/F .\ ' J7
PI0E—d NN _JI1TTT
Fid il IIJlIJIIJIIIIIII'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #13

View Objects

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.



4.16. View Objects 214

4.16 View Objects

Thus far, Dragonfly has been discussed in terms of game objects — objects that interact
with each other in the game world. Examples from the Saucer Shoot tutorial (Chapter 3)
include Saucers, Bullets and the Hero. Game objects are the basic building blocks for games
and so are the primary types of objects that a game engine must support.

However, most games include other types of objects that do not interact with other
objects in the game world. Such objects may display information or allow a player to
control game settings. For example, an object that displays a player’s score does not collide
with the hero, spaceships, rocks or any other typical game objects. Buttons and other menu
objects that let players choose settings, weapons or other game options do not interact with
game objects in the world.

In Dragonfly, supporting such view-only objects is done through a new engine object
type, a ViewObject. ViewObjects inherit from the base Object class. This allows the
rest of the engine code, such as the WorldManager and all the utilities such as lists, to
handle ViewObjects as they would standard Objects without change. What ViewObjects
do have that is different are additional attributes that make it more convenient for game
programmers to create “heads-up display” (or HUD) types of interfaces.

While game objects are positioned in game world coordinates, ViewObjects are posi-
tioned relative to the screen coordinates. For example, the game programmer may want
to display the points in the upper right corner of the screen, or the health in the bottom
left corner of the screen. To support the abstraction of screen placement rather than game
world position, ViewObjects use an enum named ViewObjectLocation (as defined on line 8
of Listing 4.190) with positions of top or bottom and left, center and right.

Beyond what is available for Objects, ViewObjects have additional attributes shown
starting on line 24 of Listing 4.190. These include a string (view_string) that provides a
text label for the ViewObject (e.g., “points”), an integer (value) to hold the ViewObject
value (e.g., the player’s points, say 150), a boolean (draw_value) that indicates if said value
should be drawn or not, a boolean (border) that indicates if the ViewObject should be
drawn with a decorative border, and an integer (color) that provides an optional color for
the ViewObject (if different than the default color). Methods to get and set view_string,
value, border, draw_value, and color are provided.

The ViewObject has a custom eventHandler () (line 42) since ViewObjects respond to
special view events provided by the game programmer to, say, update the player’s points
or other game-specific value.

Listing 4.190: ViewObject.h

// System includes.
#include <string>

3| // Engine includes.

#include " Object.h”
#include " Event.h”

// General location of ViewObject on screen.
enum ViewObjectLocation {
UNDEFINED=-1,

s

Ye

5
s




20

4.16. View Objects

g

class ViewObject

TOP_LEFT,
TOP_CENTER,
TOP_RIGHT ,
CENTER_LEFT,
CENTER_CENTER ,
CENTER_RIGHT,
BOTTOM_LEFT,
BOTTOM_CENTER ,
BOTTOM_RIGHT,

private:

std::string view_string;

int m_value;

bool m_draw_value;

bool m_border;

Color m_color;
ViewObjectLocation m_location;

public:

// Construct ViewObject.

public Object {

Label for walue (e.g.,
Value displayed (e.g.,
True if should draw value.
True if border around display.
Color for text (and border).
Location of ViewObject.

// Object settings: SPECTRAL, maz alt.

// ViewObject defaults:
ViewObject () ;

border,

// Draw view string and wvalue.
virtual int draw () override;

// Handle ‘view’ event

// Return 0 if ignored, else 1

top_center ,

if tag matches view_string (others
if handled .

default

color ,

ignored ).

virtual int eventHandler (const Event *p_e) override;

// General location

of ViewObject on screen.

void setLocation(ViewDbjectLocation new_location) ;

// Get general location

of ViewObject on screen.

ViewObjectLocation getLocation () const;

// Set wview value.
void setValue (int new_value);

// Get view value.
int getValue () const;

// Set view border (true =
// Get view border (true =
bool getBorder () const;

// Set wview color.
void setColor (Color mnew_color);

display
void setBorder (bool new_border);

display

border) .

border).

