a vector of any length and, keeping it
pointing in the same direction, changes its length to 1 (also called a unit vector). The if

check is to avoid a possible division by zero.

Listing 4.29: Vector normalize()
? .

0 // Normal ize v e c t o r .
1 void Vector :: normalize ()

2 length = getMagnitude ()

3 if length > 0 then

4 x = x / length

5 y = y / length

6 end if
? '

Overloading the addition operator (+ in v1 + v2) for a Vector is shown in Listing 4.30.
The method is called on the first vector (the Vector on the left-hand side of the ‘+’) with
the second vector provided as an argument (the Vector on the right-hand side of the ‘+’).
The variable v holds the new Vector, with x and y values added from the components of
the other two vectors and then returned.

Listing 4.30: Vector operator+
? .

0 // Add two Vectors , re turn new Vector .
1 Vector Vector :: operator +(const Vector &other) const {

2 Vector v // Create new vec t o r .
3 v.x = x + other.x // Add x components .
4 v.y = y + other.y // Add y components .
5 return v // Return new vec t o r .
? '

Other Vector operators (optional) The addition operator (+) is core since adding
two vectors is used for many operations. However, there are other operators that may
useful for a general Vector class, including: subtraction (-), multiplication (*), division (/),
comparison (== and !=) and not (!). The aspiring programmer may want to implement
them, using Listing 4.30 as a reference.

4.5.1.2 The Object Class

With the Vector class in place, the Object class can now be specified. The Object class
definition is provided in Listing 4.31.

Listing 4.31: Object.h? .

0 // System i n c l u d e s .
1 #include <string >

2

3 // Engine i n c l u d e s .
4 #include ” Vec to r . h”

5

6 class Object {

7

8 private:

4.5. The Game World 79

9 int m_id ; // Unique game eng ine de f i n ed i d e n t i f i e r .
10 std:: string m_type; // Game programmer de f i n ed type .
11 Vector m_position ; // Pos i t i on in game wor ld .
12

13 public:

14 // Cons truc t Ob j ec t . Set d e f a u l t parameters and
15 // add to game wor ld (WorldManager) .
16 Object ();

17

18 // Destroy Ob j ec t .
19 // Remove from game wor ld (WorldManager) .
20 virtual ~Object ();

21

22 // Set Ob j ec t i d .
23 void setId(int new_id);

24

25 // Get Ob j ec t i d .
26 int getId() const;

27

28 // Set type i d e n t i f i e r o f Ob j ec t .
29 void setType (std:: string new_type);

30

31 // Get type i d e n t i f i e r o f Ob j ec t .
32 std:: string getType () const;

33

34 // Set p o s i t i o n o f Ob j ec t .
35 void setPosition (Vector new_pos);

36

37 // Get p o s i t i o n o f Ob j ec t .
38 Vector getPosition () const;

39 };
? '

Each Object has a unique id, initialized in the constructor (Object()), that may be of
use in some games to uniquely identify an game object.6 The id is obtained from a static

integer declared in the Object constructor that starts at 0 and is incremented each time
Object() is called. The method getId() can be used to obtain an Object’s id. The method
setId() can be used to set an id manually, but in many games this is never used.7

The type is a string primarily used to identify the Object type in game code. For
example, a Bullet object can invoke setType("Bullet"), allowing a Saucer object to query
a collision event to see whether or not the type was a “bullet”, destroying oneself as an
action. For the base Object constructor, the type can just be set to "Object".

The Object setPosition() and getPosition() methods allow changing the attribute
m position (via set) and retrieving it (via get).

Objects will have many attributes eventually (such as altitude, solidness, bounding boxes
for collisions, animations for rendering sprite images, ...) but for now merely storing the
position of the game world is sufficient.

Note that the destructor for Object is virtual on line 20. This is necessary since

6In most cases, the game programmer can uniquely identify an object by its memory address, but an

integer may be more convenient. Moreover, a network game cannot count on a game object that is replicated

on another computer to have the same memory address.
7A common exception is for synchronizing game worlds in a networked computer game.

4.5. The Game World 80

Objects are deleted by the engine, not the game programmer, and the virtual keyword
makes sure the right destructor is called for derived game objects. If the destructor was
not virtual, when an Object was deleted by the engine, only ~Object() would be invoked
and not the destructor for a game programmer object that inherited from it.

