/F .\ ' J7
PI0E—d NN _JI1TTT
Fid il IIJlIJIIJIIIIIII'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #12

Event Filtering

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.

4.15. Filtering Events (optional) 204

4.15 Filtering Events (optional)

Up to now, all game objects get every event when Manager onEvent() is called. For
example, in the GameManager game loop, all Objects get a step event every loop iteration.
This is useful for Objects that need to do something each step, like the Saucer Shoot Hero
that uses step events to determine when it can shoot again (see Listing 3.5 on page 25). But
many game objects do not need to update themselves each step event — such as walls, trees
or rocks. The general idea, that not all objects want all step events, holds for other events,
too. For example, keyboard events, generated when a player presses keys, are usually only
handled by the object that the player controls (e.g., the Hero). The way the event handler
works (see Listing 4.60), an event that is not acted upon can just be ignored, but that still
means the Object eventHandler () method is invoked, which is inefficient at best, and can
lead to unexpected errors if the game code does not ignore events properly, at worst.

The solution is to filter events, only passing specific events to Objects if they have
indicated interested in events of that type. When an Object does want a specific event, it
registers with the manager in charge of that event. For example, an Object that wants to
get step events registers interest in that event with the GameManager. When the event
occurs, the manager invokes the eventHandler () method only for those Objects that are
interested. Continuing the example, every game loop, the GameManager does not send
an EventStep to all Objects (as it does currently), but only to those Objects that have
registered interest. When an Object is no longer interested in an event, it explicitly un-
registers interest. Note, the engine will do this un-registration automatically, too, when an
Object is removed from the game world. Otherwise, an Object would receive an event even
though it had been removed and deleted, a certain error.

From another vantage, providing for updates to Objects when events occur, and only
providing the updates to interested objects is a form of an observer design pattern (some-
times called a publish-subscribe design pattern).

Figure 4.8 depicts the general idea. Objects, depicted by the grey boxes on the bottom,
register their interest in an event with the appropriate manager, depicted by the ovals at the
top. Objects may be interested in more than one event or in no events at all. For example,
Object 1 is interested in only one event managed by Manager A, while Object 3 is interested
in two events managed by Manager C and one event managed by Manager B, and Object
n is interested in no events at all. Managers keep track of which Objects are interested in
the events they manage, hence the two-way arrows. Managers may be responsible for no
events (e.g., the LogManager), or many events. Even Managers that are responsible for one
or more events may still have no Objects that are interested. For example, this may be the
case for Manager X in Figure 4.8.

Figure 4.9 depicts a close-up view of data structures inside Object and Manager needed
to support filtering events. The Object on the left, using Object 3 from Figure 4.8, keeps
the names of the events in which it is interested in an array of strings, called event name[].
It also has an attribute, event_count, for stores a count of the number of events in which
it is interested.

The Manager on the right, Manager C from Figure 4.8, has an array, event name[], of
the names of interested events as strings which aligns via a parallel array with obj_list[]
which stores the Objects that are interested in that event. The attribute event count

-

- .‘@:
e
* 0\

4.15. Filtering Events (optional)

Manager A

Manager B

Manager C

I I

Object
1

Object
2

Object
3

Figure 4.8: Event interest

stores the count of the number of events in which it is interested.

Manager .Y

Object

event_count K event_count \
(5 |
event_name event_name obj_list
0 event name a 0 event name a ol 02 o3
1 event name b 1 event name b ol o5 o6
b cvent name d bl cvent name c 02 03 09 [
Object 3 Manager C

205

Figure 4.9: Event interest (zoom)

In order to build this functionality, the Manager class needs to be extended to support
event interest management. To start, the Manager stores a list of all the events in which
Objects have registered interest and, for each event, a list of the Objects that have registered
interest. Listing 4.179 shows code fragments that provide attributes and methods for the
Manager class to support interest management.