"Points”).
points).

draw_value .

215

=A,




16
17

18

4.16. View Objects 216
// Get view color.
Color getColor () const;

// Set wview display string.
void setViewString (std::string new_view_string);

// Get view display string.
std::string getViewString () const;

// Set true to draw wvalue with display string.
void setDrawValue (bool new_draw_value = true);

// Get draw wvalue (true if draw wvalue with display string).
bool getDrawValue () const;

g

Listing 4.191 shows the ViewObject constructor. First, it makes Object settings ap-
propriate for a ViewObject. Specifically, it puts the Object at the highest altitude so it is
visible above any other game objects, makes the ViewObject spectral so it does not collide
with any other objects and sets its type to “ViewObject”. Second, the ViewObject-specific
settings are made, with a value of 0, a border being drawn, the location in the top center
of the screen and the default color. Lastly, the ViewObject registers for interest in a view
event, described in Section 4.16.1 on page 219.

Listing 4.191: ViewObject ViewObject/()
// Construct ViewObject.
// Object settings: SPECTRAL, max altitude .
// ViewObject defaults: border, top_center , default color, draw_value.
ViewObject ::ViewObject ()

// Initialize Object attributes.
setSolidness (SPECTRAL)
setAltitude (MAX_ALTITUDE)
setType (" ViewObject")

// Initialize ViewObject attributes.
setValue (0)

setDrawValue ()

setBorder (true)

setLocation (TOP_CENTER)

setColor (COLOR_DEFAULT)

// Register interest in view events.
registerInterest (VIEW_EVENT) // if Section 4.15 implemented.

Pseudo code for ViewObject setLocation() method is shown in Listing 4.192. Basi-
cally, the switch statement starting on line 4 determines the (x,y) location. Only the first 2
(of 9 total) entries of the statement are shown, with the missing pieces following the same
pattern. The y coordinate is at 1 if on the top of the window, or world manager.get-
View() .getVertical ()-1 if on the bottom.

The x coordinate is at 1/6th, 3/6th, and 5/6th the horizontal distance (world manager-
.getView() .getHorizontal()), depending on if it is left, right or center, respectively. The

“olle,

"\
\




NN NN
> w

~

4.16. View Objects 217

y_delta variable is used to adjust the vertical distance by -1 if the ViewObject is at the
top and does not have a border, and by +1 if the ViewObject is at the bottom and does
not have a border. On line 21, the position is actually shifted and on line 24 the position of
the ViewObject is moved to the new position. Note, as given, Listing 4.192 assumes new -
location is one of the nine valid locations whereas in actual code this should be checked
and no action should be taken if new_ location is invalid.

Listing 4.192: ViewObject setLocation()

// General location of ViewObject on screen.
ViewObject ::setLocation (ViewObjectLocation new_location)

// Set new position based on location .
switch (new_location)
case TOP_LEFT:
p-setXY(WorldManager getView () .getHorizontal () * 1/6, 1)
if getBorder () is false then
y_delta = -1
end if
break;
case TOP_CENTER:
p-setXY(WorldManager getView () .getHorizontal () * 3/6, 1)
if getBorder () is false then
y_delta = -1
end if
break;

end switch
// Shift, as needed, based on border.

p-setY(p.getY() + y_delta)

// Set position of object to new position .
setPosition (p)

// Set new location .
location = new_location

The corresponding ViewObject getLocation() is not shown, but should merely return
location.

ViewObject setBorder () does a bit more than just set border to the new value. As
shown in Listing 4.193, it also calls setLocation() since, if the border has changed, the
(x,y) location on the screen needs to be adjusted based on the new border value.

