/F _\ ' J7
PI0E—d NN _JI1TTT
Fid il l’JIIJlIJIIIIIlI'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #14

Scene Graph

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.

4.17. End Game (optional) 231

4.17 End Game (optional)

Up to this point, Dragonfly is a fairly full-featured, completely functional game engine. A
few potential enhancements remain, however, that bring in elements common to many game
engines and improve performance, appearance and functionality.

4.17.1 Scene Graphs (optional)

Scene graphs are data structures that arrange elements of a graphics scene in order to
provide more efficient rendering. For example, when drawing objects in a 3d scene, a scene
graph might arrange the objects based on distance from the camera. Rendering the frame
then draws the objects that are farthest away from the camera first, proceeding to the
objects that are closest to the camera since the closer objects may occlude those behind.

Consider Dragonfly, where Objects have altitude (see Section 4.8.5 on page 123). Ob-
jects that are at lower altitude are drawn first before Objects at higher altitude, allowing
the higher altitude to be layered “on top” of the lower ones, as necessary. Without a scene
graph, Dragonfly implements altitude by iterating through all the Objects for each altitude
implementation, as in Listing 4.86 on page 124 — effectively, doing nx MAX_ALTITUDE com-
parisons, where n is the number of Objects in the game world. With a scene graph, the
objects can be arranged by altitude, making the WorldManager draw() method only go
through the list of Objects once, so only doing n comparisons.

For a game engine, a scene graph often arranges objects for more efficient queries,
also. Objects that are not solid do not cause collisions. Without any other organization,
detecting whether a moving object collides with any other object must look through all
objects, regardless of whether they are solid or not. Thus far, Dragonfly is implemented
this way, too, as in Listing 4.108 (page 147), iterating through all Objects, checking for
collision with every Object, even the non-solid ones. Other common organizations group
Objects by location in the game world, allowing selection and iteration over only those
Objects at or near a specific location.

Since a scene graph organizes Objects, whether for drawing or query efficiency, it is
naturally part of the WorldManager. In fact, an easy way of viewing a scene graph is that
it replaces a simple list of game Objects with a more complex data structure where the
Objects are organized and indexed in different ways. In Dragonfly, this means replacing
ObjectList m updates on line 10 of Listing 4.57 (page 101) with SceneGraph scene_-
graph.

The header file for SceneGraph is shown in Listing 4.210. SceneGraph needs to #include
both Object.h and ObjectList.h. The definition of MAX_ALTITUDE on line 3 has been
moved from WorldManager.h to SceneGraph.h.

To support efficient queries by the WorldManager (e.g., to provide a list of all the solid
objects), starting at line 8, the SceneGraph defines three lists of Objects. The first, objects,
is a list of all the Objects in the game — formerly, this was m_updates in the WorldManager.
The second, solid_objects, is a list of just the solid Objects in the game. The third,
visible objects, is an array of ObjectLists, with each element being a list of Objects
at that altitude. Methods to add and remove objects to the scene graph are provided by
insertObject () and removeObject (), respectively.

s

Ye

5
s

16
17
18

19

NN NN N
A W N = O

)
N O

NN

4.17. End Game (optional) 232

To support queries that may be made by the WorldManager (or even the game program-
mer), SceneGraph includes methods: activeObjects(), which returns all active Objects;
inactiveObjects (), which returns all inactive Objects; solid0Objects (), which returns
all solid Objects; and visibleObjects(), which returns all visible Objects at a given al-
titude. The methods all return an empty ObjectList if there are no Objects matching the
query. The method updateAltitude() is invoked when an Object re-positions itself to a
new altitude and the method updateSolidness() is invoked when an Object updates its
solidness.

Listing 4.210: SceneGraph.h

#include " Object.h”
#include " ObjectList.h”

const int MAX_ALTITUDE = 4;

class SceneGraph {

private:
ObjectList m_objects; // All Objects
ObjectList m_solid_objects; // Solid objects.