Listing 4.179: Manager extensions to support interest management
100 // Mazimum number of different

const int MAX_EVENTS = events .

private:

int event_count;
std::string event [MAX_EVENTS];
ObjectList obj_list [MAX_EVENTS];

// Check if event
// If handled, return true
// (Base Manager always

// Number of events.
// List of events.
// Objects interested in

is handled by this Manager.
else false.
returns false.)

virtual bool isValid(std::string event_name) const;

public:
// Indicate interest in event.
// Return 0 if ok, else —1.

event .

=A,

4.15. Filtering Events (optional) 206

15| // (Note, doesn’t check to see if Object is already registered.)
16 int registerInterest (Object *p_o, std::string event_type);

18 // Indicate mo more interest in event.
19| // Return 0 if ok, else —1.
20 int unregisterInterest (Object *p_o, std::string event_type);

2| // Send event to all interested Objects.
23 // Return count of number of events sent.
24 int onEvent (const Event *p_event) const;

MAX_EVENTS is defined to be 100, which is large enough for most games. In fact, most
games have far fewer than 100 different types of events — typically no more than 10 — but
any extra, unused capacity has little overhead.

The private attributes provide data structures to store the events. The variable event_-
list_count keeps track of how many unique events this manager has been asked to register
for (initialized to 0 in the constructor). The events themselves are stored as strings (the
event type, as specified in Listing 4.51) in the array event[], and the objects registered
for the corresponding event are held in obj_1ist[]. Note that event[] and obj_list[]
are parallel arrays, so that the ith element of event[] corresponds to the ith element of
obj_ list[].

When an Object is interested in an event handled by a particular Manager, it invokes
the method registerInterest(), providing a pointer to the Object itself (i.e., this) and
the event name.

When an Object is no longer interested in an event (and when it is being deleted), it
invokes the method unregisterInterest(), providing a pointer to itself and the event
name.

In order to protect a game programmer from registering for interest in an event with
a manager that does not handle that event, the Manager checks the isValid() function
before accepting the registration. This method is virtual so that derived managers can
specify which game events, if any, they manage. When an event occurs, the onEvent ()
method iterates through the list of all Objects that had registered for interest in the event
and sends each of them the event by invoking their eventHandler () methods.

The method registerInterest() is provided in Listing 4.180. The first block of code,
lines 4 to 9, checks to see if there is already an Object that has registered interest in this
event. If so, line 6 adds the indicated Object to the list.

The second block of code, lines 12 to 18, is triggered when the event being registered
for has no other Objects in the list. In this case, the arrays are first checked to see if the
maximum number of events has been reached. If so, the routine needs to return an error
— it will be up to the game code to figure out how to proceed.?’ If there is room, the
event and Object are added to the end the lists and the number of events (event_count) is
incremented.

Listing 4.180: Manager registerInterest()

ol // Indicate interest in event.
1| int Manager::registerInterest (Object *p_o, std::string event_type)

20 Another reason that all system and engine calls should be error checked!

s

Ye

5
s

16

17

4.15. Filtering Events (optional) 207

// Check if previously added this event.
for i = 0 to event_count-1
if event_name [i] is event_type then
insert object into obj_list[i]
return // Ok.
end if
end for

// Otherwise , this ts new event.
if event_count >= MAX_EVENTS then
return // Error, list is full.

end if
event_name [event_count] = event_type
clear obj_list[event_count]l // In case ‘‘re—wusing’’ scooted list.

insert object into obj_list[event_count]
increment event_count

return // Ok.

unregisterInterest () is shown in Listing 4.181. The first block of code, lines 4 to 8§,
looks for the event that is being unregistered for. When found, the corresponding Object
is removed in line 6. Note, if event is not found, the method returns an error (e.g., -1) —
this is not shown in the pseudo code. Also, if the Object to be removed is not found in
obj_list, an error should be returned.

The second block of code, lines 11 to 15, checks if the Object list at the spot of the
event is empty. If so, it “scoots” the items in event and obj_list over and reduces the list
count by one. Line 31 of Listing 4.32 shows an example of how this is done for an array of
integers.