4.5.2 Lists of Objects

In order to handle the management and presentation of game objects to the game program-
mer, the world manager needs a data structure that supports lists of game objects, lists
that can be created and passed around (inside the engine and to the game programmer)
in a convenient to use and efficient to handle manner. In passing the lists to the game
programmer, if the Objects themselves are changed (e.g., say, by decreasing the hit points
of Objects damaged in an explosion), updates need to happen to the “real” objects as seen
by the world manager. While there are numerous libraries that could be used for building
efficient lists (e.g., the Standard Template Library or the Boost C++ Library), list perfor-
mance is fundamental to game engine performance, both for Dragonfly as well as for other
game engines, so implementing game object lists provides an in-depth understanding that
may impact game engine performance. Plus, there are additional programming skills to be
gained by implementing lists from scratch.

There are different implementation choices possible for lists of game objects, including
linked lists, arrays, hash tables, trees and more. For ease of implementation and perfor-
mance efficiency, an array is used for lists of game objects in Dragonfly. In addition, the
iterator design pattern can be used to provide a way to access the list without exposing the
underlying data representation. In general, separating iteration from the container class
keeps the functionality for the collection separate from the functionality for iteration. This
simplifies the collection (not having it cluttered with iteration methods), allows several it-
erations to be active at the same time, and decouples collection algorithms from collection
data structures, while still leaving the details of the container implementation encapsulated.
This last point means the internals of the list data structure can be changed (e.g., replace
the array with a linked list) without changing the rest of the game engine or any dependent
game programmer code.

For reference, consider a basic list of integers (ints), shown in Listing 4.32.

Listing 4.32: List of integers implemented as an array
? .

0 const int MAX = 100;

1

2 class IntList {

3

4 private:

5 int list [MAX];

6 int count;

7

8 public:

9 IntList () {

10 count = 0;

11 }

12

13 // Clear l i s t .

4.5. The Game World 81

14 void clear() {

15 count = 0;

16 }

17

18 // Add item to l i s t .
19 bool insert(int x) {

20 if (count == MAX) // Check i f room .
21 return false;

22 list [count] = x;

23 count ++;

24 return true ;

25 }

26

27 // Remove i tem from l i s t .
28 bool remove(int x) {

29 for (int i=0; i<count; i++) {

30 if (list [i] == x) { // Found . . .
31 for (int j=i; j<count -1; j++) // . . . so s coo t over
32 list [j] = list [j+1];

33 count --;

34 return true ; // Found .
35 }

36 }

37 return false; // Not found .
38 }

39

40 // Index i n t o l i s t .
41 int operator [](int i) {

42 if (i >= m_count || i < 0)

43 throw std :: out_of_range (” I n v a l i d i n d e x ! ”);

44 return list [i];

45 }

46

47 };
? '

The list starts out empty, by setting the count of items to 0 in the constructor. Basic
operations allow the programmer to insert() items, remove() items, and clear() the
entire list. Line 41 uses C++ operator overloading, enabling brackets (e.g., list[2]) to
index into the list. The throw operation at line 41 triggers an exception with the indexed
value is out of range.

Clearing the list and adding items to the list are quite efficient. Removing items from
the list is rather inefficient, requiring the entire list to be traversed each time. The list
is searched from the beginning to find the item to remove and then the rest of the list is
traversed to “scoot” the items over one spot. Rather than scoot the items over, a “pop and
swap” operation could be used:
? .

0 for (int i=0; i<count; i++)

1 if (list [i] == x) // Found . . .
2 // Pop l a s t i tem from end and swap over i tem to d e l e t e .
3 list [i] = list [count -1];
? '

This has the advantage of not iterating through the remainder of the list, but the disad-
vantage of changing the list order after the remove() operation. Plus, given the search

4.5. The Game World 82

required to find the item to delete, the remove() operation is still O(n), where n is the
number of list items.8 However, perhaps most importantly, copying the list, which in a
game engine happens often as many lists are created and destroyed by both the engine
and the game programmer, is efficient as compilers (and programmers) handle fixed sized
chunks of memory efficiently.

While arrays are efficient, it is still not a good design for the game engine to have entire
objects inside the list. In other words, the int in Listing 4.32 should not be replaced by an
Object representing a game object. Instead, lists of game objects are handled by having
pointers to the game objects. So, int is replaced with Object *. Using pointers allows the
game engine to reference the game object’s attributes and methods and still remain efficient
for creating the many needed lists of objects needed. Basically, copying a list of pointers is
much faster (and uses less memory) than copying a list of game objects. In addition, lists
passed from the engine to, say, the game code refer to the original Objects (via the pointers)
and not copies. Last but not least, having Object pointers allows for polymorphism, as in
Listing 1.1 on page 8, when Object methods are resolved.