ObjectList m_visible_objects [MAX_ALTITUDE+1]l; // Visible objects.

public:
SceneGraph () ;
~“SceneGraph () ;

// Insert Object into SceneGraph .
int insertObject (Object *p_o);

// Remove Object from SceneGraph .
int removeObject (Object *p_o);

// Return all active Objects. Empty list if mnone.
ObjectList activeObjects () const;

// Return all active, solid Objects. Empty list if none.
ObjectList solidObjects () const;

// Return all active, wvisible Objects at altitude. Empty list if none.
ObjectList visibleObjects (int altitude) const;

// Return all inactive Objects. Empty list if none.
ObjectList inactiveObjects () const;

// Re—position Object in SceneGraph to new altitude.
// Return 0 if ok, else —1.
int updateAltitude (Object *p_o, int new_alt);

// Re—position Object in SceneGraph to new solidness .
// Return 0 if ok, else —1.
int updateSolidness (Object *p_o, Solidness new_solidness);

// Re—position Object in SceneGraph to new wvisibility .
// Return 0 if ok, else —1.

4.17. End Game (optional) 233

44 int updateVisible (Object *p_vo, bool new_visible);

15

16 // Re—position Object in SceneGraph to new activeness.
a7l // Return 0 if ok, else —1.

18 int updateActive (Object *p_o, bool new_active);

9| F;

Implementation of SceneGraph insertObject () is shown in Listing 4.211. The method
first inserts the Object into the objects list, since that is the “master” list that contains
all Objects. Then, if the Object is solid, it is added to the solid objects list. Next, the
Object’s altitude is checked — if it is not in range (calling valueInRange(altitude, O,
MAX_ALTITUDE), see line 1 in Listing 4.156 on page 186), it returns an error (-1). Otherwise,
the object is inserted into the visible objects list at the correct altitude. Note, the
calls to ObjectList: :insert() need to be error checked. If they encounter an error, an
appropriate message should be written to the logfile and insertObject () should return -1.

While it may seem that keeping 3 object lists is inefficient, remember that game objects
are stored as pointers to Objects, thus manipulating and copying such lists is not actually
doing the much more expensive operation of copying the memory space for each Object. As
a refresher, see Section 4.5.2 on page 4.5.2 for details on the ObjectList implementation.

Listing 4.211: SceneGraph insertObject()

// Insert Object into SceneGraph .
1| int SceneGraph::insertObject (Object *p_o)
2

// Add object to list.

4 insert p_o into objects list

6 // If solid, add to solid objects list.
7 if p_o -> isSolid () then

8 insert p_o into solid_objects 1list

9 end if

11 // Check altitude.

12 if not valueInRange (p_o->getAltitude (), O, MAX_ALTITUDE) then
13 return error

14 end if

16| // Add to wvisible objects at right altitude.
17 insert p_o into visible_objects [p_o->getAltitude ()] 1list

Implementation of the SceneGraph removeObject() is basically the “undo” of the
insertObject () method, as shown in Listing 4.212. The indicated Object (p-o) is re-
moved from the objects, solid objects and visible objects lists. As always, the calls
to ObjectList: :remove () need to be error checked, writing an appropriate message to the
logfile and returning -1 on encountering an error.

Listing 4.212: SceneGraph removeObject|()

ol // Remove Object from SceneGraph .
1| int SceneGraph::removeObject (Object *p_o)
2

remove p_o from objects list

s

Ye

5
s}

4.17. End Game (optional) 234

if p_o is solid then
remove p_o from solid_objects 1list
end if

remove p_o from visible_objects [p_o->getAltitude ()] 1list

if no errors then // means no errors in any of the above
return ok

else
return error

end if

The methods allObjects() and solidObjects() just return objects and solid -
objects, respectively. visibleObjects() first checks that the parameter altitude is in
range (calling valueInRange(altitude, 0, MAX_ALTITUDE), see line 1 in Listing 4.156 on
page 186), then returns visible objects[altitude].