Listing 4.193: ViewObject setBorder()

// Set wview border (true = display border).
void ViewObject::setBorder (bool new_border)

if border != new_border then
border = new_border

// Reset location to account for border setting.
setLocation (getLocation ())




10

)

~

4.16. View Objects 218

end if

The ViewObject draw() method is shown in Listing 4.194. The first code block con-
structs the string to draw, created from the display string and the integer holding the
value. The second block of code actually draws the string, invoking the drawString()
(see Listing 4.84 on page 123) method from the DisplayManager, along with a border (if
appropriate). Note, since the ViewObject’s (x,y) location is in screen (or window) coordi-
nates, as opposed to game world coordinates like most Objects, the ViewObject position
needs to be translated to world coordinates via the utility function viewToWorld(). The
function viewToWorld() does the reverse translation as worldToView(), in Listing 4.159
on page 189.

Listing 4.194: ViewObject draw()

// Draw view string and value.
int ViewObject ::draw ()

// Display view_string + value.
if border is true then

temp_str = " " + getViewString () + " " + toString(value) + " "
else

temp_str = getViewString() + " " + toString(value)
end if

// Draw centered at position .
Vector pos = viewToWorld (getPosition ())
DisplayManager drawString(pos, temp_str , CENTER_JUSTIFIED,
getColor ())
if border is true then
// Draw box around display .

end if

The toString() function used in Listing 4.194 on line 5 and line 7 is a useful utility
function to put in utility.cpp. Basically, it creates a stringstream, adds a number to
it, and return a string with the new contents. The full function is shown in Listing 4.195.

Listing 4.195: Utility toString()

#include <sstream>
using std::stringstream;

// Convert int to a string , returning string.
std::string toString(int i) {

std::stringstream ss; // Create stringstream .
ss << ij; // Add number to stream.
return ss.str(); // Return string with contents of stream.

While thus far, view objects could be done entirely outside the engine in “game pro-
grammer” code space, there is one part of the engine that is aware of ViewObjects — the
WorldManager’s draw() method. The extension required of the WorldManager to support
views is shown in Listing 4.196. Without views, the draw() method checked each Object to

‘vﬁﬁ.,
-
L4 \\



4.16. View Objects 219

see if they intersect the visible screen (see Listing 4.161 on page 190). ViewObjects may fail
this check since their positions are relative to the screen, not the game world. So, instead,
after checking for intersection, a dynamic_cast is made to see if the Object is a ViewObject.
If so, it is drawn. In other words, all ViewObjects are drawn each game loop, regardless of
position.

Listing 4.196: WorldManager extensions to draw() to support ViewObjects

// Only draw if Object would be visible (intersects view).

if boxIntersectsBox (box, view) or // Object in view,
dynamic_cast <ViewObject *> (p_o)) // or is ViewObject.
p_o -> draw()

end if

Tip 22! Dynamic cast. Dynamic casts can be used to ensure that a type con-
version is valid. When a class is polymorphic (it is a derived class with a virtual
function), a dynamic cast to the derived class returns the address of the derived
object, which can be interpreted as true, otherwise it returns NULL, which can be
interpreted as false. For example, consider Listing ??7. In the first if-then, the
pointer p_o points to the base Object so the dynamic cast returns false. In the
second if-then, the pointer p_o points to the derived ViewObject so the dynamic
cast returns true. Note! A dynamic cast will fail if there is not at least one method
marked as virtual in the base class. Having at least one virtual method makes
the class polymorphic.

4.16.1 View Event

View events are used by game programmers to signal the change in a view value. For
example, if the player scored 10 points, say by destroying a Saucer, a view event would be
created, given a value of 10, and passed to all ViewObjects (using onEvent () ). Listing 4.197
provides the header file for the EventView class, derived from the Event class (Listing 4.51
on page 96). Remember, in the constructor of a ViewObject, the Object already registered
for interest in a VIEW_EVENT (see Listing 4.191 on page 216). VIEW_EVENT is defined in
Listing 4.197 on line 2.

Like many other Events, the EventView is mostly a container, holding a string (tag)
which is a label associated with a specific ViewObject, an integer (value) that is used
to modify the value in the ViewObject, and a boolean (delta) that determines whether
the value either adjusts the ViewObject value (if delta is true) or replaces it (if delta
is false). Methods are provided to get and set these values. The default constructor
assigns VIEW_EVENT, 0 and false to tag, value and delta, respectively, and an alternate
constructor is provided to create an EventView with attribute values specified.