Listing 4.181: Manager unregisterInterest/()

// Indicate mno more interest in event.
int Manager::unregisterInterest (Object *p_o, std::string event_type)

// Check for event.
for i = 0 to event_count-1
if event_name [i] is event_type then
remove object from obj_list[i]
end if
end for

// Is list now empty?

if obj_list[i] is empty then
scoot over all items in object_list []
scoot over all items in event_name []
decrement event_count

end if

return // Ok.

With the Manager storing events and Objects registered for them, the onEvent ()
method can be refactored, as shown in Listing 4.182. Line 5 iterates through all the events
that have been registered for, and line 7 compares the type of the event (via the getType ()

a0
g
e
e\ "

"\
\

4.15. Filtering Events (optional) 208

method of Event) to the event list items. If the event is found, the code on lines 7 to 10
iterates through all Objects, invoking the eventHandler () method for each Object, passing
in the event (p_event). The count of events sent is also incremented, and returned when
the method ends.

Listing 4.182: Manager onEvent() refactored to support filtering events

ol // Send event to all interested Objects.

1| // Return count of number of events sent.

2| int Manager::onEvent (const Event *p_event) const
count = 0

5 for i = 0 to event_count-1

6 if event_name [i] is p_event type then

7 for j = 0 to object_list [i] count

8 call object_list[i][j] -> eventHandler () with p_event
9 increment count

10 end for (j)

11 end for (i)

13 return count

With the above code in place, all Objects no longer receive a step event. Instead, only
those that have done a registerInterest (STEP EVENT) with the GameManager get the
step event. Similarly for the keyboard and mouse events.

Not all managers handle all events. For example, it makes no sense for a game object
to register for interest in a step event with the WorldManager (or LogManager!). In order
to help the game programmer from making the mistake of registering for interest with the
wrong manager, each manager defines an isValid() function. The base class Manager
isValid () method is declared as in Listing 4.183. The method is declared virtual so
that derived classes, such as the GameManager, can define their own isValid() methods,
as appropriate. The base Manager isValid() always returns false — there are no real
instances of the base Manager class and, if there were, it would not handle any events.

Listing 4.183: Manager isValid()

0 // Check if event is handled by this Manager
// If handled, return true else false.
virtual bool isValid(std::string event_type) const;

N

The pseudo code for each derived manager class isValid() is shown in Listing 4.184.
Note, the “DerivedManager” is not the real name of the class — rather, the name is replaced
with the actual manager name (e.g., GameManager) when defined. The body of the method
checks if the event is a valid event (e.g., a STEP_EVENT in the GameManager). If so, it
returns true. Otherwise, it returns false.

Listing 4.184: Derived manager isValid()
ol // Check if event is allowed by this Manager
i // If allowed, return true else false.
2| bool DerivedManager ::isValid(std::string event_type) const

4 if event_type is VALID EVENT1 then

s

Ye

5
s

o= O

0
1

4.15. Filtering Events (optional) 209

return true
end if

if event_type is VALID EVENT2 then

return true
end if

return false

As a specific example, pseudo code for the InputManager isValid() method is shown
in Listing 4.185.

Listing 4.185: InputManager isValid()

// Input manager only accepts keyboard and mouse events.
// Return false if not one of them.
bool isValid(std::string event_name) const

if event_name is keyboard event
return true

else if event_name is mouse event then
return true

else
return false

end if

The isValid () method needs to be defined for the GameManager, Input Manager and
WorldManager (which accepts all events the other two Managers do not).

With isValid () defined, the Manager method registerInterest () is extended to call
isValid () before adding the game object to the list of interested objects. If isValid()
returns false, the Object (and event) are not added.