Objects may change their attributes, such as a SPECTRAL Object becoming SOFT or an
Object changing altitude from 3 to 4. All such changes need to modify the contents of
the SceneGraph lists, solid objects and visible objects[], respectively. Listing 4.213
shows the implementation for updating the solidness of an Object. The first block of code
checks if the Object is solid and, if so, removes it from the solid objects list. The second
block of code checks if the new solidness value for the Object is solid (HARD or SOFT) and,
if so, inserts it into the solid_objects list. Error checking on the ObjectList: :insert ()
calls is needed, as usual. Note, the solidness attribute for the Object is not changed — that
is a private value for Object and is done in the Object setSolidness () method.

Listing 4.213: SceneGraph updateSolidness()

// Re—position Object in SceneGraph to new solidness.
// Return 0 if ok, else —1.

int SceneGraph::updateSolidness (Object *p_o, Solidness new_solidness)

// If was solid, remove from solid objects list.
if p_o->isSo0lid () then

remove p_o from solid_objects list
end if

// If is solid, add to list.

if new_solidness is HARD or new_solidness is SOFT then
insert p_o into solid_objects 1list

end if

/) All is well.
return ok

Listing 4.214 shows the implementation for updating the altitude of an Object. First,
the altitude values for both the new and old altitudes are checked for validity. It may seem
odd to check the old value, since it seems it must be right, but it could have been corrupted
someplace — if it was, trying to remove the Object from the visible objects[] list at the
altitude may result in a crash. If both old and new are in the valid range, the Object is first
removed from visible objects[] at the old altitude, then added to visible objects[]

-
"ﬁ?,‘
.
* 0\

4.17. End Game (optional) 235

at the new altitude. Error checking on the ObjectList::insert() calls are needed, as
usual.

Listing 4.214: SceneGraph updateAltitude()

// Re—position Object in scene graph to new altitude .
// Return 0 if ok, else —1.
int SceneGraph::updateAltitude (Object *p_o, int new_alt)

// Check if new altitude in valid range.

if not valueInRange (new_alt, O, MAX_ALTITUDE) then
return error

end if

// Make sure old altitude in wvalid range.

if not valueInRange (p_o->getAltitude (), O, MAX_ALTITUDE)) then
return error

end if

// Remove from old altitude.
remove p_o from visible_objects [p_o->getAltitude ()]

// Add to new altitude.

insert p_o into visible_objects [new_alt]

// All is well.

return ok

Calls to updateSolidness () and UpdateAltitude () are made from Object, specifically
Object setSolidness() and Object setAltitude(), respectively. The needed extension
to Object setSolidness() to support SceneGraph is shown in Listing 4.215. The first
block of code checks if the new solidness is valid (HARD, SOFT or SPECTRAL). If not, an error
is returned. Otherwise, the updateSolidness() method of the SceneGraph is called and
solidness is set in the Object.

Listing 4.215: Object class extension to setSolidness() to support SceneGraph

// Set object solidness, with checks for consistency .
// Return 0 if ok, else —1.
int Object::setSolidness (Solidness new_solidness)

// If solidness not walid, then ignore.

if new_solidness not (HARD or SOFT or SPECTRAL) then
return error

end if

// Update scene graph and solidness.
scene_graph.updateSolidness(this, new_solidness)
solidness = new_solidness

/) All is well.
return ok

Extension to Object setAltitude () to support SceneGraphs is shown in Listing 4.216.
The first block of code checks if the new altitude is in a valid range. If not, an error is

-

» 0%
e,
.

"\
\

4.17. End Game (optional) 236

returned. Otherwise, the SceneGraph updateAltitude() method is called and altitude
is set in the Object.

Listing 4.216: Object class extension to setAltitude() support SceneGraphs

// Set Object altitude.

// Checks for in range [0, MAXALTITUDE].
// Return 0 if ok, else —1.

int Object::setAltitude (int new_altitude)

// If altitude outside of range, then ignore.

if not valueInRange (new_altitude, 0, MAX_ALTITUDE) then
return error

end if

// Update scene graph and altitude.
scene_graph .updateAltitude (this, new_altitude)
altitude = new_altitude

// All is well.

return ok

With the SceneGraph in place, the Dragonfly WorldManager needs to be refactored
to use the SceneGraph to manage game world Objects instead of storing the ObjectLists
directly. Listing 4.217 shows the change in the WorldManager needed to use a SceneGraph.
Basically, the attribute ObjectList m_updates is replaced with SceneGraph scene_graph.
The method getSceneGraph() returns a reference to scene_graph.