‘«:’{.,




o o

4.16. View Objects 220

Listing 4.197: EventView.h

#include " Event.h”

const std::string VIEW_EVENT = "df::view”;
class EventView : public Event {
private:
std::string m_tag; // Tag to associate .
int m_value; // Value for wview.
bool m_delta; // True if change in wvalue, else replace wvalue.
public:

// Create view event with tag VIEW.EVENT, wvalue 0 and delta false.
EventView () ;

// Create view event with tag, value and delta as indicated.
EventView(std::string new_tag, int new_value, bool new_delta);

// Set tag to new tag.
void setTag(std::string new_tag);

// Get tag.
std::string getTag() const;

// Set wvalue to new wvalue.
void setValue (int new_value) ;

// Get value.
int getValue () const;

// Set delta to new delta.
void setDelta(bool new_delta) ;

// Get delta.
bool getDelta () const;
};

With EventView specified, the ViewObject eventHandler() can now be defined as
shown in Listing 4.198. The first if statement confirms that the event is a VIEW EVENT.
If so, line 7 needs to cast the generic Event pointer as an EventView pointer. This cast
could either be a dynamic_cast (i.e., dynamic_cast <const EventView *>) (as described
in Section 4.5.5.3, page 99) or a static_cast (i.e., static_cast <const EventView *>) —
the latter is a compile-time cast that performs conversions that are safe and well-defined,
and it can often be faster than other types of casts Remember, the EventView * used here
needs to be declared const, too, in order to match the incoming type for p_e. This const
restriction is to ensure the eventHandler () is not modifying the attributes of the Event.

An EventView is then be checked to see if its tag matches the view string associated with
this ViewObject — if so, this event was intended for this ViewObject. At that point, the two
options are for delta to indicate that the EventView value is to change the ViewObject’s
value by that amount (if true), or that the EventView value is to replace the ViewObject’s
value (if false). Either way, the event his handled and ok is returned at line 20. If line 27

-
» 0%
N,
.

"\
\




4.16. View Objects 221

is reached, the event was not handled so 0 is returned.?'.

Listing 4.198: ViewObject eventHandler()

// Handle ‘view’ events if tag matches view_string (others ignored).
// Return 0 if ignored, else 1 (ok) if handled.

int ViewObject ::eventHandler (const Event *p_e)

N =

s w

// See if this is ‘view’ event.
5 if p_e->getType() is VIEW_EVENT then

7 EventView *p_ve = p_e

9 // See if this event is meant for this object.
10 if p_ve -> getTag() is getViewString () then

12 if p_ve -> getDelta() then
setValue (getValue () + p_ve->getValue()) // Change in wvalue.

14 else

15 setValue (p_ve->getValue ()) // New value.
17 end if

19 // Event was handled , return ok.

20 return ok

22 end if

end if

// If here, event was not handled. Call parent eventHandler().
return error

NN NN
S w

~

An example helps illustrate the use of ViewObjects and EventViews. Say a game pro-
grammer wants to have points associated with player achievements in a game and have
the points displayed in the top right of the screen. The game programmer might use the
code in Listing 4.199 at the top to create the view object, before the game actually starts.
This code creates a ViewODbject, associates “points” with the object, initializes the value
to 0, positions it at the top right of the screen and makes it yellow. The ViewObject code
automatically registers the object for interest in view events.

To change the value of the points ViewObject, say when an enemy object is destroyed,
the game programmer places the second block of code (starting on line 8) into the enemy
object destructor. When the enemy object is destroyed and the destructor is called, an
EventView is created, intended for the points ViewObject, providing a value of 10 that will
be added to the ViewObject value, since delta, the last parameter, is true. The event is
given to the ViewObject (actually all ViewObjects, but only the “points” ViewObject will
react) via the onEvent () call in the WorldManager.