Listing 4.33 shows the header file for ObjectList. The list data (Objects) is statically
declared as a large (e.g., MAX OBJECTS is 1000) array of Object pointers, with the count
(m count) set to 0 in the constructor. Implementation of the ObjectList methods is done
similarly as the IntList (see Listing 4.32 on 80).

Listing 4.33: ObjectList.h
? .

0 const int MAX_OBJECTS = 1000;

1

2 #include ” Ob jec t . h”

3

4 class ObjectList {

5

6 private:

7 int m_count; // Count o f o b j e c t s in l i s t .
8 Object *m_p_obj [MAX_OBJECTS]; // Array o f p o i n t e r s to o b j e c t s .
9

10 public:

11 // De f au l t c on s t ru c t o r .
12 ObjectList ();

13

14 // I n s e r t o b j e c t po i n t e r in l i s t .
15 // Return 0 i f ok , e l s e −1.
16 int insert(Object *p_o);

17

18 // Remove o b j e c t po i n t e r from l i s t .
19 // Return 0 i f found , e l s e −1.
20 int remove(Object *p_o);

21

22 // Clear l i s t (s e t t i n g count to 0) .
23 void clear();

24

25 // Return count o f number o f o b j e c t s in l i s t .
26 int getCount () const;

8Tests with the Dragonfly Bounce benchmark modified to delete 50% of items added each time showed

negligible performance differences between “pop-and-swap” and “scoot.”

4.5. The Game World 83

27

28 // Return t ru e i f l i s t i s empty , e l s e f a l s e .
29 bool isEmpty () const;

30

31 // Return t ru e i f l i s t i s f u l l , e l s e f a l s e .
32 bool isFull () const;

33

34 // Index i n t o l i s t .
35 Object *operator [](int index);

36 };
? '

One implemented, an ObjectList can be created, Objects added to it (via ObjectList
insert() and removed (via ObjectList remove()). When needed, the ObjectList can be
iterated through much as would a typical C++ array, as shown in Listing 4.34.

Listing 4.34: C++ Code illustrating iteration through an ObjectList? .

0 ObjectList ol;

1 for (int i=0; i < ol.getCount (); i++)

2 Object *p_o = ol[i];
? '

Tip 10! Naming pointers. Debugging pointer errors can be a challenging, frus-
trating experience. It is better to avoid pointer problems as much as possible in
both design and coding, rather than chase down pointer bugs. Given the need to
treat pointers with care, it is helpful to have a naming convention that indicates
which variables are pointers, even if this is the only naming convention followed.
In Dragonfly, pointers are indicated by a ‘p ’ prefix, standing for “pointer”. It is
recommended this same convention be followed by game programmers in game code.
See Section 5.1.2 on page 252 for other bug-prevention tips.

4.5.2.1 List Iterators (optional)

The iterator design pattern can be used to provide a way to access the list without exposing
the underlying data representation. In general, separating iteration from the container class
keeps the functionality for the collection separate from the functionality for iteration. This
simplifies the collection (not having it cluttered with iteration methods), allows several
iterations to be active at the same time, and decouples collection algorithms from collection
data structures, while still leaving the details of the container implementation encapsulated.
This last point means the internals of the list data structure can be changed (e.g., replace
the array with a linked list) without changing the rest of the game engine or any dependent
game programmer code.

There can be more than one iterator for a given list instance, each keeping its own
position. Note, however, that adding or deleting items to a list during iteration may cause
the iterator to skip or repeat iteration of an item (not necessarily the one added) – the
program should not crash, but the iteration may not touch each item once and only once.

There are 3 primary steps in coding an iterator for a container:

4.5. The Game World 84

1. Understand container class (e.g., List)

2. Design iterator class for container class

3. Add iterator materials:

• Add iterator as friend class of container class

To illustrate these steps, consider creating a IntListIterator for the List defined in List-
ing 4.32 on page 80. Step 1 is to understand the implementation of List, in terms of the
attributes p obj[] array and the count used to store and keep track of list members. Step
2 is to define an iterator for IntList, provided by IntListIterator in Listing 4.35. The con-
structor for IntListIterator (line 7) needs a pointer to the IntList object it will iterate over,
which it stores in attribute p list. Since the iterator does not change the contents of the
list, this pointer is declared as const. The index attribute is used to keep track of where
the iterator resides in the list during iteration. The first() method resets the iterator
to the beginning of the list. Subsequently, next() and isDone() allow iteration until the
end of the list. The method currentItem() returns the current item that the iterator is
on. Note, although not shown for brevity, index should be error checked for bounds in
currentItem() and next().