Listing 4.217: WorldManager extensions to support SceneGraph

private:
SceneGraph scene_graph; // Storage for all Objects.

public:
// Return reference to the SceneGraph .
SceneGraph &getSceneGraph () const;

Then, internally, each of the WorldManager methods in Listing 4.218 needs to be refac-
tored to support the SceneGraph. The methods insertObject() and removeObject()
call and return scene_graph.insertObject() and scene_graph.removeObject (), respec-
tively. The methods update () and setViewFollowing() call scene_graph.allObjects()
to iterate through all the world Objects. The method draw() iterates through each altitude,
calling scene_graph.visibleObjects() for each altitude. The method getCollisions()
checks for collisions only with Objects in the ObjectList returned from scene_graph-
.solid0Objects().

Listing 4.218: WorldManager methods to refactor to support SceneGraph

ObjectList getAllObjects ()

int insertObject (Object *p_o)

int removeObject (Object *p_o)

int setViewFollowing (Object *p_new_view_following)

void update ()

void draw ()

ObjectList getCollisions (const Object *p_o, Vector where)

B W N = O

4.17. End Game (optional) 237

4.17.1.1 Inactive Objects (optional)

For many games, it is useful for the game program to have some game objects be ignored by
the engine for some time, but without removing the objects from the game world altogether.
For example, the Saucer Shoot tutorial game (Section 3.3.11 on page 40) has the main menu
become inactive when the game is being played, becoming active again after the player’s
ship has been destroyed. Such inactive objects are not drawn by the engine, are neither
moved nor considered in collisions, nor do they receive any events.

In order to support inactive Objects in Dragonfly, the Object class is extended with
an attribute and methods to support whether an Object is active or inactive, shown in
Listing 4.219. The boolean attribute is_active is true when the Object is active (note, all
the Objects that have been dealt with to this point are active) and false when the Object
is inactive and not acted upon by the engine. This value can be set via the setActive ()
method and queried via the isActive () method.

Listing 4.219: Object class extensions to support inactive objects

private:
bool is_active; // If false, Object not acted wupon.

public:

// Set activeness of Object. Objects not active are not acted upon
// by engine.

// Return 0 if ok, else —1.

int setActive (bool active=true);

// Return activeness of Object. Objects not active are not acted upon
// by engine.
bool isActive () const;

As shown in Listing 4.220, the method setActive () allows the game programmer to set
the Object activeness, changing is_active as appropriate. Objects are active (is_active
is true) by default, set in the constructor. In addition, the SceneGraph is obtained from
the WorldManager and the SceneGraph updateActive () method is called.

Listing 4.220: Object setActive()
// Set activeness of Object. Objects not active are not acted upon
// by engine.
// Return 0 if ok, else —1.
int Object::setActive (bool active)

// Update scene graph.
scene_graph = WorldManager getSceneGraph ()
scene_graph .updateActive (this, active)

// Set active value.
is_active = active

The SceneGraph is refactored to have an additional ObjectList, one that holds only
inactive Objects while the main object list will hold active Objects. Listing 4.221 shows the
changes to the SceneGraph attributes for this. The objects ObjectList has been renamed

-
‘Oﬁﬁ,‘
°
* 0\

4.17. End Game (optional) 238

to active_objects to differentiate it from the ObjectList holding the inactive objects,
inactive_objects.

Listing 4.221: SceneGraph extensions to support inactive Objects

private:
ObjectList active_objects; // All active Objects.
ObjectList inactive_objects; // All inactive Objects.
public:

// Return all active Objects. Empty list if mnone.
ObjectList activeObjects () const;

// Return all inactive Objects. Empty list if none.
ObjectList inactiveObjects () const;

// Re—position Object in SceneGraph to new activeness.
// Return 0 if ok, else —1.

int updateActive (Object *p_o, bool new_active);

The methods activeObjects() and inactiveObjects() return active_objects and
inactive_objects, respectively.