Listing 4.199: Using ViewObjects
0(// Before starting game. .. 1

2LTf the parent Object eventHandler() did any work, it should be called but in the case of the engine at
this point, it does not

s

Ye

5
s}



4.16. View Objects 222

df ::ViewObject *p_vo = new df::ViewObject; // Used for points.
p_vo -> setViewString (" Points");

p_-vo -> setValue (0);

p_vo -> setLocation (df::TOP_RIGHT) ;

p_vo -> setColor (df::COLOR_YELLOW) ;

// In destructor of enemy object ...
df : : EventView ev(’ Points”, 10, true);
df :: WorldManager onEvent (&ev) ;

4.16.2 Buttons (optional)

A common user interface option is the button, represented graphically on the screen and
selected with a mouse. Computer users and game players are familiar with buttons, using
them for all sorts of game-related input. Buttons can provide in-game input, for example
for casting a spell, or before the game starts, for example for choosing what character to
be.

For Dragonfly, the button is similar to a ViewObject in that it is drawn on top of the
rest of the game objects and does not interact with the game world. The button needs to
respond to the mouse, too, so that it can recognize when the mouse hovers over it and when
it has been clicked.

Listing 4.200 shows the Button class, derived from the ViewObject class. The Button
adds two attributes for colors — one for the Button color when the button is highlighted
(the mouse is over it) (highlight_color, and one to keep track of the default color when
the button is not highlighted (default_color). Methods to get and set these attributes are
provided. The constructor needs to set default attribute values and register for interest in
mouse events.

Listing 4.200: Button.h

class Button : public ViewObject {

private:
Color m_highlight_color; // Color when highlighted .
Color m_default_color; // Color when not highlighted .
public:
Button () ;

// Handle "mouse” events .
// Return 0 if tignored, else 1.
int eventHandler (const Event *p_e) override;

// Set highlight (when mouse over) color for Button.
void setHighlightColor (Color new_highlight_color);

// Get highlight (when mouse over) color for Button.
Color getHighlightColor () const;

// Set color of Button.




N

NN N NN
YOt AR W N =

N o= O

= W

4.16. View Objects 223

void setDefaultColor (Color new_default_color);

// Get color of Button
Color getDefaultColor () const;

// Return true if mouse over Button, else false.
bool mouseOverButton (const EventMouse *p_e) const;

// Called when Button clicked.
// Must be defined by derived class.
virtual void callback() = 0;

};

The mouseOverButton () method is a helper to facilitate the Button in changing between
the highlight (when the mouse moves over it) and default colors (when the mouse is not
over it). Its functionality is depicted in Listing 4.201. A pointer to EventMouse event
is a parameter, with the return type boolean as true if the mouse is inside the button,
otherwise false.

The first block of code creates a bounding box for the Button which is wide enough for
the string and adjusted for with width and height if the Button has borders (an attribute
of the parent ViewObject). The next block of code simply calls boxContainsPosition()
(see Listing 4.156 on page 186) using the newly constructed Box and the mouse’s position,
and returns the appropriate boolean.

Listing 4.201: Button mouseOverButton()

// Return true if mouse over Button, else false.
bool MouseOverButton ::mouseOverButton (const EventMouse *p_e) const

// Create Box for Bultton.
width = getViewString ().size ()

height = 1
if getBorder () then // if Button has border
width = width + 4 // box wider by 2 spaces and
height = height + 2 // boz taller by 2 rows of ——
end if

Vector corner (getPosition().getX() - width/2,
getPosition () .getY() - height/2)
Box b(corner, width, height)

// If mouse inside button box, return true, else false.
if boxContainsPosition (b, p_e -> getMousePosition ())
return true
else
return false

With that method in place, the eventHandler () method, shown in Listing 4.202, is
ready to handle mouse actions. Since the Button only handles mouse events, this is checked
at the start, and any non-mouse event is not handled (return 0).

Next, the mouse event is checked to see if the mouse is inside the Button using mouseOverButton().