Listing 4.35: Iterator for IntList class
? .

0 class IntListIterator {

1

2 private:

3 const IntList *p_list; // Poin ter to I n t L i s t i t e r a t i n g over .
4 int index; // Index o f cu r r en t i tem .
5

6 public:

7 IntListIterator (const IntList *p_l) {

8 p_list = p_l;

9 first();

10 }

11

12 // Set i t e r a t o r to f i r s t i tem .
13 void first() {

14 index = 0;

15 }

16

17 // I t e r a t e to nex t i tem .
18 void next () {

19 if (index < p_list -> count)

20 index++;

21 }

22

23 // Return t ru e i f done i t e r a t i n g , e l s e f a l s e .
24 bool isDone () {

25 return (index == p_list -> count);

26 }

27

28 // Return cu r r en t i tem .
29 int currentItem () {

4.5. The Game World 85

30 return p_list -> item [index];

31 }

32 };
? '

For step 3, in order for the IntListIterator to access the private member of the IntList
class, namely the item[] array and the list count, IntListIterator must be declared as a
friend class inside IntList.h.
? .

0 friend class IntListIterator ;

1 ...
? '

Both IntList.h and IntListIterator.h need forward references to class IntListIter-
ator and class IntList, respectively, for compilation.

Once the IntListIterator is defined, a programmer that wants to iterate over an instance
of a List, say my list, first creates an iterator:
? .

0 IntListIterator li(& my_list);
? '

Then, the programmer calls first(), currentItem(), and next() until isDone() re-
turns true.

Listing 4.36: Iterator with while() loop
? .

0 li.first();

1 while (!li.isDone ()) {

2 int item = li.currentItem ();

3 li.next ();

4 }
? '

A for loop has a bit shorter syntax:

Listing 4.37: Iterator with for() loop
? .

0 for (li.first(); !li.isDone (); li.next ())

1 int item = li.currentItem ();
? '

ObjectList Iterators (optional) The ObjectList class, as described in Section 4.5.2, is
a fine container class, but could be enhanced by defining an iterator for the ObjectList class.
In general, iterators “know” how to traverse through a container class without exposing the
internal data methods and structure publicly. Iterators do this by being a friend of the
container class, giving them access to the private and protected attributes of the class.
Defining an iterator decouples traversing the container from the container iteration. This
allows, for instance, the structure of the container to be changed (e.g., from a static array
to a linked list) without redefining all the code that uses the container.

The ObjectList sets the ObjectListIterator up as a friend:

Listing 4.38: ObjectList extension to add a list iterator
? .

0

1 class ObjectListIterator ;

2

3 class ObjectList {

4

4.5. The Game World 86

5 ...

6 public:

7 friend class ObjectListIterator ;

8 ...

9 }
? '

Notice that line 1 of Listing 4.38 refers to an “ObjectListIterator” class that has not
been defined. This line is needed to act as a forward reference for the compiler, allowing
compilation to proceed, as long as the ObjectListIterator class is defined before linking.

For Dragonfly, the complete header file for an ObjectListIterator is defined in List-
ing 4.39. Having the default constructor private on line 8 makes it explicit that an Ob-
jectList must be provided to the iterator when created. The class method implementation
follows that of the IntListIterator in Listing 4.35.

Listing 4.39: ObjectListIterator.h
? .

0 #include ” Ob jec t . h”

1 #include ” O b j e c t L i s t . h”

2

3 class ObjectList ;

4

5 class ObjectListIterator {

6

7 private:

8 ObjectListIterator (); // Must be g i ven l i s t when c r ea t ed .
9 int m_index; // Index i n t o l i s t .

10 const ObjectList *m_p_list ; // L i s t i t e r a t i n g over .
11

12 public:

13 // Create i t e r a t o r , over i n d i c a t e d l i s t .
14 ObjectListIterator (const ObjectList *p_l);

15

16 void first(); // Set i t e r a t o r to f i r s t i tem in l i s t .
17 void next (); // Set i t e r a t o r to nex t i tem in l i s t .
18 bool isDone () const; // Return t ru e i f a t end o f l i s t .
19

20 // Return po i n t e r to cu r r en t Object , NULL i f done /empty .
21 Object * currentObject () const;

22 };
? '

4.5.2.2 Overloading + for ObjectList (optional)

A useful abstraction for game programmers is to combine two ObjectLists, the result being a
third, combined list holding all the elements of the first list and all the elements of the second
list. A method named add() could combine two lists, written as part of the ObjectList class
(e.g., ObjectList::add()) or as a stand alone function. However, a natural abstraction is
to use the addition (‘+’) operator, overloading it to combine ObjectLists in the expected
way.