The last bit of bookkeeping that needs to be done is to extend the Object class so each
Object keeps track of the events it has in which it has registered interest. That way, if
an Object goes out of scope (is deleted) it can automatically unregister for interest in all
events. Not doing this automatic unregistration would mean if the event occurred, the
manager would try to send the event to the Object, but since the Object was deleted and
the memory no longer allocated, a segfault (a spurious memory error) would occur.

Methods registerInterest() and unregisterInterest() are declared as in List-
ing 4.186. Like the Manager’s methods, the Object’s interest management methods both
return O if successful, and -1 if there is an error. Unlike in the Manager, the Object’s meth-
ods only take the event string they are interested in. The array on line 2 and associated
integer on line 1, are to keep track of the events this Object has registered in. Only the
string is needed here, since each event type matches up uniquely with a specific manager.
For example, if the Object is interested in a step event, that is registered only with the
GameManager.

Listing 4.186: Object class extensions for registerInterest()

private:
int event_count;

s

Ye

5
s

4.15. Filtering Events (optional) 210

std::string event_name [MAX_OBJ_EVENTS];

public:

// Register for interest in event.

6 // Keeps track of manager and event.
71 // Return 0 if ok, else —1

8 int registerInterest (std::string event_type);

G W N

10 // Unregister for interest in event.
11 // Return 0 if ok, else —1
12 int unregisterInterest (std::string event_type);

The Object’s registerInterest () method is provided in Listing 4.187. The first block
of code checks to see if there is room in the array of events by comparing event_count to
the maximum (MAX_OBJ_EVENTS, defined in Object.h to be some reasonable maximum say,
100).

The next block of code checks to see if the event is a step event. If so, it registers for
interest with the GameManager by calling registerInterest (), passing in the pointer to
the current Object (this) as well as the event string. As more managers are defined (e.g.,
InputManager), more cases can be handled similarly to the step event (in the “...” region
in line 14). By default, all remaining events are handled by the WorldManager — that way,
user defined events (such as the “nuke” in Saucer Shoot, see Section 3.3.8 on page 34) can
be accommodated. Note, the registerInterest () method call to each individual manager
can fail, depending upon their definition of isValid() and the number of Objects already
registered, so the calls should be error checked.

The last block of code starting at line 20 keeps track of the event name that has been
registered by adding it to the array and incrementing the count of events.

Listing 4.187: Object registerInterest|()

ol // Register for interest in event.

1| // Keeps track of manager and event.

2| // Return 0 if ok, else —I1

3 int Object::registerInterest (std::string event_type)
|

// Check if room.

6 if event_count is MAX_OBJ_EVENTS then
7 return error

8 end if

10 // Register with appropriate manager.

11 if event_type is STEP_EVENT then

12 GameManager registerInterest (this, event_type)
13 else if

15 else
16 WorldManager registerInterest (this, event_type)
17 end if

19 // Keep track of added event.
20 event_name [event_count] = event
increment event_count

NN

24

16

18

19

N
S5 N = O

NN N NN
b PX 2

4.15. Filtering Events (optional) 211

J/ All is well.
return ok

The Object’s unregisterInterest() method is provided in Listing 4.188. The first
block of code checks to see if the event was previously registered — if it was not, an error
(-1) is returned. Similar to registerInterest(), the next block of code checks first to see
if the event is a step event and, if so, unregistering for interest with the GameManager.
Other Managers are handled similarly, in the ‘. ..’ region. By default, any remaining event
is unregistered with the WorldManager. The last block of code starting at line 25 removes
the event from the event name array (at spot index), scooting over the following items.
See line 31 in Listing 4.32 on page 80 for an example of doing “scooting” for an array of
integers.