If it is not, then the Button color is changed to the default and the method returns (having
still handled the event).




4.16. View Objects 224

If the mouse is inside the Button, the Button color is changed to the highlight color and
if the mouse action is CLICKED, then the Button callback() is invoked.

Remember, although not shown, the Event pointer p_e needs to be casted when used as
an EventMouse (see Section 4.5.5.3 on page 99).

Listing 4.202: Button eventHandler()

ol // Handle "mouse” events.
1| // Return 0 if ignored, else 1.
2| int Button::eventHandler (const Event *p_e)

| // Check if mouse event.

5 if p_e -> getType() is not MSE_EVENT then
6 return 0 // not handled

7 end if

of // Check if mouse over button .
10 if mouseOverButton (p_e) then

12 // Highlight on.
13 setColor (highlight_color)

15 // Check if clicked.
16 if p_e -> getMouseAction () is CLICKED then

18 // Invoke callback.
19 callback ()

21 end if

23 // Highlight off.
24 setColor (default_color)

26| // Event handled .
27 return 1

Lastly, note that the callback() method on line 30 of Listing 4.200 is declared as
pure virtual (=0) meaning callback() must be defined before Button can be used. This is
because there is really no generic behavior common for all buttons when clicked, but instead
the game programmer must implement the button-specific behavior wanted.

An example can help illustrate how the Button class can be used. Consider a typical
start screen in a game, such as the start screen for Saucer Shoot in Section 3.3.11 on page 40,
where the player can choose to either “play” or “quit”. A quit button can be made as in
Listings 4.204 (header file) and 4.203 (code). In the header file, QuitButton is derived from
Button. The only method that must be defined is callback(), but in this case there is a
default constructor since some Button defaults are changed (such as the button text).

Listing 4.203: QuitButton.h — Example Quit button for game start screen

ol #include " Button.h”

1
2| class QuitButton : public df::Button {
3
| public:

s

Ye

5
s




5
6

7

4.16. View Objects 225

QuitButton () ;
void callback () ;
g

In the source code (Listing 4.203), the constructor sets the text displayed in the button to
“quit” and places the button in the bottom center of the screen. Other options could include
changing the button’s color(s) and the presence of a border. The callback() method is
invoked when the button is clicked. In this case, it sets game over to true, which causes the
game loop to exit and the game engine to shutdown (see Section 4.4.4 on page 72).

Listing 4.204: QuitButton.cpp — Example Quit button for game start screen

#include " GameManager.h"
#include " QuitButton .h”

QuitButton::QuitButton () {
setViewString (" Quit");
setLocation (df : : BOTTOM_CENTER) ;

}

// On callback , set game over to tlrue.
void QuitButton::callback () {
GM.setGameOver() ;

4.16.3 Text Entry (optional)

Another common user interface option is the text entry widget, typically represented as a
blank box that allows players to type in a string. Text entry is sometimes used for in-game
options, such as typing in an action for a classic text adventure, but more often for extra-
game options, such as entering the network address of a server in a multi-player game or
typing in player initials in a high score table.

Like buttons, text entry widgets are presented to the player above the rest of the game
objects and do not interact with the game world, like the Dragonfly ViewObject. Unlike
the Button, the text entry widget does not need a mouse, but does need to respond to
keyboard input as keys are pressed.

Listing 4.205 shows the TextEntry class, derived from the ViewObject class. TextEntry
adds three attributes related to the text — text for the text characters, 1imit to limit how
many characters can be entered and numbers_only, a boolean that if true, indicates that
only numbers are accepted. Methods to get and set these attributes are provided. The
constructor needs to set default attribute values and register for interest in keyboard events
and step events (the latter to handle blinking the cursor). The text attribute needs to be
initialized with all spaces (up to length 1imit) so that the text entry box is drawn properly
— this is done in setLimit (), in case the game programmer changes the limit.