In C++, operators are just functions, albeit special functions that perform operations
on objects without directly calling the objects’ methods each time. Unary operators act on
a single piece of data (e.g., my int++), while binary operators operate on two pieces of data

4.5. The Game World 87

(e.g., new int = my int1 + my int2). For ObjectLists, overloading the binary addition
‘(+)’ operator is helpful. The syntax for overloading an operator is the same as for declaring
a method, except the keyword operator is used before the operator itself.

Overloading the addition operator for an ObjectList is shown in Listing 4.40. The
method is called on the first list (the ObjectList on the left-hand side of the ‘+’), with
the second list provided as an argument (the ObjectList on the right-hand side of the ‘+’).
The variable big list holds the combined list, starting out by copying the contents of
the first list ((*this) on line 4). The method then proceeds to iterate through the second
list, inserting each element from the second list into the first list on line 8. Once finished
iterating over all elements in the second list, the method returns the combined list big list

on line 12.

Listing 4.40: ObjectList operator+
? .

0 // Add two l i s t s , second appended to f i r s t .
1 ObjectList ObjectList :: operator +(ObjectList list)

2

3 // S t a r t w i th f i r s t l i s t .
4 ObjectList big_list = *this

5

6 // I t e r a t e through second l i s t , adding each e lement .
7 for i = 0 to list count

8 big_list .insert(list [i]) // Add e lement from second , to f i r s t l i s t .
9 end for

10

11 // Return combined l i s t .
12 return big_list
? '

Since ObjectLists are implemented as arrays, a more efficient ‘+’ operation could allocate
one array of memory large enough for both lists, then, using memcpy() or something similar,
copy the first list then the second list into the allocated memory. Care must be taken to
get the pointers and memory block length correct. That is left as option for the reader to
explore outside this text.

However, as an advantage, the implementation in Listing 4.40 is agnostic of the actual
implementation of ObjectList. The lists could be implemented as either arrays or linked
lists with pointers or some other internal structure and the code would still work.

Once defined, the ObjectList ‘+’ operator can be called explicitly, such as:
? .

0 ObjectList list_1 , list_2;

1 ObjectList list_both = ObjectList +(list_1 , list_2);
? '

but a more natural representation is to call it as intended:
? .

0 ObjectList list_1 , list_2;

1 ObjectList list_both = list_1 + list_2;
? '

4.5.2.3 Dynamically-sized Lists of Objects (optional)

A significant potential downside of the code shown in Listing 4.32 and Listing 4.33 is that
the maximum size of the list needs to be specified at compile time. If the list grows larger
than this maximum, items cannot be added to the list – the container class data structure

4.5. The Game World 88

cannot do anything besides return an error code. This is true even when there is memory
available on the computer to store more list items. A full list is potentially problematic –
for example, the world manager can no longer manage any more Ogres or the player cannot
put more Oranges into a backpack. Specifying a larger maximum size and then recompiling
the game engine and the game is hardly an option for most players!

What can be done instead is to make arrays that dynamically resize themselves to
be larger as more items are required to be stored in the list. This has two tremendous
advantages: 1) the maximum size of the list does not need to be known by the engine ahead
of time, and 2) game object lists do not have to all be as large as the potential maximum
size, but can instead be small when a small list is required and only become large when a
large list is required, thus saving runtime memory and runtime processing time when lists
are copied and returned. The downside of this approach is that more runtime overhead is
incurred when a list grows. If done right, however, this runtime overhead can be infrequent
and fairly small.

The basic idea of dynamically sized lists is to allocate a relatively small array to start.
Then, if the array gets full (via insert()), the memory is re-allocated to make the array
larger. In order to avoid having the re-allocation happen every time a new item is inserted,
the re-allocation is for a large chunk of memory. A good guideline for the size of the larger
chunk is twice the size of the list that is currently allocated.