Listing 4.222 shows the SceneGraph updateActive () method. The first block of code
checks if the activeness is being changed. If not, there is nothing more to do and an
“ok” (0) is returned. The second block of code does the actual work. If the Object was
active and became inactive, remove () is called on active_objects, visible_objects[]
and, if solid, solid_objects and the Object is inserted into the inactive_objects list.
Otherwise, if the Object was inactive and became inactive, insert () is called on active_-
objects, visible objects[] and, if solid, solid_objects and the Object is removed from
the inactive_objects list. All method calls should be error checked and an error (-1)
returned, as appropriate. Otherwise, “ok” is returned at the end.

Listing 4.222: SceneGraph updateActive()

// Re—position Object in SceneGraph to new activeness.
// Return 0 if ok, else —1.
int SceneGraph::updateActive (Object *p_o, bool new_active)

// If activeness wunchanged, nothing to do (but ok).
if p_o->isActive() is new_active then

return ok
end if

// If was active then now inactive, so remove from lists.
if p_o->isActive () then

active_objects .remove(p_o)
visible_objects [p_o->getAltitude ()].remove(p_o)
if p_o->isSo0lid () then

solid_objects .remove(p_o)
end if

4.17. End Game (optional) 239

N

// Add to inactive list
inactive_objects .insert (p_o)

else // Was active, so add to lists.

NN N NN

active_objects .insert(p_o)

YOt AR W N =

)

1

V)

visible_objects [p_o->getAltitude ()].insert(p_o)

NN
© ®

if p_o->isSo0lid () then
30 solid_objects .insert(p_o)
31 end if

33 // Remove from inactive list
34 inactive_objects .remove (p_o)

36 end if

38| // All is well.
39 return ok

The WorldManager getAllObjects() method is refactored, as in Listing 4.223. A
boolean parameter inactive is provided to indicate whether the method should return
only active Objects (inactive is false, the default) or both active and inactive Objects
(inactive is true).

Listing 4.223: WorldManager extensions to support inactive Objects

ol // Return list of all Objects in world.

// If inactive is true, include inactive Objects.
// Return NULL if list is empty.

ObjectList getAllObjects (bool inactive=false);

W e

The revised getAl10bjects() is shown in Listing 4.224. The inactive case can use the
overloaded ‘+’ operator from Section 4.5.2.2 (page 86).

Listing 4.224: WorldManager extensions to getAllObjects() to support inactive Objects

ol // Return list of all Objects in world.

1| // If inactive is true, include inactive Objects.

2| // Return NULL if list is empty.

3| ObjectList WorldManager ::getAllObjects (bool inactive) const

4

5 if inactive then

6 return scene_graph.activeObjects () + scene_graph.inactiveObjects ()
7 else

8 return scene_graph.activeObjects ()

9 end if

The Manager onEvent () method needs to be modified to check if an interested Object
is actually active before sending it an event. This is shown on line 2 of Listing 4.225.

Listing 4.225: Manager extension to onEvent() to support inactive Objects

1 for j = 0 to object_list[i]

4.17. End Game (optional)

2 if object_list [i]1[j] -> isActive () then
3 call object_list[i][j] -> eventHandler () with p_event
1 end if

5 end for

240

Lastly, WorldManager shutDown() should be revised to call getA110bjects(true) to

delete both active and inactive Objects when the engine is shut down.

4.17.1.2 Invisible Objects (optional)

Another useful property for many game objects is to become invisible. For a game object,
invisibility could be a special power, say, for the hero or a bad guy to vanish from sight —
but as such, it is rather rare. However, invisibility is commonly used to limit the player’s
ability to see objects that may be on the window, but should not yet be shown to the player
because of the player’s avatar’s orientation, or because of terrain or other “fog of war” type
of effect. From a game engine perspective, an invisible game object is not drawn, but is

still updated each game loop and can be collided with, if solid, as appropriate.

To support invisibility, a new attribute is added to Object with methods for getting
and setting it, shown in Listing 4.226. The method isVisible() returns the value of

is_visible.