Listing 4.205: TextEntry.h

ol // Engine includes.
1| #include " EventMouse.h”
2| #include " ViewObject .h”

3
1

class TextEntry : public ViewObject {

s

Ye

5
s




4.16. View Objects

private:
std::string m_text;

226

Text entered .

int m_limit; // Character limit in text.
bool m_numbers_only; // True if only numbers.
int m_cursor; // Cursor location .

char m_cursor_char; // Cursor character.

int m_blink_rate;

public:
TextEntry () ;

// Set text entered.
void setText (std::string new_text);

// Get text entered.
std::string getText () const;

// Handle "keyboard” events.
// Return 0 if ignored, else 1.

Cursor blink rate.

int eventHandler (const Event *p_e) override;

// Called when TextEntry enter hit.
// Must be defined by derived
virtual void callback () 0;

// Set limit of number of characters
void setlimit (int new_limit);

class .

// Get limit of number of characters
int getLimit () const;

// Set cursor to location .

void setCursor (int new_cursor) ;

// Get cursor location .
int getCursor () const;

allowed .

allowed .

// Set blink rate for cursor (in ticks).
void setBlinkRate (int new_blink_rate);

// Get blink rate for cursor (in ticks).

int getBlinkRate () const;

// Return true if

bool numbersOnly () const;

only numbers can be

entered .

// Set to allow only numbers to be entered.

void setNumbersOnly (bool new_numbers_only =

// Set cursor character.

true) ;

void setCursorChar (char new_cursor_char);

// Get cursor character.
char getCursorChar () const;

=A,




60
61

62

4.16. View Objects 227

// Draw viewstring + text entered.
virtual int draw () override;

63 };

The callback () method on line 29 is as for the Button class — declared as pure virtual
(=0) meaning callback() must be defined before TextEntry can be used. As for a Button,
the text entry specific behavior wanted must be implemented by the game programmer.

Most of the methods are implemented in a straightforward manner, with the exception
of the eventHandler (), shown in Listing 4.206.

If the event is a step event, the code block from lines 7 to 17 handles the cursor blinking
—the cursor in this case, is a character that toggles between an underscore (or whatever the
cursor character is set to) and a space. The method uses a static variable to keep track of
the blink count, counting up from a negative value. When the count passes zero, it toggles
the cursor (blinks it).

Listing 4.206: TextEntry eventHandler()

// Handle "keyboard” events.
// Return 0 if ignored, else 1.
int TextEntry::eventHandler (const Event *p_e)

// If step event, blink cursor.
if p_e -> getType() is df::STEP_EVENT then

// Blink on or off based on rate.
static int blink = -1 * getBlinkRate ()
if blink >= 0 then
text.replace(cursor, 1, 1, getCursorChar ())

else
text.replace(cursor, 1, 1, ' ')

end if

blink = blink + 1

if blink == getBlinkRate () then
blink = -1 * getBlinkRate ()

end if

return 1

end if

// If keyboard event, handle.
if p_e -> getType() is KEYBOARD_EVENT and
p_e -> getKeyboardAction () is KEY_PRESSED then

// If return key pressed, then callback.

if p_e -> getKey() is Keyboard::RETURN then
callback ()
return 1

end if

// If backspace, remove character.
if p_e -> getKey() is Keyboard::BACKSPACE then
if cursor > O then




64
65

66

4.16. View Objects 228

if cursor < 1limit then
text .replace(cursor, 1, 1, ' ')
end if
cursor = cursor - 1
text.replace(cursor, 1, 1, ' ')
end if
return 1
end if

// If no room, cannot add characters .
if cursor >= limit then

return 1
end if

// Get key as string.
std::string str = toString(p_k -> getKey())

// If entry should be number, confirm.

if numbers_only && not isdigit (str [0]) then
return 1

end if

// Replace spaces with characters.
text.replace (cursor, 1, str)
cursor++

// All is well.
return 1
end if

// If we get here, event is not handled.
return 0

If the event is a keyboard event, there are several possible actions. Remember, although
not shown, the Event pointer p_e needs to be casted when used as an EventKeyboard (see
Section 4.5.5.3 on page 99).