In order to make this change, first, the ObjectList attribute for the list needs to be
changed from an array to a list of pointers, such as Object **p list.9

Next, the ObjectList constructor needs to allocate memory for the list dynamically. This
can certainly be done via new, but memory can be efficiently resized using C’s realloc().10

The initial allocation uses malloc() to create a list of size MAX COUNT INIT. MAX COUNT -

INIT is defined to be 1, but other sizes can certainly be chosen. The ObjectList destructor
should free() up memory, if it is allocated.

Listing 4.41: Re-declaring list to be dynamic array label? .

0 max_count = MAX_COUNT_INIT ; // I n i t i a l l i s t s i z e (e . g . , 1) .
1 p_item = (Object **) malloc(sizeof(Object *));
? '

In the insert() method, if the list is full (isFull() returns true) then the item array
is re-allocated to be twice as large, shown in Listing 4.42.

Listing 4.42: Re-allocating list size to twice as large? .

0 Object ** p_temp_item ;

1 p_temp_item = (Object **)

2 realloc (p_item , 2* sizeof(Object *) * max_count);

3 p_item = p_temp_item ;

4 max_count *= 2;
? '

The default copy constructor and assignment operator provided by C++ only do “shal-
low” copies, meaning any dynamically allocated data items are not copied. Since the revised

9The variable name is changed from list to explicitly depict that this is a pointer with dynamically

allocated memory.
10Preliminary investigation running the Bounce benchmark and Saucer Shoot on both Linux Mint and

Windows 7 suggests about 20% of the time when a list needs to expand, the memory block can be extended

via realloc(), while 80% of the time the new block must be allocated elsewhere.

4.5. The Game World 89

List class has dynamically allocated memory for the items, a new copy constructor and as-
signment operator need to be created, each doing a “deep” copy. The copy constructor and
assignment operator prototypes look like:

Listing 4.43: Copy and assignment operator prototypes
? .

0 ObjectList :: ObjectList (const ObjectList &other);

1 ObjectList &operator =(const ObjectList &rhs);
? '

In the assignment operator, memory for the copy needs to be dynamically allocated and
copied over, along with the static attributes:

Listing 4.44: Deep copy of list memory
? .

0 p_item = (Object **) malloc(sizeof(Object *) * other. max_count);

1 memcpy(p_item , other.p_item , sizeof(Object *) * other. max_count);

2 max_count = other.max_count ;

3 count = other.count;
? '

The assignment operator is similar, but with two additions before doing the deep copy:
1) the item being copied, rhs, must be checked to see if it is the same object (*this) to
avoid copying the list over itself. Doing this check makes sense for efficiency and can also
prevent some crashes in copying the memory over itself; 2) if the current object (*this) has
memory allocated (p item is not NULL), then that memory should be free()’d. Not doing
this results in a memory leak.

Note, the above code needs additional error checking (not shown) since calls to malloc()
and realloc() can fail (returning NULL).

Lastly, the ObjectList destructor is not shown, but needs to check if (p item is not
NULL), and, if so, then that memory needs to be free()’d.

4.5.3 Development Checkpoint #3!

If you have not continued to do so, resume development now.

1. Create the Vector and Object classes, using the headers from Listing 4.26 and List-
ing 4.31, respectively. Add Vector.cpp and Object.cpp to the project and stub out
each method so it compiles.

2. Implement both Vector and Object. Then, test even though the logic is fairly simple
in both of these classes since they are primarily holders of attributes.

3. Create the ObjectList class, using the header from Listing 4.33. Refer to Listing 4.32
for method implementation details, remembering that ObjectList uses a static array
of Object pointers. Add .cpp code to the project and stub out each method so it
compiles.

4. Implement ObjectList and test. At this point, write a test program that inserts and
removes elements from an ObjectList. Be sure to test boundary conditions (e.g., index
the list out of bounds - it should throw an exception). Check if the isFull() method
works, too, when the list reaches maximum size. Test cases where the list is empty,
too.

4.5. The Game World 90

Tip 11! Array index in C++. Remember that in C/C++, arrays begin at 0
and end at one less than the allocated size. For example, given an array of integers
allocated as int item[3], the first array item is item[0] and the last array item is
item[2]. In particular, for code that iterates through the entire array, make sure
that the ends of the array are not crossed. In general, when iterating through arrays,
the boundary conditions (beginning and end of the loop) should be double-checked
carefully.

Make sure to test all the above code thoroughly to be sure it is trustworthy (robust).
Make sure the code is easy to read and commented sufficiently so it can be re-factored later
as needed – the Object class is definitely re-visited as game objects grow in attributes and
functionality.