Listing 4.226: Object class extensions to support invisibility

0| private:
1 bool is_visible; // If true, object gets drawn.

public:

5 // Return 0 if ok, else —1.

6 int setVisible (bool visible=true) ;

9 bool isVisible () const;

| // Set wvisitbility of Object. Objects not wvisible are not drawn.

8 // Return wvisibility of Object. Objects not wvisible are not drawn.

As shown in Listing 4.227, the method setVisible () allows the game programmer to set
the Object visibility, changing is_visible as appropriate. Objects are visible (is_visible
is true) by default. In addition, the SceneGraph is obtained from the WorldManager and

the SceneGraph updateVisible () method is called.

Listing 4.227: Object setVisible()

ol // Set wisibility of Object. Objects not visible are not drawn.
1| // Return 0 if ok, else —1.
2| int Object::setVisible (bool visible)

| // Update scene graph.
5 scene_graph = WorldManager getSceneGraph ()
6 scene_graph .updateVisible (this, visible)

sl // Set wisibility wvalue.
9 is_visible = visible

s

Ye

5
s}

4.17. End Game (optional) 241

Listing 4.228 shows the SceneGraph updateVisible () method. The first block of code
checks if the visibility is being changed. If not, there is nothing more to do and an “ok”
(0) is returned. The second block of code does the actual work. If the Object was visible
and went invisible, remove () is called on the ObjectList, otherwise insert () is called, at
the right altitude (p-o->getAltitude()). All method calls should be error checked and an
error (-1) returned, as appropriate. Otherwise, “ok” is returned at the end.

Listing 4.228: SceneGraph updateVisible()

// Re—position Object in scene graph based on wvisibility .
// Return 0 if ok, else —1.
int SceneGraph::updateVisible (Object *p_o, bool new_visible)

// If wisibility unchanged, nothing to do (but ok).
if p_o->isVisible () is new_visible then

return ok
end if

// If was wvisible then now invisible , so remove from list.
if p_o->isVisible () then
visible_objects [p_o->getAltitude ()].remove(p_o)
else // Was invisible , so add to list.
visible_objects [p_o->getAltitude ()].insert(p_o)
end if

// All is well.

return ok

4.17.2 Development Checkpoint #14!

To develop the SceneGraph for Dragonfly, use the following steps:

1. Create the SceneGraph class, referring to Listing 4.210 as needed. Add SceneGraph. cpp
to the project and stub out each method so the SceneGraph compiles.

2. Implement the SceneGraph insert0Object () and removeObject () methods based on
Listing 4.211 and Listing 4.212, respectively. Test outside of the game engine by
adding and removing Objects.

3. Implement the SceneGraph updateSolidness() method, based on Listing 4.213 and
updateAltitude(), based on Listing 4.214.

4. Extend the Object class setSolidness () to support a SceneGraph, referring to List-
ing 4.215. Do the same for setAltitude (), referring to Listing 4.216.

5. Extend the WorldManager to support a SceneGraph, as in Listing 4.217. Refactor
the methods shown in Listing 4.218, as appropriate.

6. Test by verifying that previous code that worked without SceneGraphs still works,
such as test code from the last development checkpoint (on page 230).

If support for inactive Objects is desired (optional), continue development:

s

Ye

5
s

4.17. End Game (optional) 242

1. Extend Object to support activeness based on Listing 4.219, implementing setActive ()
based on Listing 4.220.

2. Refactor the SceneGraph based on Listing 4.221, implementing updateActive () based
on Listing 4.222.

3. Refactor the WorldManager based on Listing 4.223, extending getAl1l0bjects() ()
to return inactive Objects, too, based on Listing 4.224.

4. Test with game code that sets another game object to inactive and back, say, based
upon key presses.

If support for invisibility is desired (optional), continue development:

1. Extend Object to support invisibility based on Listing 4.226.

2. Implement Object setVisible() based on Listing 4.227 and SceneGraph update-
Visible (), based on Listing 4.228.

3. Test with game code that has game objects set themselves to invisible and back, say,
depending upon key presses or positions on the screen.

s

Ye

5
s