The code starting on Line 27 checks if the return key is pressed. If so, the callback()
method is invoked.

The code starting on Line 33 checks if the backspace key is pressed. If so, there is
an additional check if the cursor is at the beginning of the string. If not, the character
immediately to the left of the cursor is replaced.

The code on Line 45 makes sure that there is still room to add more text. If not (the
limit is reached) the method ends.

Otherwise, the code at the bottom of the method adds the keyboard character pressed
by replacing the space in the string at cursor with the character pressed.

The TextEntry draw() method also has a bit of work to do beyond the ViewObject
draw() method. The required logic is shown in Listing 4.207. Basically, the original
ViewObject text (set to “Enter text:” or something similar in the child class construc-
tor) is loaded, the text entered so far is added, and then drawn.

Listing 4.207: TextEntry draw()

s

Ye

5
s




)

N =

Gl W

6

4.16. View Objects 229

// Draw viewstring + text entered.
int TextEntry::draw()

// Get original view string.
std::string view_str = getViewString ()

// Add text.
setViewString (view_str + text)

// Draw.

ViewObject ::draw ()

// Restore original view string.
setViewString (view_str)

An example can help illustrate how the TextEntry class can be used. Consider a high
score table where the player, upon hitting a score worthy of the table, is asked to enter
his/her initials (3 characters). A text entry widget can be made as in Listings 4.208 (header
file) and 4.209 (code). In the header file, NameEntry is derived from TextEntry. The only
method that must be defined is callback(), but in this case the limit (3 characters) needs
to be set, too.

Listing 4.208: NameEntry.h — Example TextEntry for player initials

#include " TextEntry.h”
class NameEntry : public df::TextEntry {

public:
NameEntryButton () ;
void callback ();
i

In the source code, the constructor sets the text entry widget in the center of the
screen and indicates the player should enter initials (setting the character limit to 3). The
callback() method is invoked when the return key is pressed — in this case, a message is
written to the logfile, but probably the game programmer would do something else with the
initials, such as add them to a table.

Listing 4.209: NameEntry.cpp — Example TextEntry for player initials

#include "LogManager.h”
#include " NameEntry.h"

NameEntry::NameEntry () {
setViewString (" Enter initials”);
setLocation (df : : CENTER_CENTER) ;
setLimit (3);

}

// On callback , write initials to logfile.
void QuitButton::callback () {

LM.writeLog (" High score: %s”, getText().c_str());
}

s

Ye

5
s}




4.16. View Objects 230

4.16.4 Development Checkpoint #13!

Continue development of Dragonfly, incorporating ViewObjects. Steps:

1.

Create a ViewObject class (ViewObject.h and ViewObject.cpp), inheriting from
Object, based on Listing 4.190. Add ViewObject.cpp to the project. Stub out all
the methods first and get it to compile.

. Write the ViewObject constructor, based on Listing 4.191 and then setLocation(),

based on Listing 4.192. Get your code to compile and verify by visual inspection of
code.

. Based on Listing 4.195, write the utility function toString () and put it inutility.cpp

and utility.h. Test with a stand alone program, outside of any other aspect of the
game engine, to be sure it properly converts a range of integers to string values.

. Write the ViewObject draw() method, referring to Listing 4.194. Remember, since

draw() gets called automatically in WorldManager draw(), first test your code by
creating a ViewObject (via new) before calling the GameManager run() method.
Verify that the ViewObject appears, testing its location in all six fixed locations
around the screen, for arbitrary strings and values.

. Create a EventView class, based on Listing 4.197. Add EventView.cpp to the project.

Define the eventHandler () based on Listing 4.198. Verify the code compiles and use
visual inspection on the methods.

Referring to Listing 4.199, construct an example that uses a ViewObject with a test
program that changes the value of the object. Test with a variety of view events, with
different values and deltas. Verify that a ViewObject only handles events that are
targeted toward it, ignoring others.

s

Ye

5
s