Listing 4.188: Object unregisterInterest()

// Unregister for interest in event.
// Return 0 if ok, else 1.
int Object::unregisterInterest (std::string event_type)

// Check if previously registered.
found = false
for index = 0 to event_count-1
if event_name [index] is event
found = true
end if
end for
if not found then
return error
end if

// Unregister with appropriate manager.
if event is STEP_EVENT then

call GameManager unregisterInterest with "this” and "event”
else if

else
call WorldManager unregisterInterest with "this” and "event”
end if

// Keep track.
scoot over all items in event_name
decrement event_count

// All is well.

return ok

When an Object is deleted, it is important to remove registration for all events it was
interested in — failure to do so will result in the Object getting the event (by having its
eventHandler () method called) even if it has been deleted. In fact, while game objects can
certainly unregister for events they are no longer interested in, in many cases unregistration
only happens when the Object is deleted. Thus, the destructor of the Object is extended to
automatically unregister for all events the Object had registered for interest in, as shown
in Listing 4.189. Thus defined, game objects will typically register for interest in events,

o,

\

4.15. Filtering Events (optional) 212

but not explicitly unregister since unregistration for all events happens when the life of the
Object is over.

Listing 4.189: Unregistering from all registered events

0ol for index = event_count-1 to O
1 call unregisterInterest with event_name [index]
2| end for

In order to use the new methods, game objects that are interested in input, say, from
the keyboard, would register for interest:

0 // Inside a game object’s constructor .
1 registerInterest (KEYBOARD_EVENT)

Registering for interest in a mouse event is similar, except that MSE_EVENT is used instead
of KEYBOARD_EVENT.

4.15.1 Program Flow for Events

This section provides a summary of the program flow in Dragonfly for events.
Consider an event that needs to be sent to all interested Objects — for example, a step
event or even a user defined event such as “nuke”.

1. The event is created, say EventNuke e.
2. WorldManager onEvent () is called, invoked with the address of the event (i.e., &e).

3. Since WorldManager onEvent () is only defined in the Manager base class, Manager
onEvent () is invoked.

4. Manager onEvent () iterates through the event name[] array until a match for the
event type (via p_event->getType()) is found at index i.

5. Manager onEvent () then iterates through the obj_list[] ObjectList at index i.

6. For each Object (via currentObject()) in the list, its eventHandler () is invoked
with the event (*p_event).

7. The derived Object eventHandler() (e.g., Saucer eventHandler()) inspects (via
p_e->getType ()) and handles the event, as appropriate.

4.15.2 Development Checkpoint #12!

Continue with your Dragonfly development. Specifically, develop functionality for filtering
events from Section 4.15. Steps:

1. Refactor the Manager to support registration for interest in events. See Listing 4.179
for the methods needed. Add the necessary attributes, then write registerInterest ()
and unregisterInterest() based on Listing 4.180 and Listing 4.181, respectively.
Test that Objects can successfully register and unregister successfully, verifying work-
ing code with logfile output.

-
‘Oﬁﬁ,‘
°
* 0\

4.15. Filtering Events (optional) 213

2. Refactor the Manager onEvent () method, referring to Listing 4.182 as needed. Test
that Objects can register for step events and receive step events each game loop while
the game is running.

3. Implement Manager isValid() to accept no events, but define isValid() for the
GameManager, InputManager and WorldManager to handle step, keyboard and mouse
and every other event, respectively. Refer to Listing 4.184 as needed. Verify that a
game object cannot explicitly register for interest in events with inappropriate Man-
ager (e.g, a step event with the InputManager), but can register for interest in events
with an appropriate Manager (e.g., a keyboard and a mouse event with the InputMan-
ager). Create a user-defined event (e.g., a “nuke” event) and verify that this event
can only be registered with the WorldManager.

4. Add attributes and methods supporting the Object’s ability to register and unregis-
ter for events based on the Listing 4.186. Implement the registerInterest() and
unregisterInterest () methods, referring to Listing 4.187 and Listing 4.188, respec-
tively. Verify code functionality by having game code register and unregister for an
event, both the step event and user-defined event, successfully.

5. Add code to the Object’s destructor to unregister from all registered events, referring
to Listing 4.189 as needed. Verify working code by having an object register for a
step event, then destroying the Object. Repeat with multiple events, such as a step
event and a user-defined event.

s

Ye

5
s

